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1. Introduction 
 

Let A denote the class of functions f (z) of the form  
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which are analytic in the open unit disk { } 1z and : <∈= CzzE . Furthermore S, 

represents class of all functions in A which are univalent in E. Sakaguchi [6] introduced a 

class ∗
sS  of functions starlike with respect to symmetric points, it consists of functions 

( ) S∈zf  satisfying the inequality 
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Following him, many authors studied this class and its subclasses see [7, 8, 9].  

 

Das and Singh [16] in 1977 extend the results of Sakaguchi to other class in E, namely 

convex functions with respect to symmetric points. Let s C  denote the class of convex 

functions with respect to symmetric points and satisfying the condition 
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It is also well known [16] that sf C∈ if and only if ( ) ∗∈′
s zfz S .  

 

Chand and Singh [1] introduced a class m

sS of functions starlike with respect to m-

symmetric points, which consists of functions ( ) S∈zf , satisfying the inequality 
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where 
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From equation (1.4) we can write 
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where .1 2,n  ;, m =≥∈ εNml  

 

Note that the accompanying characters follow directly from the above definition [10]. 
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Definition 1. For ( ) A∈zf  given by (1.1) and ( ) A∈zg  of the form  
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the Hadamard product (or convolution) of ( ) ( )zg and zf  is given by 
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For two functions F(z) and G(z) analytic in E, we say that F(z) is subordinate to G(z) 

denoted by GpF  or ( ) ( )zGpzF , if there exists an analytic function ( )zw  with ( ) 1z <w  

such that ( ) ( )( )zwG=zF . Furthermore if the function G(z) is univalent in E then we have 

the following equivalence [13,14,15] 
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Definition 2. A function ( )zp  is said to be in the class P[A,B], if it is analytic in E with 

( ) 10p =  and 

( ) 1.AB1-      ,
1

1
zp ≤<≤

+

+

Bz

Az
p  

 

Geometrically, if a function p belongs to P [A,B], then it maps the open unit disc E onto the 

disk characterized by the domain 
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The class P [A,B], is connected with the class P of functions with positive real part by the 

relation 
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This class was presented by Janowski [2] and explored by a few creators. Kanas and 

Wisniowska [4,3] presented and examined the class ST-k of k-starlike functions and the 

relating class UCV-k of k-uniformly convex functions. These were characterized subject 

to the conic region k, 0k  ,k ≥Ω , as 
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This domain represents the right half plane, a parabola, a hyperbola and an ellipse for k = 0, 

k = 1, 0 < k < 1 and k > 1 respectively. The external functions for these conic regions are 
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where 
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and ( )0,1∈t  and z is chosen such that
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. Here ( )tR  is Legendre’s 

complete elliptic integral of first kind and ( )tR′  is the complementary integral of ( )tR . 

 

Following are the definitions of classes ST-k  and UCV- k . 

 

Definition 3. A function ( ) A ∈zf  is said to be in the class ST- k , if and only if 
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Definition 4. A function ( ) A ∈zf  is said to be in the class UCV- k , if and only if 
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The classes ST- k  and UCV- k  were further generalized by Shams et al, [11], to the 

( )βk,DK  and ( )βk,DS , respectively subject to the conic domain ( ),k, βG 0 ≥k  and 

10 <≤ β  which is 
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Now using the concepts of Janowski functions and the conic regions, we defne 
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where ( )zpk  is defined by (1.9) and 1.AB1- ≤<≤  

  

Geometrically, the function ( ) [ ],BA,zp −∈ k  takes all values from the domain 

0k ,11-  ],,[ ≥≤<≤Ω ABBAk  which is define as 
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The domain ],[ BAkΩ  retains the conic domain kΩ  inside the circular region defined by 

],[ BAΩ . The impact of  ],[ BAΩ  on the conic domain kΩ  changes the original shape of 

the conic regions. The ends of hyperbola and parabola gets closer to one another but never 

meet anywhere and the ellipse gets the oval shape. When 1,1 −→→ BA  the radiuses of 

the circular disk define by ],[ BAΩ  tends to infinity, consequently the arm of the hyperbola 

and parabolas expand to the oval terns into ellipse. We see that kk Ω=−Ω ]1,1[ , the conic 

domain define by Kanas and Wisniowska [3]. 

