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Bivariate Cheney-Sharma operators on simplex

Giilen Bagcanbaz-Tunca*, Aysegiil Erencin'* and Hatice Giil Ince-Tlarslan®

Abstract

In this paper, we consider bivariate Cheney-Sharma operators which
are not the tensor product construction. Precisely, we show that these
operators preserve Lipschitz condition of a given Lipschitz continuous
function f and also the properties of the modulus of continuity function
when f is a modulus of continuity function.
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1. Introduction

The most celebrated linear positive operators for the uniform approximation of con-
tinuous real valued functions on [0, 1] are Bernstein polynomials. As it is well known,
besides approximation results, Bernstein polynomials have some nice retaining proper-
ties. The most referred study in this direction was due to Brown, Elliott and Paget [7]
where they gave an elementary proof for the preservation of the Lipschitz constant and
order of a Lipschitz continuous function by the Bernstein polynomials. Whereas, Lindvall
previously obtained this result in terms of probabilistic methods in [20]. Moreover, in
[19] Li proved that Bernstein polynomials also preserve the properties of the function of
modulus of continuity. The same problems for some other type univariate or multivariate
linear positive operators were solved by either using an elementary or probabilistic way
(see, e.g. [3]-[6], [8], [9], [14], [15], [17], [18], [28]).
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In Abel-Jensen identity (see [2], p.326)
(1) (utv)(u+v+mB)™ =Y (Z)u (u+kB) M wfv+ (m— k)BT
k=0

where u, v and 8 € R, by taking u = =, v = 1 — z and m = n, Cheney-Sharma [11]
introduced the following Bernstein type operators for f € C[0,1], z € [0,1] and n € N,

@ (ria) =307 (£) @x (@ +kB)* !
k=0

Xx(1—z)[1—z+(n—-kKB]" ",

where [ is a nonnegative real parameter. For these operators, tensor product of them
and their some generalizations we can cite the papers [1], [10], [12], [21]-[27] and the
monograph [2]. Remark that from [11] and [21] we know that Q% operators reproduce
constant functions and linear functions. Very recently, in [6] the authors showed that uni-
variate Cheney-Sharma operators preserve the Lipschitz constant and order of a Lipschitz
continuous function as well as the properties of the function of modulus of continuity.

We now introduce the notations, some needful definitions and the construction of the
bivariate operators.
Throughout the paper, we shall use the standard notations given below.
Let x = (21,22) € R?, k = (k1,k2) € N3 , e = (1,1),0=(0,0),0< S € Rand n € N.
We denote as usual

|| := z1 + 22, x* =282 |k|i=k + ko, Kli=kilke!, Bx = (Bz1,Bx2)

and

n n—ki

@‘w(nnmn' S=y Y

k|<n  k1=0 ka=0

We also denote the two dimensional simplex by
S = {x=(z1,22) € R®:zy,20 > 0, x| < 1}.

Moreover, x < y stands for z; < y;, i = 1,2.
We now construct the non-tensor product Cheney-Sharma operators. From (1.1) it is
clear that

n

L+n®)" =3 <’Z>m1 (@1 +k1B) T (1= 21)

k1=0
X [1 —x1 + (TL — ]fﬂﬂ]niklil .

In (1.1), taking u = 2, v =1 — 1 — 22 and m = n — k1 we have

(1—z1) [l =21+ (n—kn)B)" "1

" n—k
= ( 1)332 ($2+k25)k2_1 (1—21—x2)

ko=0 k2
X [1 — X1 — T2 + (n — kl — k}z)ﬂ]n_kl_kz_l .
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Using this result in the above equality we find that

