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Abstract

The well-known techniques of monotone iterative have been investi-
gated and expanded for the causal terminal value problem (CTVP).
This method construct the monotone sequences of the solutions of lin-
ear CTVPs by using the upper and lower solutions. Moreover, these
sequence of functions are uniformly and monotonically converge to the
extremal solutions of the CTVP.
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1. Introduction

The monotone iterative technique have been investigated and expanded for the causal
terminal value problem. This method construct the monotone sequence through the
solutions of linear causal terminal value problems for which these monotone sequences
by using the upper and lower solutions. These sequence of functions converge uniformly
and monotonically to the extremal solutions of the causal terminal value problem. In this
work, we have expanded and re�ned the monotone iterative technique [9] for the causal
terminal value problem that implies monotone sequence through the solutions of linear
causal terminal value problem for which these sequence of functions converge uniformly
to the extremal solutions of the causal terminal value problem.

This constructive method o�ers a way of proving existence of maximal and minimal
solutions in addition to obtaining solutions in closed sectors as in [11]. It has been shown
recently that causal di�erential equations [11] provide an excellent models for the real
world problems [6] and its real time applications in a variety of disciplines. This is the
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main advantage of causal di�erential equations [11] in comparison with traditional models
[10]. There has been a growing interest in this new area to study the concept of causal
systems in the qualitative behaviors [3, 11, 22, 24].

The monotone iterative technique [4, 9, 14, 16, 17, 20-23] coupled with the method of
upper and lower solutions o�ers monotone sequences that converge uniformly and mono-
tonically to the extremal solutions of the given nonlinear causal di�erential equations.
Since each member of these sequences are the solution of a certain linear causal di�er-
ential equations which can be explicitly computed, the advantage and the importance
of this technique needs no special emphasis. Moreover, this method can successfully be
employed to generate two sides pointwise bounds on solutions of initial value problems
of causal di�erential equations from which qualitative and quantitative behavior of the
solution can be investigated explicitly.

The study of di�erential equations [1, 9, 10, 21] with causal operators [2-5, 7, 11-13,
19, 22-24] has a rapid development in the recent years and some results are assembled
in a recent monograph [11]. The term of causal operators is adopted from engineering
literature and the theory these operators has the powerful quality of unifying namely
the fractional di�erential equations [2, 11, 14, 15, 24], ordinary di�erential equations [9,
10], integro-di�erential equations [18], di�erential equations with �nite or in�nite delay,
Volterra integral equations and neutral functional equations [3, 11].

2. Preliminaries

Let E = C [J,X] where J is an appropriate time interval, X represents either �nite
or in�nite dimensional space, depending on the requirement of the context, so that E is
a function space.

The operator Q : E → E is said to be a causal operator if, for each couple of elements
x, y in E such that x (s) = y (s) for 0 ≤ t0 ≤ s ≤ t the equality (Qx)(s) = (Qy)(s) holds
for 0 ≤ t0 ≤ s ≤ t, t < T, T is a given number.

If E is a space of measurable functions on [t0, T ) for t0 ≥ 0, then the de�nition needs
a slight modi�cation, requiring property to be valid almost everywhere on [t0, T ]. One
can point out that for causal operators, a notation identical with what is encountered for
a general equation with memory can be stated as follows. A representation of the form

x(t) = (Qx)(t)

where for each t ∈ [t0, T ) , (Qx)(t) is a functional on E which takes values in X ,
for each t, while the whole family of functionals, t ∈ [t0, T ), de�ne the operator from
E = C([t0, T ) , X) to itself.

For illustration, let us take E = C [[t0, T ) , Rn] as the underlying space. Let {Qn} be
a sequence of causal operators on E such that

(2.1) lim
n→∞

(Qnx)(t) = (Qx)(t)

for each (t, x) ∈ [t0, T ) × E. The question is whether we can infer that the limit
Q : E → E is also a causal operator. The answer is yes because the causality of {Qn}
implies that

(Qnx)(s) = (Qny)(s), s ∈ [t0, T ) .

If we let n → ∞ on both sides, in the above relation and use (2.1) for each �xed
s ∈ [t0, T ) , we obtain the causality of Q.

We give some basic de�nitions and lemmas for the development of main result.
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2.1. De�nition. The causal terminal value problem (CTV P ) is de�ned as follows

(2.2) u′ = (Qu) (t) , u (∞) = u∞, t ∈ R+

where Q : E → E, E = C(R+,R) given a causal operator.

