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Basic sequences and unbiased estimation in quasi
power series distributions
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Abstract

By using results from function space theory we give a characterization
of when lacunary quasi power series sequences are basic in C[0, 1]. The
paper discusses the links with unbiased estimable functions and the
subspaces generated by the density of the lacunary quasi power series
distributions. The paper also provides the rates of convergence of all the
moments of the classic odds ratio estimator. This extends some known
results in Bleimann, Butzer and Hahn's approximation operator.
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1. Introduction

Consider X1, X2, · · · , Xn be a simple random sample from a power series distribution

Pθ(X1 = k) = akθ
k/G(θ), k ∈ A ⊆ N,(1.1)

where ak > 0 is a given sequence of real numbers, G(θ) =
∑
k∈A akθ

k is their generating
function, converging over θ ∈ Θ = (0, R), where R being the radius of convergence of the
power series, and A is the support set not dependent on θ. This class of distributions was
introduced by Noack [14], see also [8], [11], [13]. The existence of the UMVU estimator
of θ depends on the nature of the set A, of which the following examples being typical.
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(i) (Left truncation) There is a nonnegative integer N so that ak > 0 for all k ≥ N
and ak = 0 for k < N . In this case the UMVU estimator of θ exists for all
sample sizes. A classic example is the zero-truncated Poisson, for which a0 = 0
and ak = 1

k!
for k = 1, 2, · · · . In 1953, R. L. Plackett [18] proposed an unbiased

estimator of θ in this case. Its e�ciency does not go down below 0.95. In 1958
Tate and Goen [19] constructed the UMVU estimator of θ. We should remark
that computing the variance of the UMVU estimator has remained a challenge,
and as far as we know, no known result exists for the variance of the UMVU
estimators. Computationally it is known that the Tate and Goen's estimator
has variance that is strictly larger than the Cramér-Rao lower bound. This can
also be veri�ed directly by a general result of Wijsman [20], [21].

Another well known example of this type is the logarithmic series distribution,
for which a0 = 0 and ak = 1

k
for k = 1, 2, · · · . Patil [15], and Patil and Joshi

[17], showed that the UMVU estimator of θ is A(n, k − 1)/A(n, k), where

A(n, k) =
n!

k!
|Snk |, k = n, n+ 1, n+ 2, · · · ,

and Snk is the Stirling number of the �rst kind. Again its variance is not known.
(ii) (Right truncation) There is a nonnegative integer N so that ak = 0 for all k > N

and ak > 0 for k = 0, 1, · · · , N . In this case no UMVU estimator of θ exists
for any sample size. In this variety the problem of estimating the odds ratio is
a typical example. Consider the case of a0 = a1 = 1 and ak = 0 for all k ≥ 2.
In this case Sn = X1 + · · · + Xn ∼ B(n, p(θ)), where p(θ) = θ/(1 + θ)), and θ
being the odds ratio. Now no unbiased estimator of θ exists for any sample size.
It is easy to show that the usual biased estimator, δ(Sn) = Sn/(n− Sn + 1), is
asymptotically normal. However, the computation of the mean squared error is
quite nontrivial. Directly the asymptotic mean squared error was computed by
Khan [9], [10]. An indirect proof was obtained by Della Vecchia [4] by linking
it to an initial value problem. Both results are in the context of approximation
theory, in particular, the Bleimann, Butzer and Hahn approximation operator,
[3]. Here we extend their result that covers all the asymptotic moments. This is
one of the few examples for which obtaining asymptotic moments seems to have
tractable form.

(iii) (Left-right truncation) There are nonnegative integers N < M so that ak = 0
for all k < N and k > M and ak > 0 for k ∈ [N,M ]. Again no UMVU estimator
of θ exists for any sample size. Some typical examples involve the two-tailed
truncated Poisson and the reverse Bessel polynomials case, for which N = 1 and
M ≥ 2 and aj = (2M − j − 1)!/{(j − 1)! (M − j)! 2M−j}, for j = N, 2, · · · ,M .
Bessel polynomials were introduced by Krall and Fink [12],

yN (θ) =

N∑
k=0

(N + k)!

(N − k)! k! 2k
θk,

and are linked with the t-distribution [1]. The reverse Bessel polynomials are
obtained by taking GN (θ) = θNyN (1/θ). This gives

GN (θ) =
N∑
j=1

ajθ
j , aj =

(2N − j − 1)!