(1+nB)"
n n—=ky
= Z Z (;Z) (n ;2k1>m1m2 (z1+ klﬁ)klfl (z2 + kgﬁ)k("*l
k1=0 k2=0

X (1 —x1 — .TQ) [1 —x1 — T2 + (n — k1 — k’z)ﬁ}n_kl_@_l

= Z (Z) Xe(x+ k,B)k_e (1 — |X|) [1 — |X| + (TL _ |k|)6]n_|k|_1

[k|<n

or

1=(1+n8)""" Y (ﬁ) x°(x +kB)*° (1 - |x])

lk|<n
x [1— x|+ (n— [K])g]" 7

In this paper, for a continuous real valued function f defined on S we consider the
non-tensor product bivariate extension of the operators Q% (f;z) defined by

Gis =ns) ™ Y 1 (%) <z> X (x4 B)<e

(1.2) Kl<n
< (1= |x|) [1 = x| + (n — [k[)g]" "I~

where (8 is a nonnegative real parameter, x € S and n € N. We observe that for
B = 0 these operators reduce to non-tensor product bivariate Bernstein polynomials (see
[13],[16]).

1.1. Definition. (see, e.g.[9]) A continuous real valued function f defined on A C R?
is said to be Lipschitz continuous function of order  , 0 < u < 1 on A, if there exists
M > 0 such that

2
1F) = FI <MY i — yal”
i=1
for all x,y € A. The set of Lipschitz continuous functions of order p with Lipschitz
constant M on A is denoted by Lipns(u, A).

1.2. Definition. (see, e.g.[8]) If a bivariate non-negative and continuous function w(t)
satisfies the following conditions, then it is called a function of modulus of continuity.
(a) w(0) = 0,

(b) w(t) is a non-decreasing function in t, i.e., w(t) > w(v) for t > v,

(¢) w(t) is semi-additive, i.e., w(t + v) < w(t) + w(v).

2. Main results

In this section, inspired by the paper of Cao, Ding and Xu [9], including preservation
properties of multivariate Baskakov operators, we show that non-tensor product bivari-
ate Cheney-Sharma operators defined by G&(f;x) := G&(f)(x) preserve the Lipschitz
condition of a given Lipschitz continuous function f and properties of the function of
modulus of continuity when the attached function f is a modulus of continuity function.

2.1. Theorem. If f € Lipa(p, S), then G2(f) € Lipa(p, S) for all n € N.
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Proof. Let x,y € S such that y > x. From (1.2) we have

GEfiy) = (14 nB)' ™ sz< )() (g +18)

x (1= [y [L = |y| + (n —|i})g]" 1"

=(1+npB) - nz Z f( ) (?)yl (y1+ilﬂ)i171
i1 =0 i2=0

Xy (2 +128)2 1 (1= |y [L — Iyl + (n — i8]

Setting w = z1, v = y1 — o1, m = 41 and u = T2, v = Y2 — T2, M = iz, TEspectively, in
(1.1), we find

1 (y1 +4108) 21 - Z < > x1—|—k16)k1_1 (y1 — 1)

k1=0
X [y1 — @1 4 (i1 — k1) P!

and
2
y2 (y2 +i20)?7" = @2 (w2 + k20)"2 7" (y2 — a2)
k
k=0 \"?
X [y2 — 2 + (i2 — k2) ] 727",
Therefore,

Ga(f3y)
—ae S5 (1) (1) 2 2 (1) (1)

X (21 + k18)" 7 (w2 + k2 B)*2 7 (g1 — 1) (y2 — x2)
* fyr — @1+ (i = k)BT T g2 — o+ (2 — k2) BT
x (L= lyD) [1 = |y + (n — i)~

1 n Ll & n!
=(1+np) ZZZZJ”< >k'n—||)(l1—k1)!(i2—k2)!

31=0k1=0 i5=0 ko=0
XX (X+k6)k e( — ) [y_X‘F(i—k),B]'_k_e
x (L=|y)[1 =y + (n—|i))s)" .




