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Abstract

In this work, we present some results related to coverings of structured
Lie groupoids. Firstly, we obtain a covering Lie group-groupoid and
a covering morphism of Lie group-groupoids from a given Lie group-
groupoid by the notion of action. Secondly, we show how the Lie group
structure of a Lie group-groupoid is lifted to a covering Lie groupoid.
Then, we give similar results for Lie ring-groupoid which is also a struc-
tured Lie groupoid.
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1. Introduction

Covering spaces are used extensively in many branches of mathematics. The re�ection
of the concept of covering space is the concept of covering groupoid in the groupoid
theory. First papers in this area were studied by Brown and Higgins. After presenting
fundamental groupoid π1X for a topological space X, Brown has de�ned the concept of
covering morphism between the fundamental groupoids corresponding to a covering map
between the topological spaces. Then he has also shown that the category of coverings
of topological space X having a universal covering is equivalent to that of coverings of
fundamental groupoid π1X [1].

There is another important paper on covering groupoids which was introduced to the
literature by Gabriel and Zisman. Gabriel and Zisman proved that the category of the
actions on sets of a groupoid G is equivalent to that of the covering groupoids of G [5].
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In 1956, Ehresmann introduced the concepts of topological and Lie groupoid. As a
consequence of this, several algebraic papers are written concerning topological and Lie
groupoids [2, 8].

Structured groupoids, subject of this work, are special groupoids which have another
algebraic structure such as group structure or ring structure as well as groupoid struc-
ture. Firstly, the concept of group-groupoid was introduced by Brown and Spencer in
[3]. Brown and Spencer have proved that the fundamental groupoid corresponding to a
topological group X is a group-groupoid.

Another structured groupoid covered in the present study is ring-groupoid. The con-
cept of ring-groupoid was presented by Mucuk [12]. Mucuk has proved how the ring
structure of a topological ring X is lifted. Additionally, he has also shown the category
of the coverings of topological ring X is equivalent to that of the coverings of fundamental
Lie ring groupoid π1X corresponding to X.

The topological versions of these papers are given in [13, 9].
A structured Lie groupoid is a Lie groupoid having another Lie structure such as Lie

group or Lie ring. In this work, by a structured Lie groupoid we are going to mean Lie
groupoids having Lie group and Lie ring structures, and are going to give some results
about the coverings of structured Lie groupoids. We show how a covering structured Lie
groupoid and a covering morphism of structured Lie groupoids from a given structured
Lie groupoid are obtained. Moreover, we show that a covering groupoid of a transitive Lie
group-groupoid, resp. Lie ring-groupoid, inherits the structure of a Lie group-groupoid,
resp. Lie ring-groupoid.

All manifolds under consideration in this work are connected, smooth, Hausdor� and
second countable.

2. Structured Lie Groupoids

Structured groupoids are special groupoids which have another algebraic structure
such as group structure or ring structure as well as groupoid structure. Similarly, by a
structured Lie groupoid, we mean a Lie groupoid having another Lie structure. In this
work, we deal with Lie group-groupoids and Lie ring-groupoids which are structured Lie
groupoids. This section of the paper is devoted to give basic de�nitions and concepts of
the structured Lie groupoids. Firstly, we recall some de�nitions to �x our notation.

2.1. De�nition. A Lie groupoid G over object set G0 is a groupoid whose set of objects
and arrows are both manifolds, the source map α, the target map β, the object map ε,
the partial multiplication m and the inversion i are all smooth maps and such that α
and β are surjective submersions which implies that the set of composable arrows is a
submanifold of G×G [10, 11].

Let G ⇒ G0 be a Lie groupoid. By G(x, y), we denote the set of arrows such that
α(a) = x and β(a) = y for all x, y ∈ G0. The set StGx of arrows starting at x and
the set CoStGx of arrows �nishing at x are called the α-�bre and β-�bre at x ∈ G0,
respectively. The sets G(x, y), StGx and CoStGx are embedded closed submanifolds of
G. The isotropy group at x is G(x) = {a ∈ G | α(a) = β(a) = x}, which is a Lie group.
If there is at least one arrow in G(x, y), a Lie groupoid G is transitive[1].