(j − 1)! (N − j)! 2N−j
, for 1 ≤ j ≤ N.

Reverse Bessel polynomials �nd uses in �lter design [2]. In this situation the
maximum likelihood estimation technique seems to be the main approach for
estimating θ.
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(iv) (Mid section truncation) There are nonnegative integers N < M so that ak > 0
for all k ≤ N and k ≥M and ak = 0 for k ∈ (N,M). In this case for su�ciently
large sample sizes the UMVU estimator of θ may or may not exist.

(v) (Lattice case with span larger than one). In this case we have a d > 1 and ak > 0
for all k = c0 + dk and ak = 0 otherwise, where c0 is a nonnegative integer. A
typical example of this type arises when the information received are the �rst
passage stopping times.

Consider a simple random sample of the waiting times until a ruin takes place
in the classical gambler's ruin problem. More precisely, X1 = inf{k ≥ 1 : Tk ≥ 1}
when Tk = (2U1−1)+ · · ·+(2Uk−1), and U1, U2, · · ·

iid∼ B(1, p) form a Bernoulli
process. In this case the support set of X1 is the set of odd positive integers.
Using the re�ection principle the distribution of Sn = X1 +X2 + · · ·+Xn is

P(Sn = j) = (p/q)n/2
n

j

(
j
j−n
2

)
(pq)j/2, j = n, n+ 2, n+ 4, · · · ,

when p > 1
2
, and q = 1 − p. Hence when A(n, j) > 0, we get A(n, j − 1) = 0

almost surely, making estimation of odd power monomials of θ =
√
pq, by an

unbiased estimator problematic.

The existence of unbiased estimators of θ has some history. It can be settled easily in
the above situations of the support set A. When the support set A is not of the above
types the situation becomes more interesting and the existence of minimum variance
unbiased estimators has been studied by Patil [15] and Patil and Joshi [16] using additive
number theory.

We show that, in a bit more general context of quasi-power series distributions, the
unbiased estimation problem is related to the basis problem in C[0, 1], the space of
continuous functions with supremum norm. The main results are collected in the next
section and all the proofs are collected in the last section.

2. The Main Results

It is generally di�cult to �nd the variance of estimators when they do not achieve
the Cramér-Rao lower bound, as is typically the case in truncated forms of power series
distributions. One exception being the odds ratio for which the limiting form of the
second moment can be computed. The following theorem extends this to moments of all
orders.

2.1. Theorem. Let Sn = X1 + · · · + Xn, where Xi
iid∼ B(1, p) and p = θ

1+θ
making

p
1−p = θ being the odd's ratio. Denote the variance by σ2 = p(1 − p) and the Fisher

information for θ, I(θ) = 1
θ(1+θ)2

. For any positive integer m, we have

nmE
(

Sn
n− Sn + 1

− θ
)2m

→
(

1

I(θ)

)m
E(Z2m), Z ∼ N(0, 1).

When the support set has increasingly larger gaps the situation becomes more com-
plicated. One interesting case that consider in the following is the lacunary power series
distributions. For this we need to introduce some terminology.

2.2. De�nition. A sequence of positive integers n1 < m1 < n2 < m2 < · · · is called
lacunary if

inf
k

mk

nk
> 1, and inf

k

nk+1

mk
> 1.

When q = min{infk
mk
nk
, infk

nk+1

mk
} > 1, the sequence is called q-lacunary.
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When the support set A = {m0,m1, · · · } of a power series distribution consists of
nonnegative integers forming a lacunary sequence it will be more convenient to transfer
this structure over to the exponents of θ by considering,

P(Y = k) = bkθ
mk/G(θ), k = 0, 1, 2, · · · ,

where bk = amk > 0, for all k = 0, 1, 2, · · · , and G(θ) =
∑
k bkθ

mk . This family of
distributions for θ ∈ (0, R), belongs to the one parameter exponential family since P(Y =
k) = bk e

mk ln θ/G(θ), with a complete su�cient statistic, δ(Y ) := mY . The moment
generating function of δ(Y ) being G(etθ)/G(θ) for all t in a neighborhood of zero and

Eθ(δ(Y )) =
θG′(θ)

G(θ)
, V arθ(δ(Y )) = θ

G(θ){θG′′(θ) +G′(θ)} − θ(G′(θ))2

G2(θ)
.