 

Definition 4. A function ( ) A∈zf  is said to be in the class ( ) B],[A,ST- m
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or equivalently 
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where ( )zfm  is defined by (1.4). 

 

Special Cases: 
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where ( )zfm  is defined by (1.4). 

 

Special Cases: 

 

i). ( ) B],UCV[A,-B][A,UCV- 1

s kk =  we have the class introduced and studied in [5]. 
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iv). ( ) ],D[k,,-1]2-[1UCV- 1
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v). ( ) B],[A,B][A,UCV-0 1
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2. Main Results 
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Thus ( ) S.B]ST[A,- ⊆∈ kzfm  

 

Putting k = 0 in Theorem 1, we can obtain Corollary 1, below which is comparable to the 

result obtained by Kwon and Sim [10]. 
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where ( )zw  analytic function E, with ( ) 00 w =  and ( ) 1z <w . 

 

Proof. Let ( ) ( ) B],[A,ST- m
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For ( )1,...2,1,0 −= mµ , .Ez ∈  Using the equalities (1.7) and (1.8) we have 
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Integrating equality (2.8) , we have 
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Therefore arranging equality (2.9) for ( )zfm  we can obtain 
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and so the proof of Theorem 3 is complete. 

 

Putting m = 1, in Theorem 3, we can obtain Corollary 2. 
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where ( )zw  analytic function E, with ( ) 00 w =  and ( ) 1z <w . 
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 Putting m = 1, A = 1 and B = -1 in Theorem 3, we can obtain Corollary 4. 

 

Corollary 4. Let ( ) ST.-kzf ∈  Then 

 

( ) ( )( )( ) ,1exp
0 








−⋅=  dttwpzzf

z

k     (2.13) 

 

where ( )zw  analytic function E, with ( ) 00 w =  and ( ) 1z <w . 
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Theorem 4. Let ( ) ( ) B].[A,UCV- m
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where ( )zw  analytic function E, with ( ) 00w =  and ( ) 1z <w . 
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Integrating the equality (2.16) , we have 
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and so the proof of Theorem 5 is completed. 

 

Putting k = 0, in Theorem 5, we can obtain Corollary 5, below which is comparable to the 

result obtained by Kwon and Sim [10]. 
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Corollary 5. Let ( ) ( ) B].[A,ST- m

skzf ∈  Then 
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 (2.17) 

 

where ( )zw  analytic function E, with ( ) 00 w =  and ( ) 1z <w . 

 

Theorem 4. Let ( ) ( ) B].[A,USV- m

skzf ∈  Then 
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where ( )zw  analytic function E, with ( ) 00 w =  and ( ) 1z <w . 

 

Convolution conditions: In this section, we provide the convolutions conditions for the 

classes ( ) ( ) B].[A,UCV-  and B][A,ST- m

s

m

s kk   

 

Theorem 5. A function ( ) ( ) B],[A,ST- m

skzf ∈  if and only if 
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for all E ∈z and ,20 πϑ <≤  where h(z) is given by (2.24). 

 

Proof. Assume that ( ) ( ) B],[A,ST- m

skzf ∈  then we have 
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if and only if  
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for all E ∈z and .20 πϑ <≤  The condition (2.20), can be written as 
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On the other hand it is well known that 
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( ) ( )
( )
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1

2
∈

−
∗=′ z

z

z
zfzfz    (2.22) 

 

And from the definition of ( )zfm  we have 
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∞

=
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    (2.24) 

 

where nb  is given by (1.6). Substituting (2.22) and (2.23) in (2.21), we can get (2.18). This 

completes the proof of the Theorem 7. 