Changing the order of the above summations and then letting i — k =1 we obtain
Gn(f5y)

. n,onZiinch n!
=(1+np) Zzzzf( )k'n—||)(21—k1)(12—k2)

k=0 i1=kq ko=0ig=ko

X x°(x + kB) Ty = %) [y —x+ (i~ k)BT
(2.1) x (L= [yl) [1= |yl + (n — i8]~

1 n n—kyn—ky—Il; n—|k|—-I1 k+1 n!
=408 30 >0 >0 ) f< " )k!l!(nflklf\l\)!

k1=01,=0 ko=0 l2=0

x x°(x + kB)°(y —x)°(y —x +18)'"°
x (L= lyD[1 = |yl + (n— [k| — 1))~ k==

Now we consider

n n—ky
Gh(f;x)=1+np) " > Zf( )() x®(x + kB)*~

k1=0 ko=0
X (1= [x[) [1 = x| + (n — [k)g]" 7"
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In (1.1), if we put y1 — z1, 1 — y1 — x2 and n — |k| in place of u, v and m, respectively,

one has

(1 — [x[) [1 — [x] + (n — [k[)g]" <=
n—|k|

= (n ;1|k|> (= 21)(y1 — a1+ 1B)" (1 —y1 — x2)

;=0

X [1—y1 — @2+ (n— k| — )" M=t

Again in the equality (1.1), we replace u, v and m by y2 — 22, 1 —|y| and m = n— |k| -4,

respectively, we find

Q—y1—22)[1 -y — 22+ (n— |k| — 1y)p)" K==t

T K -
= Z ( l >(y2—$2)(y2—$2+l25)l2_1
2

lo=0

x (L= lyD) [T = |yl + (n = [k| = g ==t
Making use of this in the above equality leads to

(I—|x])[1—|x|+(n— |k|)/3}n—\k\—1

n—|k| n—|k|—Iy

=> > <n_1|k|>(yX)e(nyrlﬂ)le

I1=0 13=0

X (L= |y [L = |y| + (n — [k — )]~ <=1
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Thus we conclude that

Gh(fix)

1 n n—kyn—|kln—|k|-l; !
=+nA)" D > D f()m

k1=0 ko=0 11=0 lo=0
x x°(x +kB) °(y —x)°(y —x+18)'"°
X (1= |yl [L = |y|+ (n — K| — 1))g) <=1

Now changing the order of the two summations in the middle, we obtain

Gh(fix)
. n n—kin—ki—l3 n—|kl-l1 !
PG LD DD DD DD f( )k'l'(nf|k|f|1|>
(2.2) k1=0 11=0 k3=0  l3=0

x x*(x +kB)°(y —x)°(y —x +18)'"°
X (1= |yl [1 = |y|+ (n — |k| — [1)g) =M=t

So, from (2.1) and (2.2) it follows that

Gh(fiy) — Ga(f;x)

o Y S () - (4)]

k1=0 11=0 ko=0 l2=0

n!
“ K(n — [k — 1))!
X (1= |yl [1 = Jy| + (n — |k| — 1))g)" <=Mt

X (x + kB (y — x)°(y —x +18)"°

Again interchanging the order of the summations two times successively, we find

Gh(fiy) — Ga(f;x)

a3 S () (1))

1,=0k1=0 I3=0 ko=0

X (x + kB (y — x)°(y —x +18)"°

n!
“ K(n — [k — 1))!

(23) X (1= lyD L= Iy|+ (n = [k = [1ps) =M

DS i ni:” niiim {f ($> -7 (%)}

11=012=0 k1=0 ko=0

nt X (x + kB) " (y — x)°(y — x +16)!