Recall that in a Banach space X a sequence {ek} is called a basis if for each x ∈ X
we have a unique decomposition x =

∑
k δkek, where the series converges in the norm of

the Banach space. A sequence {ek} is called basic if it forms a basis for the subspace
generated by {ek}.

When an unbiased estimator of h(θ) exists for θ ∈ [0, R) (assume R > 1 after rescaling
if needed) then h(θ)G(θ) =

∑
k δk bk θ

mk for all θ ∈ [0, 1] and the series will converge
uniformly in [0, 1] with radius of convergence at least R. Hence, the function g(t) :=
h(t)G(t) will be in the closed linear span of {tmk}. Conversely consider any member,
g, of the closed linear span of {tmk} with a power series g(t) :=

∑
k αkt

mk . If this g is
such that its radius of convergence is at least R then the function h(θ) := g(θ)/G(θ) will
have an unbiased estimator, with δk = αk/bk. Therefore it is interesting to consider the
question of when ek = tmk , k = 0, 1, 2, · · · will be a basic sequence in C[0, 1]. The next
two theorems characterizing when lacunary power series distributions form a Schauder
basis for its closed linear span in C[0, 1].

2.3. De�nition. Let {ek} be a sequence in a Banach space and let L{ek} = L{e1, e2, · · · }
be the linear cover of {e1, e2, · · · } and let L{ek} be its closure. Also let

L(k) = L(e1, · · · , ek−1, ek+1, · · · ). We say the sequence {ek} is minimal if

ρk = distance of ek and L(k) is strictly positive for each k = 1, 2, · · · . The sequence is
called ρ-minimal if ρk > ρ > 0 for all k = 1, 2, · · · .

Note that when {ek} is ρ-minimal and x =
∑∞
k=1 akek, we have |ak| ≤ ‖x‖/ρ for all

k = 1, 2, · · · .
Banach himself knew that every in�nite dimensional Banach space contains a closed

linear subspace with a basic sequence, i.e. the sequence forms a Schauder basis for its
closed linear span. Per En�o [5] showed that there do exist separable Banach spaces
for which the whole space has no Schauder basis. The next theorem helps explain how
the linear space of unbiased estimable functions in C[0, 1] for a lacunary power series
distribution look like. We present the result in a bit more generality of quasi lacunary
sequences, by relaxing the one-parameter exponential family structure of power series
distributions, to highlight only the needed features.

Let {bk, k = 0, 1, 2, · · · } be a sequence of numbers with bk > 0 and introduce G(θ) =∑∞
k=0 bkψk(θ). We assume that the series converges uniformly in θ ∈ [0, 1] and the

collection {ψk(θ), k = 0, 1, · · · } is assumed to have the following properties.

i: ψ0(θ) is a positive constant and ψk(θ) ∈ [0, 1], with ψk(θ) > 0 for θ > 0.
ii: ψk(θ) is increasing on [0, 1] for every k, and ψk(θ) is decreasing to zero in k

for every �xed θ ∈ [0, 1]. Let each function of the sequence {ψk(t), k ≥ 1} be
di�erentiable, positive on (0, 1], increasing and convex on [0, 1].

iii: ψk(θ) are uniformly bounded in k and θ ∈ [0, 1].
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For such a sequence if there exist n1 < m1 < n2 < m2 < · · · such that

tmk ≤ ψk(t) ≤ tnk , k = 1, 2, · · · , t ∈ [0, 1],

then the collection {ψk(t), k ≥ 1} will be called a quasi-power sequence.

2.4. Theorem. There exists a function q(ρ) > 1 for ρ ∈ [0, 1] such that if {ϕk(θ), k ≥ 1}
is a ρ-minimal quasi-power sequence corresponding to a q-lacunary sequence {(nk,mk), k ≥
1} then {ϕk(θ), k ≥ 1} is basic in C[0, 1].

In particular, the above theorem gives that for a sample of size one every unbiased
estimable continuous function for this family comes from 1

G(θ)
· span{ϕk(θ), k ≥ 1} with

a unique unbiased estimator which becomes the UMVU automatically. We may conclude
more.

2.5. Theorem. There exists a ρ ∈ (0, 1] and a q > 1 such that every quasi-power
sequence {ψk(θ), k ≥ 0} in C[0, 1] is ρ-minimal.