 

Putting m = 1, in Theorem 7, we can obtain Corollary 6. 

 

Corollary 6. A function ( ) B],ST[A,-kzf ∈  if and only if 
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for all E ∈z . 

 

Putting k = 0, in Theorem 7, we can obtain Corollary 7. 

 

Corollary 7.  A function ( ) ( ) B],[A,ST m

szf ∈  if and only if  
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for all E ∈z and ,20 πϑ <≤  where h(z) is given by (2.24). 

 

Theorem 8. A function ( ) ( ) B],[A,UCV- m

skzf ∈  if and only if 
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for all E ∈z and ,20 πϑ <≤  where h(z) is given by (2.24). 

 

Proof. The proof of Theorem 8, is similar to that of Theorem 7, so the details are omitted. 

 

Coefficient inequalities: Finally, we provided the sufficient conditions for the functions 

belonging to classes ( ) ( ) B].[A,UCV-  and B][A,ST- m

s

m

s kk  
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Theorem 9. A function ( ) A ∈zf  is said to be in the class ( ) B],[A,ST- m

sk  if it satisfies the 

condition 
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where ( )zfm  is given by (1.5) with .11-  ,0 ≤<≤≥ ABk  

 

Proof. Assume that (2.28) holds, then it suffices to show that 
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we have 
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The last expression is bounded by 1, if 
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Using (1.6) in (2.30) we have 
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and this completes the proof of Theorem 9. 

 

Putting m = 1, in Theorem 9, we can obtain Corollary 8, below which is comparable  

to the result obtained by Noor and Malik [5]. 
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Corollary 8. A function ( ) A ∈zf  is said to be in the class B],ST[A,-k  if it satisfies the 

condition 

( )( ) ( ) ( )( ){ } ,11112 
2n

ABaABnnk n −<++++−+
∞

=

 

 

where .11-  ,0 ≤<≤≥ ABk  

 

Putting k = 0, in Theorem 9, we can obtain Corollary 9, below which is comparable to the 

result obtained by Kwon and Sim [10]. 

 

Corollary 9. A function ( ) A ∈zf  is said to be in the class ( ) B],[A,ST m

s  if it satisfies the 

condition 
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where ( )zfm  is given by (1.5) with .11- ≤<≤ AB  

 

Putting m = 1, A = 1 and B = -1 in Theorem 9, we can obtain Corollary 10, below which is 

comparable to the result obtained by Kanas and Wisniowska [3]. 

 

Corollary 10. A function ( ) A ∈zf  is said to be in the class ST,-k  if it satisfies the 

condition 
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Putting m = 1, 10 with -1,B ,2-1A <≤== ββ  in Theorem 9, we can obtain Corollary 11, 

below which is comparable to the result obtained by Shams et-al [11]. 

 

Corollary 11. A function ( ) A ∈zf  is said to be in the class ( ),k,SD β  if it satisfies the 

condition 
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0.k with 1,0 with ≥<≤ β  

 

Putting m = 1, 0k and 10 with -1,B ,2-1A =<≤== ββ  in Theorem 9, we can obtain 

Corollary 12, below which is comparable to the result obtained by Shams et-al [11]. 

 

Corollary 12. A function ( ) A ∈zf  is said to be in the class ( ),S β∗  if it satisfies the 

condition 

{ } ,1 
1n

ββ −<−
∞

=
nan  

1.0 with <≤ β  

 



Journal of New Theory 24 (2018) 20-34                                                                                                         33 
 

Theorem 10. A function ( ) A ∈zf  is said to be in the class ( ) B],[A,UCV- m

sk  if it satisfies 

the condition 
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(2.28) 

where ( )zfm  is given by (1.5) with .11-  ,0 ≤<≤≥ ABk  

 

Proof. The proof of Theorem 10, is similar to that of Theorem 9, so the details are omitted. 
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