2.2. De�nition. Let u ∈ C [(t0, t0 + a) , R] be a function. Then its Dini derivatives as
follow

D+u (t) = lim
h→0+

sup
1

h
[u (t+ h)− u (t)]

D−u (t) = lim
h→0−

inf
1

h
[u (t+ h)− u (t)]

where u ∈ C [(t0, t0 + a) , R] . When D+u (t) = D+u (t), the right derivative is denoted
by u′+ (t). Similarly, u′− (t) denotes the left derivative when D−u (t) = D−u (t). When
u′+ (t) = u′− (t) 6= ±∞, the derivative is denoted by u′ (t).

Sometimes, it is enough to have the di�erential inequality satis�ed relative to only
Dini derivatives.

2.3. De�nition. (i) Let r (t) be a solution (2.2) of the CTV P on t ∈ R+. Then r (t) is
said to be a maximal solution of CTV P if, for every solution u (t) of CTV P existing on
R+ the inequality

u (t) ≤ r (t) , t ∈ R+

holds.
(ii) Let ρ (t) be a solution (2.2) of the CTV P on t ∈ R+. Then ρ (t) is said to be

a minimal solution of CTV P if, for every solution u (t) of CTV P existing on R+ the
inequality

ρ (t) ≤ u (t) , t ∈ R+

holds.

2.4. De�nition. The functions v, w ∈ C1 [R+,R] are said to be uncoupled-natural type
lower and upper solutions (2.2) of CTV P if v and w satisfy the di�erential inequalities

v
′
(t) ≥ (Qv)(t), v (∞) ≤ u∞ for t ∈ R+

w
′
(t) ≤ (Qw)(t), w (∞) ≥ u∞ for t ∈ R+

where the causal operator Q ∈ E = C(R+,R), Q : E → E is continuous.

2.5. De�nition. The functions v, w ∈ C1 [R+,R] are said to be coupled lower and upper
solutions (2.2) of CTV P if v and w satisfy the di�erential inequalities

v
′
(t) ≥ (Qw)(t), v (∞) ≤ u∞ for t ∈ R+

w
′
(t) ≤ (Qv)(t), w (∞) ≥ u∞ for t ∈ R+

where the causal operator Q ∈ E = C(R+,R), Q : E → E is continuous.

2.6. Lemma. Suppose m(t) is continuous on (a, b). Then m(t) is nondecreasing (non-
increasing) on (a, b) if and only if D+m(t) ≥ 0 (≤ 0) for every t ∈ (a, b) where
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D+m (t) = lim
h→0+

sup
1

h
[m (t+ h)−m (t)] .

Proof. For the detail of the proof please see [10]. The condition is obviously necessary.
Let us prove that it is su�cient. Assume �rst that D+m (t) > 0 on (a, b). If there
exists two points α, β ∈ (a, b) , α < β, such that m (α) > m (β) , then there exists
a µ with m (α) > µ > m (β) and some points t ∈ [α, β] such that m (t) > µ. Let
ζ = sup {t;m (t) > µ, t ∈ [α, β]}. Clearly, ζ ∈ (α, β) and m (ζ) = µ. Therefore, for every
t ∈ (ζ, β), we have

m (t)−m (ζ)

t− ζ < 0

which implies D+m (ζ) ≤ 0. This is a contradiction and therefore the proof is complete.
�

2.7. Lemma. Let v, w ∈ C([t0, T ] ,R) and for some �xed Dini derivative, Dv(t) ≤ w(t),
t ∈ [t0, T ]. Then D−v(t) ≤ w(t), t ∈ [t0, T ].

Proof. For the detail of the proof please see [10]. De�ne the function

m (t) = v (t)−
t∫

t0

w (s) ds.

It then follows, from the assumption, that

Dm(t) = Dv(t)− w(t) ≤ 0, t ∈ [t0, T ] .

Hence by Lemma 2.1, m(t) is nonincreasing in t on [t0, T ] . Consequently,

D−m(t) = D−v(t)− w(t) ≤ 0, t ∈ [t0, T ] ,

and the lemma is proved. �

3. Comparison Results

In this section, we give some basic comparison theorems and existence results for the
improvement of the main results. The proof of the theorems are very much similar to
the proof of the comparison results in monotone iterative techniques for ODEs in [9].