Since the space unbiased estimable functions, Uk from a random sample of size k,
must consist of analytic functions over subintervals of [0, b), it must be that Uk ⊆ Uk+1

generate proper subspaces of C[0, 1] for any �nite sample size. Furthermore, for instance,
for k = 3 note that∑

i≥1

∑
j>i

∑
`>j

1

mi +mj +m`
=

∑
i≥1

1

mi

∑
j>i

1

1 +
mj
mi

∑
`>j

1

1 + m`
mi+mj

≤
∑
i≥1

1

mi

∑
j>i

1

qj−i

∑
`>j

1

1 + m`
2mj

≤
∑
i≥1

1

mi

∑
j>i

1

qj−i

∑
`>j

2

q`−j

< ∞.
This idea works for higher values of k analogously. Hence, by Muntz' theorem the
distribution of the complete su�cient statistic with sample size k ≥ 2 will not be total
in the sense that the linear combinations will not be dense in C[0, 1].

3. The Proofs

For the case of odds ratio, recall the notation a0 = a1 = 1 and ak = 0 for all k ≥ 2. In
this case Sn ∼ B(n, θ/(1+θ)). The estimator of the odds ratio is δ(Sn) = Sn/(n−Sn+1).

Proof. (Theorem 2.1) Note that, if Zn = (Sn − np)/(σ
√
n), then we may write

√
n

(
Sn

n− Sn + 1
− θ
)

=
1

1 + 1
n
− Sn

n

{√
θZn −

θ√
n

}
Let C = {Sn

n
− p ≤ 1−p

2
}. Hence, breaking the expression inside the expectation over C

and Cc, we have

nm
(

Sn
n− Sn + 1

− θ
)2m

=
1

(1 + 1
n
− Sn

n
)2m

{√
θZn −

θ√
n

}2m

χC

+
1

(1 + 1
n
− Sn

n
)2m

{√
θZn −

θ√
n

}2m

χCc .

When C occurs, the �rst of the two expressions is bounded by ( 1
1−p )2m and the expec-

tation of the rest converges to E(
√
θZ)2m since the probability of the event C increases



882

to one. The interchange of limit and expectation is justi�ed by the extended Lebesgue
dominated convergence theorem. Therefore the expectation of the whole expression with
event C goes to θm

(1−p)2mE(Z2m). Now

θm

(1− p)2m = θm(1 + θ)2m = (
1

I(θ)
)m.

Next consider the Cc term. The �rst of its two expressions is bounded above by n2m.

The expectation of
{√

θZn − θ√
n

}4m

converges to E(
√
θZ)4m < ∞ and the probability

of the event Cc is bounded above, by Cherno�'s large deviation result,

P(
Sn
n
− p > 1− p

2
) ≤ e−nγ(p).

Since, n2me−nγ(p)/2 → 0, by Chebyshev's inequality the expectation of the whole expres-
sion with Cc goes to zero.

For the proof of the next two theorems we need to recall a few auxiliary results
from function space theory. A sequence {xk} in a Banach space is called non-closing if
‖xk − xj‖ ≥ δ > 0 for any k 6= j and some δ. Also we recall the following result of
Gurariy and Matsaev [6] for lacunary power series.

3.1. Proposition. The following statements are equivalent for a sequence 0 < n1 <
n2 < · · · :

• (1) The collection {tnk , k = 0, 1, · · · } is non-closing in C,
• (2) The collection {tnk , k = 0, 1, · · · } is uniformly minimal in C,
• (3) The collection {tnk , k = 0, 1, · · · } is basic in C,
• (4) The collection {nk, k = 0, 1, · · · } is a lacunary sequence.

The following proposition for quasi power series is proved in Gurariy and Lusky [7]
in more generality, p. 82-83. For our special case that we need, we provide a shorter
argument.

3.2. Proposition. The quasi-power sequence {ψk, k ≥ 1} is non-closing in C if and only
if the corresponding sequence n1 < m1 < n2 < m2 < · · · is lacunary.

Proof. Given lacunarity of {nk,mk, k ≥ 1} we have,

‖ψk − ψj‖ ≥ max
t∈[0,1]

‖tmk − tnj‖.

