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Abstract

This study proposes some ratio estimators of the population mean un-
der simple random sampling schemes, in order to tackle the problem of
low e�ciencies of some existing estimators. An improved exponential
ratio estimator of the population mean under simple random sampling
scheme and its bias and mean square error have been derived. Further
propositions of a generalized form of the exponential ratio estimator of
the population mean under simple random sampling scheme has also
been made. The Bias and Mean Square Errors of these class of es-
timators have also been obtained. It is observed that some existing
estimators are members of this class of estimators of population mean.
Analytical and numerical results indicate that, the Asymptotic Opti-
mal Estimator (AOE) of these proposed estimators of population mean
using single auxiliary variable have been found to exhibit greater gains
in e�ciencies than the classical regression estimators and other existing
estimators in simple random sampling scheme.
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1. Introduction

Researches in sampling theory and practice have shown that the linear regression estima-
tor of population mean is generally more e�cient than the ratio and product estimators.
The equality in e�ciency is always achieved if the regression line of Y on X has a zero
intercept [27]. The ratio and product estimators were then limited in terms of e�ciency
and could not be used to give greater e�ciency, since in many practical situations; the
regression line of the variable of interest on the auxiliary variable does not usually pass
through the origin. Consequent upon this, the linear regression estimator was considered
to be the only estimator with the greatest e�ciency.
In view of the limitation that engulfed the classical ratio and product estimators of
population mean, many researchers have made tremendous explorations and discoveries
on the improvement of e�ciency of ratio estimation of population mean, either through
modi�cations of the existing ones or proposing new ratio estimators. Works of [28],[26],
[48], [46] have shown signi�cant improvement on estimating the population Mean through
the use of their proposed estimators.
Many other authors, by way of trying to make signi�cant improvement on the e�ciency
of their ratio estimators, make use of the parameters of the auxiliary variable and known
constants to propose new ratio estimators. Singh and Tailor [36, 37], made use of corre-
lation coe�cient of the auxiliary variable; Kadilar and Cingi [11, 12, 16, 15, 17] made use
of coe�cient of Kurtosis, coe�cient of variation, correlation coe�cient and their combi-
nations to propose new ratio estimators of population mean. Also, [59], [50], [51], [52],
[53], [54], [55], [49], [57], [45], [33] [9], [56] and many others used the Median, coe�cients
of kurtosis, coe�cients of skewness, etc to propose classes of ratio estimators. In all these
e�orts none of these estimators seemed to have greater e�ciency than the regression es-
timator, but some had greater gain in e�ciency than the classical ratio estimator, while
some were even less e�cient than the classical ratio estimator. The important achieve-
ment here was that they created avenues for more researchers on the subject matter.
In another development, other authors came up with new ratio estimators of population
mean known as exponential ratio and product estimators. Foremost among them were
[1], who found that, in most cases, their exponential ratio and estimators were more
e�cient than the classical ratio and product estimators. Later, [24], [32], [44], [18], and
many other authors were motivated in the works of [1] and they either modi�ed the
existing exponential ratio and product estimators or linear combinations of dual and
ratio/product estimators. Some of their works, especially the linear combinations began
to yield good results, as most of their Mean Square Errors were the same as the variance
of the classical regression estimators.
Recent works have built on both the modi�cations of the classical ratio or regression
and the exponential ratio estimators to obtain improved e�ciencies in simple random
sampling. These works include [24], [10], [58], [31], [35], [35], [42], [6], [7], [8]. These works
showed some improvements over the Regression estimator. Although these works showed
some improvement in e�ciency over the regression estimates, they are not consistent in
their performance for all populations.
Furthermore, their e�ciencies over the regression estimator in some cases are not sta-
tistically signi�cant. These recent discoveries have motivated many more researchers to
still probe further on the e�ciency of ratio and regression method of estimation in a bid
to obtaining better estimation procedure with greater e�ciency. It is in the light of this
that this research work is carried out. The proposed estimator is intended to be more
e�cient than these ones or compare favourably with the best of the existing estimators.
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2. Review of some related existing Estimators

Consider a �nite population U = (U1,U2, . . ., UN ) of size (N). Let (X) and (Y ) denote
the auxiliary and study variables taking values Xi and Yi respectively on the ith unit
Ui(i = 1, 2, . . ., N) population. It is assumed that (xi, yi)≥0, (since survey variables are

generally non-negative) and information on the population mean (X́) of the auxiliary
variable ( X) is known. Let a sample of size (n) be drawn by simple random sampling
without replacement (SRSWOR) from which we obtain the means (x̄) and (ȳ) for the
auxiliary variable (X) and the study variable (Y ).
For the above population we provide a summary of some existing estimators with its
mean square error in Table 1 below.