The left-translation (right-translation) corresponding to a ∈ G(x, y) is a di�eomor-
phism La : CoStGx→ CoStGy, b 7→ a ◦ b (Ra : StGy → StGx, b 7→ b ◦ a). [10].

2.2. De�nition. A homomorphism of Lie groupoids H and G is a groupoid homomor-
phism (f, f0) such that f and f0 are smooth [10, 11].

Now, let us recall some examples which we need in the paper:
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2.3. Examples. (1) Banal Lie Groupoid : The product M ×M is a Lie groupoid
with object manifold M .

(2) Action Lie Groupoid : Any Lie group G acting on a manifold M determines a
Lie groupoid with the composition (b, a.x)(a, x) = (ba, x) for all a, b ∈ G and
x ∈M .

Now, let us give de�nition of a Lie group-groupoid.

2.4. De�nition. A Lie group-groupoid is a Lie groupoid having a structure of Lie group
such that the structure maps of the Lie group are Lie groupoid morphisms. Also there
exists an interchange law which gives the compatibility between the group operation and
the groupoid composition, i.e.,

(b ◦ a) + (d ◦ c) = (b+ d) ◦ (a+ c) [6].

2.5. De�nition. A homomorphism f : H → G of Lie group-groupoids is a Lie groupoid
homomorphism preserving the Lie group structure [6].

2.6. Example. Given a Lie group G, we constitute a Lie group-groupoid G × G with
object manifold G as follows.

The structure of groupoid:

a morphism is a pair (y, x) in G×G.
the source map: α(y, x) = x,
the target map: β(y, x) = y,
the object map: ε(x) = (x, x) for any x ∈ G,
the inverse map: i(y, x) = (x, y),
the composition: (z, y) ◦ (y, x) = (z, x)
The structure of group:

the group operation: (x, y) + (z, t) = (x+ z, y + t)
the unit element of G×G: (e, e), where e is the unit element of G,
the inverse in the group of (y, x): (−y,−x)
The interchange law:

((z, y) ◦ (y, x)) + ((z′, y′) ◦ (y′, x′)) = (z, x) + (z′, x′)

= (z + z′, x+ x′)(2.1)

and

((z, y) + (z′, y′)) ◦ ((y, x) + (y′, x′)) = (z + z′, y + y′) ◦ (y + y′, x+ x′)

= (z + z′, x+ x′)(2.2)

From (2.1) and (2.2), it is seen that the interchange law holds.
Furthermore, it is easy to show that the group structure maps of G×G are groupoid

morphisms.
Since the group structure maps of G × G are de�ned by the operations of Lie group

G, they are also smooth. Consequently, G×G is a Lie group-groupoid [6].

The transitivity of a Lie group-groupoid G is de�ned via transitivity of the underlying
Lie groupoid of G.

Now let us recall de�nition of Lie ring which is a basic notion in the structure of Lie
ring-groupoid.

2.7. De�nition. A Lie ring R is a ring R whose underlying set has a structure of
manifold such that the group operation m : R × R → R, (x, y) 7→ x + y, the ring
operation n : R × R → R, (x, y) 7→ xy and the inverse map u : R → R, x 7→ −x are
smooth [6].
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A Lie ring homomorphism is a ring homomorphism which is smooth at the same time.
Hence, there exists a category LRing(R) of Lie rings R. Objects of this category are Lie
rings R, and its morphisms are Lie ring morphisms.

Let p : H → R be a Lie ring homomorphism. If p is a smooth covering map of
underlying manifolds of H and R, then p is called a covering morphism of Lie rings.

Further, let R̃ and R be connected Lie rings. Here connected Lie ring means that
a ring whose manifold structure is connected. Then, we have a category LRCov(R) of
smooth coverings of connected Lie ring R.

The de�nition of a Lie ring-groupoid is as follows:

2.8. De�nition. A Lie ring-groupoid R is a Lie groupoid which is a Lie ring at the same
time such that following ring structure maps are Lie groupoid homomorphisms.

i) m : R×R→ R, (a, b) 7→ a+ b, group operation
ii) n : R×R→ R, (a, b) 7→ ab, ring operation
iii) u : R→ R, a 7→ −a, inverse in group
iv) e : ∗ → R.
Also there exist following interchange laws in a Lie ring-groupoid R.