The last term is at least δ > 0 due to the above proposition of Gurariy and Matsaev.
Therefore, {ψk, k ≥ 1} is non-closing in C. Conversely, when {ψk, k ≥ 1} is non-closing
in C we want to prove the lacunarity of the corresponding sequence {nk,mk, k ≥ 1}. For
this we note that for any k ≥ 1 we have

0 < δ ≤ ‖ψk − ψk+1‖ ≤ max
t∈[0,1]

‖tnk − tmk+1‖.

This implies that maxt∈[0,1] ‖tj − tk‖ ≥ δ, where j, k ∈ {nk,mk, k ≥ 1} and j 6= k. This
implies that the system tn1 , tm1 , tn2 , tm2 , · · · , is also non-closing in C. Again by the
above proposition of Gurariy and Matsaev {nk,mk, k ≥ 1} is lacunary.

Let t1 ∈ (0, 1] be a point of maxima of |f(t)| where ‖f‖ = 1. For any given δ > 0 let
t0 = t1 − δ > 0. Then, by the Lagrange mean value theorem, |f(t0)| ≥ 1 −M ′δ where
M ′ = ‖f ′‖C .

We will need the following version of this result whose proof is not di�cult and there-
fore we omit it.
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3.3. Lemma. Let f ∈ C[a, b] and g ∈ C1[a, b]. Then we have

max
t∈[a,b]

|f(t) + g(t)| ≥
maxt∈[a,b] f(t)−mint∈[a,b] f(t)−maxt∈[a,b] |g′(t)|(b− a)

2
.

The proofs of the theorems use the modi�ed Banach-Grinblum criterion which we
recall. Let P,Q be two subspaces of a Banach space. The inclination of P to Q, denoted

as (̂P,Q) is de�ned as

(̂P,Q) = inf
x∈P,‖x‖=1

distance(x,Q) = inf
x∈P,y∈Qx6∈Q

‖x+ y‖
‖x‖ .

We have 0 ≤ (̂P,Q) ≤ 1. When (̂P,Q) = 1 we say that P is orthogonal to Q. Let
{ek, k ≥ 1} be a complete (normalized) sequence in a Banach space X, and let Ln,m =
L(en, en+1, · · · , em) represent the linear span of {en, · · · , em}. The Banach-Grinblum

criterion says that {ek, k ≥ 1} is a basis in X if and only if ̂(L1,n, Ln+1,m) ≥ δ > 0
for every choice of n < m and δ does not depend on the choice of n,m. When δ = 1
can be used then the basis is orthogonal or monotone. The modi�ed Banach-Grinblum
criterion says that {ek} is basic if and only if for all x ∈ L1,n and y ∈ Ln+1,m we have
‖x+ y‖ ≥ β > 0 where β does not depend on n,m.

Proof. (Theorem 2.4) Let Li,j be the linear span of ϕi, · · · , ϕj , and use the notation

xk(t) =

k∑
j=1

αj ϕj(t), yk(t) =

m∑
j=k+1

αj ϕj(t),

with ‖xk‖ = maxt∈[0,1] |xk(t)| = 1 and ‖yk‖ = 1. By the ρ-minimality, |αj | ≤ 1
ρ
, for

j = 1, 2, · · · . Therefore, for any t < 1 we have

|x′k(t)| =

∣∣∣∣∣
k∑
j=1

αjϕ
′
j(t)

∣∣∣∣∣ ≤ 1

ρ

k∑
j=1

ϕ′j(1)

≤ 1

ρ

k∑
j=1

mj ≤
mk

ρ

q

q − 1
.

Denote the last bound by Mk, k = 1, 2, · · · . Let t1 be the right point of maxima of the
function xk(t) on [0, 1]. Then by the mean value theorem for a small given δ > 0 we have
a point t0 such that |xk(t1)| = 1 and t0 = t1 − δ ≤ 1− δ. Take δ = δk = 1/(2Mk) < t1,
for large q = q(ρ). Then note that |xk(t0)| ≥ 1− δkMk = 1

2
. Now consider the function

yk(t) ∈ Lk+1,m. We will prove that |yk(t0)| ≤ 1
4
. Once again,

|yk(t0)| ≤ 1

ρ

m∑
j=k+1

|ϕj(t0)| ≤ 1

ρ

m∑
j=k+1

t
nj
0 .

First note that

r =
t
nj+1

0

t
nj
0

≤ (1− δ)nj+1−nj = (1− δ)nj(
nj+1
nj
−1)

=
(

(1− δ)
1
δ

)δnj(nj+1
nj
−1)

≤ (1/e)δnk+1(q−1)

= (1/e)
ρ (q−1)
2qmk

nk+1(q−1)
= (1/e)

ρ(q−1)2

2q ≤ 1

2
, for large q = q(ρ).