3.1. Theorem. Let us assume that (Qu) (t) ∈ C [R+ × R,R] , where the causal operator
Q ∈ E = C(R+,R), Q : E → E is continuous. In addition to w, v ∈ C [R+,R] such that
w (∞) , v (∞) exist and

(i) D+w (t) ≤ (Qw)(t), t ∈ [0,∞) ;
(ii) D+v (t) ≥ (Qv)(t), t ∈ [0,∞) ;
(iii) (Qu)(t) ≤ (Qv)(t) whenever u ≤ v for each t.
Then v (t) ≤ w (t) for t ∈ [0,∞) provided that v (∞) ≤ w (∞) .

Proof. Initially, we prove the theorem for strict inequalities, let us assume that v (∞) <
w (∞) and one of the inequalities either in (i) or (ii) be strict. Let D+v (t) > (Qv)(t), t ∈
[0,∞) .

Suppose that the v (t) ≤ w (t) is not true, then there exists a t1 ∈ [0,∞) such that
v (t1) = w (t1) and v (t) < w (t) for t ∈ (t1,∞). For su�ciently small h > 0, we have

v (t1 + h) < w (t1 + h)



901

and consequently

h−1 [v (t1 + h)− v (t1)] < h−1 [w (t1 + h)− w (t1)]

lim
h→0+

inf h−1 [v (t1 + h)− v (t1)] ≤ lim
h→0+

inf h−1 [w (t1 + h)− w (t1)]

D+v (t1) ≤ D+w (t1) .

This implies, in view of (i), (ii) we get

(Qv)(t1) < D+v (t1) ≤ D+w (t1) ≤ (Qw)(t1) = (Qv)(t1)

which is a contradiction. Hence

v (t) < w (t) , for t ∈ [0,∞) .

Now de�ne for ε > 0 arbitrary

ṽ (t) = v (t)− ε
(
1 + e−t

)
.

Then ṽ (t) < v (t) for t ∈ [0,∞) and ṽ (∞) < v (∞). Hence, using (i) and (iii), we get

D+v (t) + εe−t ≥ (Qv)(t) + εe−t

≥ (Qṽ)(t) + εe−t

D+ṽ (t) > (Qṽ)(t).

It then follows by the proof of the earlier argument, strict inequality, that implies

ṽ (t) < w̃ (t) .

Now, letting t→∞, we get ṽ (∞) < v (∞) < w̃ (∞) and letting ε→ 0, we have

lim
ε→0

[
v (t)− ε

(
1 + e−t

)]
≤ lim

ε→0

[
w (t) + ε

(
1 + e−t

)]
v (t) ≤ w (t) , t ∈ [0,∞) .

This completes the proof of the Theorem 3.1. �

3.2. Theorem. Let w, v ∈ C [R+,R] such that v (t) ≤ w (t) , t ∈ R+.
Let Q : Ω→ R be the continuous causal operator

where Ω = [(t, u) : v (t) ≤ u ≤ w (t) , t ∈ R+] . Suppose that

(i) v
′
(t) ≥ (Qv)(t), t ∈ R+;

(ii) w
′
(t) ≤ (Qw)(t), t ∈ R+;

(iii) (Qu)(t) ≤ λ (t) on Ω such that λ ∈ L1 [R+,R] .
Then the CTV P of (2.2) has a solution which satis�es to v (t) ≤ u (t) ≤ w (t) on

[a,∞) provided that v (∞) ≤ u (∞) ≤ w (∞) for some a ≥ 0.

Proof. Consider P : C [R+,R]→ C [R+,R] de�ned by

(Pu)(t) = max[v (t) , min[u(t), w (t)]].

Q is a continuous causal operators and by the assumption (iii), we get (Qu)(t) ≤ λ (t).
So that (QPu)(t) de�nes a continuous extension of Q to R+ × R which is also bounded
since Q is assummed to be bounded on Ω. Therefore, the CTV P of
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(3.1) u′ (t) = (QPu)(t), u (∞) = u∞, t ∈ R+

has a solution u (t) on [a,∞) ⊂ R+. We need to show that v (t) ≤ u (t) ≤ w (t) for
t ∈ [a,∞) where u (t) is a solution of CTV P .

In order to show these for any ε > 0, consider

ṽ (t) = v (t)− ε
(
1 + e−t

)
w̃ (t) = w (t) + ε

(
1 + e−t

)
.