(1) (c ◦ a) + (d ◦ b) = (c+ d) ◦ (a+ b),
(2) (c ◦ a)(d ◦ b) = (cd) ◦ (ab) [6].

A Lie ring-groupoid homomorphism is a Lie groupoid homomorphism preserving the
Lie ring structure.

2.9. Example. Given a Lie ring R, we can construct a Lie ring-groupoid R×R over the
object manifold R. In this Lie ring-groupoid we de�ne the ring operation by (a, b)(c, d) =
(ac, bd) for all a, b, c, d ∈ R (for more details, see [6]).

The transitivity of a Lie ring-groupoid R is de�ned via transitivity of the underlying
Lie groupoid of R.

3. Coverings of Structured Lie Groupoids

It will be useful to present the de�nition of covering morphism of Lie groupoids before
the de�nitions of covering morphisms of structured Lie groupoids.

3.1. De�nition. Let p : G̃→ G be a Lie groupoid homomorphism. For each x̃ ∈ G̃0, if

the restriction G̃x̃ → Gp(x̃) of p is a di�eomorphism, p is called the covering morphism of

Lie groupoids. Then Lie groupoid G̃ is also called the covering of the Lie groupoid G [8].

Let us give a criterion for a morphism of Lie groupoids to be a covering morphism of
Lie groupoids.

Let p : H → G be a covering morphism of Lie groupoids. Take the pullback

G α ×p0 H0 = {(a, x) ∈ G×H0 | α(a) = p0(x)}.
Since α is a submersion, G α ×p0 H0 is a manifold. Then the map sp : G α ×p0 H0 → H
is the lifting function assigned to the unique element h ∈ Hx, the pair (a, x) such that
p(h) = a. The map sp is the inverse of the map (p, α) : H → G α ×p0 H0.

Thus the homomorphism p : H → G is a covering morphism of Lie groupoids if and
only if the morphism (p, α) is a di�eomorphism.

3.2. De�nition. A morphism f : H → G of Lie group-groupoids is called a covering
morphism of Lie group-groupoids if it is a covering morphism of underlying Lie groupoids
[6].

Let us now recall a proposition without proof from [1] which is necessary for the proof
of the Theorem 3.4.
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3.3. Proposition. Let p : G̃ → G be a covering morphism of groupoids, x ∈ G0 and

x̃ ∈ G̃0 such that p(x̃) = x. Let q : H → G be a groupoid homomorphism such that H is

transitive and ỹ ∈ H0 such that q(ỹ) = x. Then the homomorphism q : H → G uniquely

lifts to a homomorphism q̃ : H → G̃ such that q̃(ỹ) = x̃ if and only if q[H(ỹ)] ⊆ p[G̃(x̃)],

where H(ỹ) and G̃(x̃) are the isotropy groups.

Now, let us give a theorem which denotes how Lie group structure of a Lie group-
groupoid is lifted to a covering Lie groupoid.

3.4. Theorem. Let G̃ be a transitive Lie groupoid and let G be a transitive Lie group-

groupoid. Let p : G̃→ G be covering morphism on the underlying Lie groupoids. Let e be

the identity element of G0 and ẽ ∈ G̃0 such that p(ẽ) = e. Then the Lie group structure

of G lifts to G̃ with identity ẽ in such a way that G̃ becomes a Lie group-groupoid.

Proof. Since G is a Lie group-groupoid, there exist the following maps:

m : G×G→ G, (a, b) 7→ a+ b,
u : G→ G, a 7→ −a.

Since G̃ is the covering groupoid of G, the isotropy group G̃(ẽ) has one element at most.
Thus, by Proposition 3.3, the above maps lift to the maps

m̃ : G̃× G̃→ G̃, (ã, b̃) 7→ ã+ b̃,

ũ : G̃→ G̃, ã 7→ −ã

by p : G̃→ G, respectively such that

p(ã+ b̃) = p(ã) + p(̃b),
p(−ã) = −p(ã).