“ Ki(n — [k — [))!
X (1= |yl [1 = |y|+ (n — k| — [1))g) <=1

Using the fact f € Lipam(u, S) and the following equality

n! _[(n\[n=1\[n—k —|]
Kl — k[ — )~ 1)\ & ko
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one can write

GoFiy) =GR

<M ns) Y ni ni” n—gm K%)u * (%ﬂ

11=0102=0 k1=0 ko=0

* <7> <n 21“') (n e l>xe<x+kﬂ>“‘e<y o

X (v = x+18) 7 (L= Iy [L = Iy + (n k| = W8y~

= S ()] (Do

11=012=0

n—|1]

k1=0

n—ky—|1
(R M s gy
k2

ko=0
(L= ly]) [L = ly| + (n — [k = "=

Taking u = z2, v =1—|y| and m =n — k1 — |1] in (1.1), it is easily seen that

(@2 + 1= |y]) [z2 + 1 = |y + (n — ko — 18" " 711
n—k1—|1]

24 = 3 (""212‘“'>x2(m+k25)’“2‘1(1—yl)

ko=0
X [1—ly| + (n — [k| — g~ ==t

Hence we can write

Gofiy) =GR 5|

<M (1+ nﬁ)lfn z": nz_l:l K%)u + <%>q <T) (y —x)°

11=0 l3=0

n—|1]
X (y—x+18) 3 (” ;1|1|>x1(x1 +B)" T (w2 + 1= ly])

k1=0

X [z2 + 1=yl + (n— ki = [1)A]

n—ky—[1]—1

Again in (1.1), we replace u, v and m by z1, 2 + 1 — |y| and m = n — ||, respectively,
to obtain

n—|1]—1

(w1 +z2+1—|y])[z1 +22+1—|y| + (n—[1))f]
=(1 =y —=x)[1 = |y = x|+ (n = [U)g)" "~

2.5 e A
) :Z< k11>’”1($1+k1ﬁ)1 (2 +1-1yl)

k1=0
n—ky—|1|—1

X[z2+ 1=yl + (n— ki = [1)A]
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This leads to
GRf3y) = GRS )|
ln = L\" L\l (n o
wgy S0 (8 (2)] (7)o
X (y = x+18)" (1= [y = x) [L = [y = x| + (n = [U)g" "
=M [Gﬁ (thsy — %) +Gﬁ(t5;y*><)} :

Now consider the term G2 (t/;y — x). With the help of the equality
we can write

n\ _(n n—l
1)\ lo
G (thsy — x)

=(1+n8)'" Y i (%)M (?) (y —x)°(y —x+18)"°

11=012=0
x (L=ly = x| [1= |y = x|+ (n = 18] "~

=1+nf)"" i (%)# (Z) (y1 — @)y — a1+ LB

11=0
n—Iy

n—1 _

x D ( I 1)(92—232)(92—1’24-125)12 '
lo=0

x (L= ly = x| [L= |y = x|+ (n = [)8)" "

In the equality (1.1), if we take y2 — z2, 1 — |y — x| and n — /1 in place of u, v and m,
respectively, then we get

[1 - (y1 - iEl)} [1 — (yl — xl) + (Tl _ ll)ﬁ]"_ll_l

=2 (" B ll) (y2 = w2)(yz — w2 + 12B)* 7 (1 = [y — x)

lo=0

x [L =y = x|+ (n - g~ "t
Therefore,

G (thsy —x)

(Y (%) (;‘) (31— 1) (g1 — 21+ L)

11=0
X[1—=(y1 —x1)][1—(y1 —21) + (n — ll)ﬂ]n_ll_l
=Qn (thsyr —x1).
Applying the Holder inequality with conjugate pairs p = % and ¢ =
G (15 y = %) =Qn (1591 — 21)

<[@tsm — o] QUi - )]

we find

1
1—p?

1—p
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As mentioned before, since the univariate Cheney-Sharma operators given by @2 repro-
duce constant and linear functions we reach to

Gh(ty —x) < (g1 —a1)™.