Then w̃ (t) > w (t) , ṽ (t) < v (t) and ṽ (∞) < u∞ < w̃ (∞). We claim that ṽ (t) <
u (t) < w̃ (t) on [a,∞). If this is not true, then there would exist t1 ∈ [a,∞) such that
ṽ (t) < u (t) < w̃ (t) for t ∈ (t1,∞) and either ṽ (t1) = u (t1) or w̃ (t1) = u (t1).

If u (t1) = w̃ (t1), then for su�ciently small h > 0

[u (t1 + h)− u (t1)] < [w̃ (t1 + h)− w̃ (t1)]

lim
h→0

h−1 [u (t1 + h)− u (t1)] ≤ lim
h→0

h−1 [w̃ (t1 + h)− w̃ (t1)]

u′ (t1) ≤ w̃′ (t1) .

Hence, by using (ii), we have, in view of the fact that w (t1) = (Pu) (t1)

(QPu)(t1) = u′ (t1) ≤ w̃′ (t1) = w′ (t1)− εe−t1

≤ (Qw)(t1)− εe−t1 = (QPu)(t1)− εe−t1

< (QPu)(t1)

which is a contradiction. If ṽ (t1) = u (t1), then we arrive at a similar contradiction.
Thus, it follows that

v (t)− ε
(
1 + e−t

)
≤ u (t) ≤ w (t) + ε

(
1 + e−t

)
ṽ (t) < u (t) < w̃ (t) on [a,∞).

Now, letting ε→ 0, we get

(3.2) v (t) ≤ u (t) ≤ w (t) on [a,∞)

It follows that u (t) is actually a solution of the CTV P of (2.2) Hence, the proof of
the theorem is completed. �

4. Monotone Iterative Technique

In this section, we will prove the main theorem that gives several di�erent conditions to
apply the method of monotone iterative technique [9] to the nonlinear causal di�erential
equations [11].

4.1. Theorem. Let Q : C [R+,R]→ C [R+,R] be a continuous causal operator, (Qu) (t) ∈
C [R+ × R,R],

(i) |(Qu) (t)| ≤ λ (t) |u| with λ ∈ L1 [0,∞) ;
(ii) v0, w0 ∈ C1 [R+,R] with v0 (t) ≤ w0 (t) on R+, v0 (∞) , w0 (∞) exist and

(a) v′0 ≥ (Qv0) (t) , v0 (∞) ≤ u∞ for t ∈ R+;
(b) w′0 ≤ (Qw0) (t) , w0 (∞) ≥ u∞ for t ∈ R+;
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(iii) (Qx)(t)− (Qy)(t) ≤M (t) [x (s)− y (s)] whenever v0 (t) ≤ y ≤ x ≤ w0 (t) on R+

and M ∈ L1 [0,∞).
Then there exist monotone sequences {vn} , {wn} such that vn → v, wn → w as

n→∞ uniformly and monotonically on [a,∞) for some a ≥ 0 and that v and w are the
minimal and the maximal solutions (2.2) of CTV P ; respectively.

Proof. For any η ∈ C [R+,R] such that η (∞) = η∞ exists and v0 ≤ η ≤ w0 on R+,
consider the causal terminal value problem

(4.1) u′ = (Ku) (t) , u (∞) = u∞, t ∈ R+

where (Ku) (t) = (Qη)(t) +M (t) (u− η) and v0 (∞) ≤ u∞ ≤ w0 (∞). Now

|(Ku) (t)| ≤ |(Qη)(t)|+M (t) |u− η| ≤ (λ (t) +M (t)) |η|+M (t) |u| .

Setting (Gr)(t) = M (t) r+σ (t) , where σ (t) = [λ (t) +M (t)] |η (t)| , since the solution
r (t) of

(4.2) r′ = (Gr)(t), r (t0) = r0

are bounded. Hence, the CTV P (4.1) has a solution u on [a,∞) for some a ≥ 0. Also,
since K is linear in u, the solution is unique. De�ne a mapping A by Aη = u. This
mapping will be used to de�ne the sequences {vn} , {wn}. Let us prove that

(A) v0 ≤ Av0, w0 ≥ Aw0;
(B) A is monotone operator on the segment

[v0, w0] = {u ∈ C [R+,R] , v (t) ≤ u (t) ≤ w (t)} .