Since the addition m : G×G→ G, (a, b) 7→ a+b is associative, we have m×(m×1) =
m×(1×m), where 1 denotes the identity map. By Proposition 3.3, the maps m×(m×1)
and m× (1×m), respectively, lift to

m̃× (m̃× 1), m̃× (1× m̃) : G̃× G̃× G̃→ G̃

which coincide at (ẽ, ẽ, ẽ). By the uniqueness of the lifting, we have m̃ × (m̃ × 1) =
m̃× (1× m̃), i.e., m̃ is associative. In the similar way, we can show that ẽ is the identity
and −ã is the inverse arrow of ã.

Now, let us prove that the group operation is smooth.
Since G is connected manifold, it has a universal covering manifold. Hence we can

choose an atlas A of liftable coordinate charts of G. Then there exists a lifted atlas on G̃,

because p : G̃ → G is a covering morphism of underlying Lie groupoids. Let us denote

this lifted atlas by Ã. Let Ũ be a coordinate chart of ẽ and a lifting of U ∈ A. Since
m is smooth, there exists a coordinate chart of e in G such that m(V × V ) ⊆ U . If we
use the condition on G and choose V small enough, then we can suppose that V is a

simply connected coordinate chart. Let Ṽ be lifting of V in the Lie groupoid G̃. Then

p(m̃(Ṽ × Ṽ )) = m(V × V ) ⊆ U and so we have m̃(Ṽ × Ṽ ) ⊆ Ũ . Thus, the smoothness
of the map

m̃ : G̃× G̃→ G̃, (ã, b̃) 7→ ã+ b̃.

follows. Therefore, G̃ becomes a Lie group-groupoid and p is clearly a Lie group-groupoid
homomorphism.

�
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In Theorem 3.10, we will investigate the relation between covering of a Lie group-
groupoid and action of a Lie group-groupoid on a Lie group. But for this, we have to
recall the action of a Lie groupoid on a manifold and then have to give the de�nition of
the action of a Lie group-groupoid on a Lie group.

3.5. De�nition. A left action of a Lie groupoid G on a manifold M via a submersion
w : M → G0 is a smooth map φ : Gα×wM → M, (a, x) 7→ a.x such that the following
conditions hold:

i) w(a.x) = β(a) ii) b.(a.x) = (b ◦ a).x iii) (1w(x))
.x = x,

for any a, b ∈ G, x ∈M. The right action is de�ned similarly [11].

In general, we will use the notation a.x for the action, but sometimes we might use
the notation ax as well.

3.6. Example. Let p : H → G be a covering morphism of Lie groupoids. We take M =
H0 and w = p0 : H0 −→ G0. Thus, we obtain the smooth action φ : Gα×p0H0 → H0,

(a, x̃) 7→ a.x̃ = β̃(ã) of G on M = H0 by w = p0 (for more details, see [8]).

3.7. Example. Let G be a Lie groupoid acting on manifold M via a submersion w :
M → G0. By this action, we can de�ne a Lie groupoid denoted by GnM which is called
the action Lie groupoid [8].

3.8. De�nition. An action of Lie group-groupoid G on Lie group M via Lie group
homomorphism w : M → G0 consists of the action of the underlying Lie groupoid of G
on the underlying manifold of M via the submersion w :M → G0 such that interchange
law (by) + (ax) = b+a(y + x) holds. Such an action is denoted by (M,w) [6].

3.9. Example. A Lie group-groupoid G acts on manifoldM = G0 via the unit morphism
w = p0 :M = G0 → G0 (for more details, see [6]).

Now, let us prove a theorem showing how a covering Lie group-groupoid and a smooth
covering morphism of Lie group-groupoids from a given Lie group-groupoid are obtained.
In the following theorem, N(e) denotes the closed subgroup of the object group G(e) of
the unit element e. We de�ne the set M = {a ◦N(e) | a ∈ StGe}. In fact, the set M
has a group structure with the operation (a ◦N(e)) + (b ◦N(e)) = (a+ b) ◦N(e), where
a, b ∈ StGe. Since the operation on M is de�ned by the operation of Lie group G and
the composition of the Lie groupoid, it is smooth. The unit element of M is 1e ◦ N(e)
and inverse of a ◦N(e) is −a ◦N(e), where −a is the inverse of a in Lie group G.

3.10. Theorem. Let G be a transitive Lie group-groupoid with the unit element e. Then
the action groupoid H = G n M is naturally a Lie group-groupoid with the identity

element N(e). Furthermore, there exists a natural covering morphism p : H → G such

that p(H(ẽ)) = N(e).