Now in the following equality

n n—ly
GE (thyy —x) =(1+np)'~ "Zz<l2) ( )y—x)e(y—x—l-lﬁ)le

11=012=0

x (1L=ly —=x)[1= |y = x|+ (n = )" "1,

if we change the order of summations and use the equality <7ll) = <n l_ l2> (;1), then
1 2

we can write

GE (thyy —x) =(1+np)'~ nz Z (12) ( ) (y —x)°(y —x+13)""

l2=011,=0

x (1=ly =) [1 = |y = x|+ (n— g~

DS (ln) (z )(yz —@)(y2 — w2 + 1oB)2

n—Ilg
Xy (n 1_1 l2> (y1 —z1)(y1 —z1 + 1B

x (1= ly =x|)[1— |y = x|+ (n = 1)) "
Taking u =y1 —z1,v=1— |y —x| and m =n — [l in (1.1), it is clear that

[1—(y2 —x2)][1 = (y2 — x2) + (n — l2)ﬂ]n—l2—1

n—Ilg

= (n_f)) (1 — 1)y — 21 + 1B 11 — |y — x|)

11=0
< [L=ly = x|+ (= syt
Hence, one gets

n

Gn (thy —x) =(1+nB)' " Y (lﬁ)u (Z) (y2 — w2)(y2 — w2 + 128)"2 7"

15=0 n
X (1= (y2 = 22)][1 = (y2 — x2) + (n = L) B]" 727"
:Q’(ﬂl (t§§ Y2 — mg) .

Application of Hélder’s inequality with p = i and ¢ = ﬁ gives
Gn (th;y —x) < (y2 — z2)".

Thus from (2.6) it follows that

Gh(fiy) = Ga(f;x)| < M [(yr — 21)" + (y2 — z2)"]
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which implies that G2 (f) € Lipar(i1,S). In a similar way the same result can be found
for x > y. If x1 > y1, z2 < y2, then we obtain from the above result for (y1,z2) € S that

GLSy) = G| < |G (F: (@1,22)) = G2 (F: (9, 2)|

25 (nwe)) = G2 (F (g, 22)|
SM[(z1 = y1)" + (y2 — 22)"]

Finally, for the case z1 < y1, 2 > y2 we have the same result. This completes the
proof. O

2.2. Theorem. If w is a modulus of continuity function, then G% (w) is also a modulus
of continuity function for all n € N.

Proof. Let x,y € S such that y > x. Regarding f as a modulus of continuity function
w in (2.3) we have

Gh(w;y) = Gal(w;x)

n n—lyn—|ln—ki—l| K1 K
1+nﬂ w|l— | —w|—

nrx X L) -0
) Wiq_m);xe(ﬂkﬂ)“‘e(y —x)°(y —x+15)"
X (L= [y [ = ly| + (n = [i| = gy

Using the property (b) of w we have G2 (w;y) — G2 (w;x) > 0 when y > x.
Moreover, from the property (¢) of modulus of continuity function w and the equality

n! o (n\[n=\[n—k -]
K-k -1 \1)\ & ko

Gh(wiy) — Gh(w;x)

e SRS () ()

11=013=0 k1=0 ko=0

we can write

k2
x L= |y| + (n— k| — )"~

=(1+nB)"" "inzh ( ) ( ) (y—x)°(y —x+13)"

11=0 ;=0

n—|[1| n— |1| i _— n—ki—|1 n—k — |1|
X Z ky z1(z1 + k18) Z ke T2

k1=0 ko=0

x <nk1 Ill) (e KBy — )y —x+18)7° (1~ ly))

x (w2 + ko) (1= |yl [1 = ly| + (n — [K| — 1))~ =1I=,
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Using the equalities (2.4) and (2.5) respectively, one has

n n—ly

11=0 15=0
X (y = x)°(y —x+18)""°(1 — [y — x])
x [L— [y = x|+ (n - 1pg" 1"
=Gh(w;y — X).

This shows that G’ (w) is semi-additive. Finally, from the definition of G& it is obvious
that G (w; 0) = w(0) = 0. Therefore G% (w) itself is a function of modulus of continuity
when w is so. g
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