To prove (A), set Av0 = v1, where v1 is the unique solution of (4.2) with η = v0.
Setting φ = v1 − v0, we see that

φ′ = v′1 − v′0 ≤ (Qv0)(t) +M (t) [v1 − v0]− (Qv0)(t) = M (t)φ,

and φ (∞) ≥ 0. This shows that

φ (t) ≥ φ (∞) exp

− ∞∫
t

M(s)ds

 ≥ 0

and hence v0 ≤ v1 on some interval [a,∞) or equivalently v0 ≤ Av0. Similarly, we can
prove that w0 ≥ Aw0. To prove (B), let η1, η2 ∈ [v0, w0] such that η1 ≤ η2. Suppose that
u1 = Aη1 and u2 = Aη2. Set φ = u2 − u1 so that

φ′ = (Qη2)(t) +M (t) [u2 − η2]− (Qη1)(t) +M (t) [u1 − η1] .

Now, using (iii), we get

φ′ ≤M (t) [η2 − η1] +M (t) [(u2 − u1)− (η2 − η1)]

or

φ′ ≤M (t)φ and φ (∞) = 0.

As before, this implies that Aη1 ≤ Aη2, proving (B). This shows that A is a monotone
operator. We can now de�ne the sequences

vn = Avn−1, wn = Awn−1.
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v0 ≤ v1 is obtained from the v1 = Av0, v0 ≤ Av0 operations. A is a monotone operator,
Av0 ≤ Av1 = v2 and v1 ≤ v2 is obtained. Similarly, if continued vn−1 = Avn−2, vn−2 ≤
vn−1 and Avn−2 ≤ Avn−1, vn−1 ≤ vn. Consequently,

v0 ≤ v1 ≤ v2 ≤ · · · ≤ vn.

The same procedure can also be applied for w, we have

wn ≤ · · · ≤ w2 ≤ w1 ≤ w0.

We conclude that the previous argument implies

v0 ≤ v1 ≤ v2 ≤ · · · ≤ vn ≤ wn ≤ · · · ≤ w2 ≤ w1 ≤ w0

on [a,∞). It then follows that

lim
ε→0

[vn] = v and lim
ε→0

[wn] = w

on [a,∞). We will show that limit functions that are the solutions of linear causal
terminal value problems; v (t) and w (t) are continuous such that

v′n = (Qvn−1)(t) +M (t) [vn − vn−1] , v (∞) = u∞

w′n = (Qwn−1)(t) +M (t) [wn − wn−1] , w (∞) = u∞.

For each n, de�ne (Kn) (t) = (Qvn−1)(t) + M (t) [vn − vn−1]; then {(Kn) (t)}∞n=1 is a
sequence of continuous functions. Hence

lim
n→∞

(Kn) (t) = lim
n→∞

(Qvn−1)(t) = (Qv)(t) = (K) (t) .

Furthermore, note that (K) (t) is measurable on [a,∞) for some a and also, in view of
the fact that v0 (t) ≤ vn (t) ≤ w0 (t) on [0,∞), we have
|(Kn) (t)| = |(Qvn) (t) +M (t) [vn − vn−1]| ≤ λ (t) |vn (t)|+ 2M (t) |vn (t)|

≤ L [λ (t) +M (t)]

for some constant L. Since
∞∫
t

(λ (s) +M(s)) ds <∞

so also
∞∫
t

[(Qvn−1) (s) +M(s) (vn (s)− vn−1 (s))] ds <∞.

Now using the Lebesque dominated convergence theorem, we get

lim
n→∞

∞∫
t

(Kn) (s) ds =

∞∫
t

(K)(s)ds

or

lim
n→∞

∞∫
t

[(Qvn) (s) +M(s) (vn (s)− vn−1 (s))] ds =

∞∫
t

(Qv) (s) ds,

which exists. Since each vn (t) is a solution of

vn (t) = vn (∞)−
∞∫
t

[(Qvn−1)(s) +M(s) (vn (s)− vn−1 (s))] ds
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taking the limit as n→∞, we have

v (t) = v (∞)−
∞∫
t

(Qv) (s) ds, t ∈ [a,∞) .

Now, we conclude that v (t) is continuous, since a function has inde�nite integral if
and only if it is absolutely continuous. In similar way, we show that w (t) is continuous
as well. It is now easy to show that v and w are solutions (2.2) of CTV P. To prove that
v, w are minimal and maximal solutions (2.2) of CTV P , we need to show that if u is any
solution (2.2) of CTV P such that v0 ≤ u ≤ w0 on [a,∞), then v0 ≤ v ≤ u ≤ w ≤ w0 on
[a,∞). To do this, suppose that for some n, vn ≤ u ≤ wn on [a,∞) and set φ = u−vn+1,
so that
φ′ = (Qu)(t) − (Qvn)(t) −M(t) (vn+1 − vn) ≤ M(t) (u− vn) −M(t) (vn+1 − vn) =

M(t) (u− vn+1)
or

φ′ ≤M (t)φ, φ (∞) = 0.