Using the same technique we have

t
nk+1
0 ≤ (1− δ)nk+1 ≤

(
(1− δ)1/δ

)δnk+1

≤ (1/e)ρ(q−1)/2.
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Therefore we see that

|yk(t0)| ≤ 1

ρ
× t

nk+1
0

1− r ≤
2

ρ
exp{−ρ(q − 1)/2} ≤ 1

4
for large q = q(ρ).

This shows that ‖xk − yk‖ ≥ |xk(t0) − yk(t0)| ≥ 1
2
− 1

4
= 1

4
. By the modi�ed Banach-

Grinblum criterion, we have {ϕk(t)} is basic.

Proof. (Theorem 2.5) Given a �nite system {ψj , j = 1, 2, · · · , n}, by induction on n,
we will catch both q and ρ. Assume that there are q, ρ such that every q-lacunary
system {ψj , j = 1, 2, · · · , k} is ρ-minimal. Consider the q-lacunary system {ψj , j =
1, 2, · · · , k + 1} and we will prove its ρ-minimality. Recall that ‖ψj‖ = 1 for all j. For
any j0 in between 1 and k + 1, take

ϕ(t) =

k+1∑
j=1,j 6=j0

αjψj ∈ L(ψ1, · · · , ψj0−1, ψj0+1, · · ·ψk+1).

It is su�cient to show that

‖ψj0 + ϕ‖ ≥ ρ.

Otherwise, by the triangular inequality, we will have ‖ϕ‖ ≤ 1 + ρ and ρ-minimality of
{ψj , j = 1, · · · , k + 1, j 6= j0} provides,

|αj | ≤
‖ϕ‖
ρ
≤ 1 + ρ

ρ
, ψj , j = 1, · · · , k + 1, j 6= j0.

Write ϕ as ϕ = ϕ1 + ϕ2, where

ϕ1 =

j0−1∑
j=1

αjψj , ϕ2 =

k+1∑
j=j0+1

αjψj .

We will use the Lemma 3.3 on the interval [1− δ, 1] and later we will take the constant
δ to be δ = 1

nj0
. Also we will take f = ψj0 and g = ϕ1. Because each of f and t ∈ [0, 1]

we have

ϕ′1(t) ≤ 1 + ρ

ρ

j0−1∑
j=1

mj ≤
q (1 + ρ)mj0−1

ρ (q − 1)
.

Also,

‖ψj0 + ϕ1‖ ≥ sup
t∈[1−δ,1]

|φj0(t) + ϕ1(t)|

≥ 1

2

(
1− (1− δ)nj0 − q(ρ+ 1)

ρ(q − 1)
mj0−1 δ

)
≥ 1

2

(
1− 1

e
− ρ+ 1

ρ(q − 1)

)
≥ 1

2

(
1

2
− ρ+ 1

ρ(q − 1)

)
.

Here we used that (1− δ)nj0 =
{

(1− δ)1/δ
}1

≤ 1/e.

Next, we estimate ϕ2(1− δ), by choosing a δ′ so that 1− δ < 1− δ′, i.e., δ′ < δ = 1
nj0

.

In this regard take δ′ = 1
λmj0

where λ > 1 will be set later (actually we will take λ = 25).

Note that since nj0 < mj0 < λmj0 we have δ = 1
nj0

> 1
λmj0

and therefore 1− δ < 1− δ′.
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Since ψj(t) is monotone increasing in t, we see that

|ϕ2(t)| ≤ |ϕ2(1− δ′)| 0 ≤ t ≤ 1− δ′,

≤
k+1∑

j=j0+1

|αk| ψj(1− δ
′) ≤ 1 + ρ

ρ

k+1∑
j=j0+1

(1− δ′)nj

=
1 + ρ

ρ
(1− δ′)nj0+1

k+1∑
j=j0+1

{
(1− δ′)1/δ

′}δ′(nj−nj0+1)

≤ 1 + ρ

ρ
(1− δ′)nj0+1

k+1∑
j=j0+1

(
1

e

)δ′nj0+1(
nj

nj0+1
−1)

.