Proof. Let us de�ne w :M → G0 by a ◦N(e) 7→ β(a). Then

w((a ◦N(e)) + (b ◦N(e))) = w(a+ b ◦N(e))

= β(a+ b) = β(a) + β(b)

= w(a ◦N(e)) + w(b ◦N(e)).

w : M → G0 is a group homomorphism, and w is clearly a smooth submersion. We
de�ne action by

φ : G α ×w M →M , (b, a ◦N(e)) 7→ b ◦ a ◦N(e).

Now let us check the action conditions:
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Firstly, we have α(b) = w(a ◦N(e)) = β(a) for a ∈ G(e, y) and b ∈ G(y, z). So b ◦ a is
de�ned and b ◦ a ∈ Ge. Hence, we have

w( b(a ◦N(e))) = w(b ◦ a ◦N(e)) = β(b ◦ a) = β(b).

That is, the �rst condition is satis�ed.

Secondly, if c ∈ G(z, z
′
), then

c(b(a ◦N(e))) = c(b ◦ a ◦N(e))

= c ◦ (b ◦ a ◦N(e))

= (c ◦ b) ◦ (a ◦N(e))

= (c◦b)(a ◦N(e)).

That is, the second condition is satis�ed.
Finally, since

1y (a ◦N(e)) = 1y ◦ a ◦N(e) = a ◦N(e),

the third condition is also satis�ed.
Smoothness of the action φ is similar to that in the case of Lie groupoids given in [8].

Thus, we obtain a Lie group-groupoid GnM whose objects manifold is (GnM)0 =M .

A morphism from an object a ◦N(e) to another one a
′
◦N(e) in this group-groupoid is

a pair (b, a ◦N(e)) such that b(a ◦N(e)) = a
′
◦N(e), where b ◦ a = a

′
. The composition

is de�ned by (b, a
′
◦N(e)) ◦ (c, a ◦N(e)) = (b ◦ c, a ◦N(e)). Also, GnM is a Lie group

with group operation

(b, a
′
◦N(e)) + (c, a ◦N(e)) = (b+ c, (a

′
+ a) ◦N(e))

and the structure of manifold induced from the product manifold G×M . Unit element
of this group is (1e, 1e ◦ N(e)) and inverse of (b, a ◦ N(e)) is (−b,−a ◦ N(e)), where −b
and −a are inverses of b and a in the group. It is obvious smoothness of the groupoid
structure maps by [8]. Thus, GnM is a Lie group-groupoid.

Let p : G n M → G be de�ned by (b, a ◦ N(e)) 7→ b on morphisms and by w on
objects. p0, is given by w, is a homomorphism of Lie groups. Since p is the projection,
it is smooth. The map p is a groupoid homomorphism, because

p((b, a
′
◦N(e)) ◦ (c, a ◦N(e))) = p(b ◦ c, a ◦N(e))

= b ◦ c
= p(b, a

′
◦N(e)) ◦ p(c, a ◦N(e)).

In addition, it preserves the group structure, namely

p((b, a
′
◦N(e)) + (c, a ◦N(e))) = p(b+ c, (a

′
+ a) ◦N(e))

= b+ c

= p(b, a
′
◦N(e)) + p(c, a ◦N(e)).

Thus, p is a Lie group-groupoid homomorphism.
Since p0 = w and (GnM)0 =M , lifting map sp : G α ×p0 M → GnM is unit map.

So it is one-to-one, surjective and smooth. Inverse map (p, α) : GnM → G α ×p0 M of
sp is smooth, because p is smooth and α is the source map of Lie group-groupoid. Thus
sp is a di�eomorphism. Consequently, p : G nM → G is a covering morphism of Lie
group-groupoids. If we take H = GnM and x̃ = N(x), we have p(H(x̃)) = N(x). �

Let us now remember notion of covering of Lie ring-groupoids.
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3.11. De�nition. Let p : R̃ → R be a Lie ring-groupoid homomorphism. p is called a
covering morphism of Lie ring-groupoids, if it is a covering morphism of underlying Lie

groupoids of R̃ and R. In other words, if the morphism sp : R α ×p0 R̃0 → R̃ de�ned

on underlying Lie groupoids of R̃ and R is a di�eomorphism, then p is called covering

morphism of Lie ring-groupoids. The inverse of sp is (p, α) : R̃→ R α ×p0 R̃0 [6].