Thus, φ (t) ≥ 0, which implies u ≥ vn+1 on [a,∞). Similarly, u ≤ wn+1 on [a,∞) and
hence vn+1 ≤ u ≤ wn+1 on [a,∞). Since v0 ≤ u ≤ w0 on [a,∞), this proves by induction
that vn ≤ u ≤ wn on [a,∞) for all n. Taking the limit as n → ∞, we conclude that
v ≤ u ≤ w on [a,∞) and the proof is complete. �

4.2. Corollary. If in addition to the assumptions of Theorem 4.1, we assume

(Qx) (t)− (Qy) (t) ≥M (t) max
0≤s≤t

[x (s)− y (s)]

whenever v0 ≤ y ≤ x ≤ w0 on R+ and M ∈ L1 [0,∞). Then we have unique solution of
(2.2) such that v = u = w.

Proof. If we set p = |v − w| then p′(t) ≤ |(Qp) (t)| = |Q (v − w) (t)|
= |(Qv) (t)− (Qw) (t)| = M (t) max0≤s≤t [|v (s)− w (s)|] ≤M (t) |v (t)− w (t)|
= M (t) p(t) which gives p′(t) ≤Mp and then by using the comparison result in Theorem
3.1 we get p(t) ≤ 0 for t ∈ [0,∞) provided that v (∞) ≤ w (∞) . Hence, v(t) = w(t) we
have v = u = w is the unique solution of (2.2). �

5. An Example

In the following example, we illustrate how to apply and arise some of the results in
the terminal value problem.

5.1. Example. Assuming that a two-species community model living together and com-
peting with each other for the same limiting resources. For this purpose, it is convenient
to formulate a causal terminal value problem, as follows:

(5.1) B′i = Bigi (B) = (QBi) (t) , Bi (∞) = Bi∞ for i = 1, 2 and t ∈ R+

where the causal operator Q ∈ E = C(R+,R), Q : E → E is continuous and B ∈
R2; gi (B) = ai− biiBi− bijBi where Bi is the population density of species for i, j = 1,
2 and i 6= j; ai, bii, bij are positive constants. In order to construct lower and upper
functions, we de�ne
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(5.2)


g1 (B) = sup

o≤θ≤B2

g1 (B1, θ) = a1 − b11B1,

g2 (B) = sup
o≤θ≤B1

g2 (θ,B2) = a2 − b22B2.

Now, consider a causal terminal value problem

(5.3) v′i = (Qvi)(t) = vigi (v) = vi (ai − biivi) , vi (∞) = vi∞ for i = 1, 2 and t ∈ R+

The solution of (5.3) is expressed as follows:

(5.4) vi (t) = ki [1 + exp (−ait) (ki − vi∞) /vi∞]−1

for i = 1, 2. Here ki = ai
bii

is referred as the carrying capacity of the i−th species.

From (5.1), (5.2), (5.3), (5.4), and choosing vi∞ ≥ Bi∞, we have

(5.5)

{
v′i ≥ vigi (v)

vi∞ ≥ Bi∞ for i = 1, 2.

This implies that vi (t) in (5.4) is the lower solution of system (5.1).
Now, for su�ciently large M , namely M ≥ g2 (B), we �nd that wi (t) = M for

i = 1, 2 that is the candidate for a upper solution of (5.1). Indeed, for all t ∈ R+,

(5.6)

{
w′i (t) = 0 ≤ wigi (w)
wi∞ ≤ Bi∞ for i = 1, 2.

This implies that wi (t) in (5.6) is the upper solution of system (5.1). The veri�cation
of vi (t) ≤ wi (t) for i = 1, 2 follows immediately from (5.4).

We note that the de�nition of lower and upper solutions relative to CTVPs is in the
reverse order to what would be expected.

6. Conclusion

In this paper, some existence results and comparison theorems in terms of lower and
upper solutions have been investigated of the terminal value problem for causal di�erential
equations as well as the well-known monotone iterative technique has been applied in a
closed set for the given causal di�erential equations.
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