Here we notice that for j = j0 + 2, j0 + 3, · · · , k + 1, we have

nj
nj0+1

− 1 =
nj
nj−1

nj−1

nj−2
· · · nj0+2

nj0+1
− 1

≥ qj−j0−1 − 1, since j − 1 = j0 + (j − j0)− 1.

This holds for j = j0 + 1 as well. Therefore, we have

|ϕ2(t)| ≤ 1 + ρ

ρ
(1− δ′)nj0+1

k+1∑
j=j0+1

(
1

e

)δ′nj0+1(q
j−(j0+1)−1)

=
1 + ρ

ρ
(1− δ′)nj0+1

k+1−j0−1∑
i=0

(
1

e

)δ′nj0+1(q
i−1)

.

Now note that for any q > 1 and any i = 0, 1, 2, · · · we have i(q − 1) ≤ (qi − 1).
Therefore, we have

|ϕ2(t)| ≤ 1 + ρ

ρ
(1− δ′)nj0+1

k+1−j0−1∑
i=0

(
1

e

)δ′nj0+1i(q−1)

=
1 + ρ

ρ
(1− δ′)nj0+1

k+1−j0−1∑
i=0

(
1

e

)nj0+1
λmj0

i(q−1)

≤ 1 + ρ

ρ
(1− δ′)nj0+1

k+1−j0−1∑
i=0

(
1

e

) q
λ
i(q−1)

≤ 1 + ρ

ρ
(1− δ′)nj0+1

k+1−j0−1∑
i=0

(
1

e

) iq
λ

, when q ≥ 2,

≤ 1 + ρ

ρ
(1− δ′)nj0+1

1

1− e−q/λ
.

Now we work on the middle term, by noticing that

(1− δ′)nj0+1 =

{(
1− 1

λmj0

)λmj0}nj0+1/(λmj0 )

≤ (1/e)nj0+1/(λmj0 ) ≤ (1/e)q/λ.

Hence, we see that for all 0 ≤ t ≤ 1− δ′, we have

|ϕ2(t)| ≤ 1 + ρ

ρ

e−q/λ

1− e−q/λ

≤ 1.01(1 + ρ)

ρ
e−q/λ, for all

q

λ
≥ 6.
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Therefore by one of the above results,

|{ψj0(t) + ϕ1(t)}′| ≤ q(ρ+ 1)

ρ(q − 1)
mj0−1 +mj0

≤ q(ρ+ 1)

ρ(q − 1)

mj0

q
+mj0 = mj0

ρq + 1

ρ(q − 1)
.

Let t1 be the largest point of maxima of the function |ψj0(t) + ϕ1(t)| with t0 = t1 − δ′

and as earlier we regard that t0 ∈ (0, 1). Also note that 0 < t0 < 1− δ′. From our earlier
estimates and the Lagrange mean value theorem, we have

|ψj0(t0) + ϕ1(t0)| ≥ 1

2

(
1

2
− ρ+ 1

ρ(q − 1)

)
.− δ′ mj0

ρq + 1

ρ(q − 1)

=
1

4
− ρ+ 1

2ρ(q − 1)
− ρq + 1

λρ(q − 1)
.

Therefore we have a lower estimate

‖ψj0 + ϕ1 + ϕ2‖ ≥ |ψj0(t0) + ϕ1(t0) + ϕ2(t0)|

≥ 1

4
− ρ+ 1

2ρ(q − 1)
− ρq + 1

λρ(q − 1)
− 1.01(ρ+ 1)

ρ
e−q/λ.

Now in the induction we put ρ = 1
8
and restrict λ = 25 to get, for a su�ciently large q,

ρ+ 1

2ρ(q − 1)
<

1

24
, because

q + 1

2ρ(q + 1)
→ 0, as q →∞,

ρq + 1

λρ(q − 1)
<

1

24
, because

ρq + 1

ρ(q − 1)
→ 1,

1.01(ρ+ 1)

ρ
e−q/λ <

1

24
, because it goes to zero.

Hence, we have shown that

‖ψj0 + ϕ‖ ≥ 1

8
, for all j = 2, 3, · · · , k.

The same argument, in a bit simpli�ed form, works for j = 1 and j = k + 1. Thus the
system {ψj , j = 1, 2, · · · , k+1} is 1

8
-minimal and by induction we obtain that the system

{ψj , j = 1, 2, · · · } is 1
4
-minimal.
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