3.12. Example. Let p : R → R be unit homomorphism of Lie ring-groupoids. Then,
it is clear that projection sp : R α ×p0 R0 → R is one-to-one, surjective and smooth.
Further, p and α are smooth, because p is the Lie ring-groupoid homomorphism and α is
the source map of Lie ring-groupoid R. Hence the inverse (p, α) : R→ R α ×p0 R0 of sp
is smooth. Therefore, sp is a di�eomorphism. Consequently, p is a covering morphism of
Lie ring-groupoids [6].

Now, let us show how the Lie ring structure of a Lie ring-groupoid is lifted.

3.13. Theorem. Let R̃ be a transitive Lie groupoid and R be a transitive Lie ring-

groupoid. Let p : R̃ → R be a universal covering morphism of the underlying Lie

groupoids. Let 0 be zero element of Lie ring R0 and 0̃ ∈ R̃0 such that p(0̃) = 0. Under

all these conditions, the Lie ring structure of R lifts to R̃ with the zero element 0̃ in such

a way that R̃ becomes a Lie ring-groupoid.

Proof. Since R is a Lie ring-groupoid, we have the following maps:

m : R×R→ R , (a, b) 7→ a+ b

n : R×R→ R , (a, b) 7→ ab

u : R→ R , a 7→ −a
0 : ∗ → R.

The isotropy group R̃(0̃) has at most one element, because R̃ is a universal covering
Lie groupoid. Thus, from Proposition 3.3, the above maps lift to the maps

m̃ : R̃× R̃→ R̃ , (ã, b̃) 7→ ã+ b̃

ñ : R̃× R̃→ R̃ , (ã, b̃) 7→ ãb̃

ũ : R̃→ R̃ , ã 7→ −ã
0̃ : ∗̃ → R̃,

respectively by p : R̃→ R such that for any ã, b̃ ∈ R̃,

p(ã+ b̃) = p(ã) + p(̃b),

p(ãb̃) = p(ã)p(̃b),

p(ũ(ã)) = −p(ã).
Since the multiplication m : R × R → R, (a, b) 7→ a + b is associative, we have

m×(m×1) = m×(1×m), where 1 denotes the identity map. Then, again by Proposition
3.3, the maps m× (m× 1) and m× (1×m), respectively, lift to

m̃× (m̃× 1), m̃× (1× m̃) : R̃× R̃× R̃→ R̃

which coincide at (0̃, 0̃, 0̃). By the uniqueness of the lifting, we have m̃ × (m̃ × 1) =
m̃ × (1 × m̃), i.e., m̃ is associative. Similarly, ñ is associative. In a similar way, we can

show that 0̃ is the zero element and −ã is the inverse element of ã. Now, let us show
that the group multiplication

m̃ : R̃× R̃→ R̃, (ã, b̃) 7→ ã+ b̃
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is smooth.
By assuming that R has a universal covering, we can choose an atlas A of liftable

coordinate charts of R. Since p is a local di�eomorphism, the atlas on R̃ obviously

consists of all liftings of the coordinate charts in A. Let Ũ be an open neighborhood of 0̃
and lifting of U ∈ A. Since the multiplication m : R × R → R, (a, b) 7→ a+ b is smooth,
there is an open neighborhood V of 0 in R such that m(V ×V ) ⊆ U . Using the condition
on R and choosing V small enough, we can assume that V is liftable. Let Ṽ be the lifting

of V . Then p(m̃(Ṽ × Ṽ )) = m(V × V ) ⊆ U and so we have m̃(Ṽ × Ṽ ) ⊆ Ũ . Hence m̃ is
smooth. Similarly, ñ is smooth. Further, the distributive law is satis�ed as follows:
Let p1, p2 : R×R×R→ R be morphisms de�ned by

p1(a, b, c) = ab , p2(a, b, c) = bc

and

(p1, p2) : R×R×R→ R×R, (a, b, c) 7→ (ab, bc)

for a, b, c ∈ R. Since the distributive law is satis�ed in R, we have n × (1 × m) =
m× (p1, p2). The maps n× (1×m) and m× (p1, p2), respectively, lift to the maps

ñ× (1× m̃), m̃× (p̃1, p̃2) : R̃× R̃× R̃→ R̃

coinciding at (0̃, 0̃, 0̃). So by Proposition 3.3, we have ñ × (1 × m̃) = m̃ × (p̃1, p̃2). It

means that the distribution law on R̃ is satis�ed. Hence, R̃ becomes a Lie ring-groupoid
and p is clearly a Lie ring-groupoid homomorphism.

�

In the Theorem 3.16, we present a method to obtain a covering Lie ring-groupoid by
the concept of action. For this reason, we have to recall the following de�nition from [6].

3.14. De�nition. An action of the Lie ring-groupoid R on the Lie ring M via smooth
ring homomorphism w : M → R0 is a smooth map φ : R α ×w M → M satisfying the
conditions w(ax) = β(a), b(ax) = b◦ax and 1w(x)x = x such that the Lie groupoid R acts
smoothly on the manifold M via smooth submersion w :M → R0 and the followings are
hold:

(1) (by) + (ax) = b+a(y + x),
(2) (by)(ax) = ba(yx) [6].

3.15. Example. If R is a Lie ring-groupoid, then R acts smoothly on the Lie ring
M = R0 via the unit morphism w = p0 : R0 → R0. The action is de�ned by φ :
R α ×w R0 → R0, φ(a, x) =

ax = β(a) for any a ∈ R and x ∈ R0 (for more details, see
[6]).

Finally, let us express our last main result by the following theorem. In the following
theorem, N(e) denotes the closed subgroup of the object group G(e) of the unit element e.
We de�ne the setM = {a ◦N(e) | a ∈ StGe}. In fact, the setM has a ring structure with
the operations (a◦N(e))+(b◦N(e)) = (a+b)◦N(e) and (a◦N(e))(b◦N(e)) = (ab)◦N(e),
where a, b ∈ StGe. Clearly, M = StRe/N(e) and M is a smooth manifold with quotient
manifold structure. Since the ring operations of the Lie ring R are smooth, the ring
operations on M are also smooth.

3.16. Theorem. Let R be a transitive Lie ring-groupoid with the unit element e. Let

N(e) denote a closed Lie subgroup of R(e). Under these conditions, we have naturally a

Lie ring-groupoid P and a covering morphism p : P → R of the Lie ring-groupoids such

that the unit of P0 is ẽ = N(e). Furthermore, p(P{ẽ}) = N(e).
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Proof. By [6], there exists an action φ : R α ×pM → M , (b, a ◦N(e)) 7→ b(a ◦N(e)) =
b ◦ a ◦N(e) of the Lie groupoid R on the manifold M via w :M → R0, a ◦N(e) 7→ β(a).
Also, since

w((a ◦N(e))(b ◦N(e))) = w(ab ◦N(e)) = β(ab) = β(a)β(b)

= w(a ◦N(e)) w(b ◦N(e)),

w : M → R0 is a Lie ring homomorphism. Therefore, the Lie ring-groupoid R acts
on the Lie ring M via the smooth ring homomorphism w. Then, we obtain a Lie ring-
groupoid R nM with the object manifold (R nM)0 = M . Indeed; by [6], R nM is a
Lie group-groupoid. In addition, R nM with the operation (b, a′ ◦N(e))(c, a ◦N(e)) =
(bc, (aa′)◦N(e)) which is de�ned by the operation of the Lie ring R is a Lie ring-groupoid.

Let us de�ne p : RnM → R by (b, a ◦N(e)) 7→ b on the morphisms and by w on the
objects. Then, by [6], p is a covering morphism of Lie group-groupoids. Also, since p0 is
given by w and

p((b, a′ ◦N(e))(c, a ◦N(e))) = p((bc, (a′a) ◦N(e)) = bc

= p(b, a′ ◦N(e)) p(c, a ◦N(e)),

p is a Lie ring homomorphism. Consequently, p : R nM → R is a covering morphism
of Lie ring-groupoids. When P = R n M and x̃ = N(x) are taken, then it follows
p(P (x̃)) = N(x). �
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