TABLE 1

Table 1. Some related existing estimators of Population Mean in sim-
ple random sampling using a single auxiliary variable and their Mean
Square Errors (MSE)

S/N ESTIMATORS MSE

1 ȳ λȲ 2C2
y

(Simple Random Sample Mean)

2 ȳR = ȳ
x̄
X̄ λȲ 2

{
C2
y − 2PyxCyCx + C2

x

}
(Classical Ratio Estimator)

3 ȳreg = ȳ + byx
(
X̄ − x̄

)
λȲ 2C2

y

(
1− P 2

yx

)
(Classical Regression Estimator)

4 ȳ∗GS =
[
η1ȳ + η2

(
X̄ − x̄

)]
∆j Ȳ 2

[
1− α2α

2
4+2α3α4α5+α1α

2
5

α1α2−α2
3

]
(Gupta and Shabbir [6])

5 ȳKCi =
[
ȳ + byx

(
X̄ − x̄

)]
∆j λȲ 2

[
aiC

2
x + C2

y

(
1− ρ2

yx

)]
(Gupta and Shabbir [6])

6 ȳ∗Singh = t∗1ȳβ + t2ȳ
∗
(
x̄−Sx
X̄−Sx

)
Ȳ 2

[
1− (C2−2C3C4+C1C

2
4)

C1C2−C2
3

]
(Singh, Rathour and Solanki [35])

7 ȳ< = ȳ exp
[
X̄−x̄
X̄+x̄

]
λȲ 2

[
C2
y +

C2
x

4
(1− 4K)

]
(Bahl and Tuteja [1])

8 ϕ∗1ȳ∆j + ϕ∗1
(
X̄ − x̄

)
∆2
j Ȳ 2

[
1− (BD−2CDE+AE2)

(AB−C2)

]
(Singh and Solanki [42])

9 ȳSC =
[
P ∗1 ȳ + P ∗2

(
X̄ − x̄

)]
[ ω∗∆j

MSE (ȳreg)

1 + λC2
y (1− ρ2)

+ (1− ω∗) exp

[
a(X̄−x̄)

a(X̄+x̄)+2b

]]
(Singh, Kumar and Chaudhary [43])

10 ȳRao = K∗1 ȳ +K∗2
(
X̄ − x̄

)
Ȳ 2

{
1 + 1

(ρ2yxC2
y−1)−1

}
(Rao [24])

11 ȳGK =
[
d∗1ȳ + d∗2

(
X̄ − x̄

)]
exp

[
X̄−x̄
X̄−x̄

]
λȲ 2{λC4

x+16(ρ2yx−1)(ρ2yx−1)C2
y}

64{(ρ2yx−1)C2
y−1}

(Grover and Kaur [7])
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12 ȳSHG =
{
ȳ
2

[
exp

[
X̄−x̄
X̄+x̄

]
+ exp

[
x̄−X̄
X̄+x̄

]]
λȲ 2{λC4

x−8(ρ2yx−1)(λC2
x−2)C2

y}
16{(ρ2yx−1)λC2

y−1}
+l2ȳ + l1

(
X̄ − x̄

)}
exp

(
X̄−x̄
X̄+x̄

)
(Shabbir, Hag and Gupta [31])

13 ȳ
(1)
JJ =

1+λC2
x

1+λC2
y
ȳR; ȳ

(2)
JJ = ȳS + bSyx

(
X̄ − x̄S

) (
1+λC2

x
1+λC2

y

)
MSE (ȳR)

MSE(ȳreg)
(1+λC2

y)
(Jitthavech and Lorchirachoonkul [10])

14 ȳpr = Θ1ȳ + Θ2

(
X̄ − x̄

)
exp

[
2(X̄−x̄)
X̄+x̄

]
, Ȳ 2

[
1−

(
γ4+2γ2γ4+γ1γ

2
4

γ1γ4−γ22

)]
(Ekpenyong and Enang [5])

15 ȳpr = θ1ȳ + θ2

(
X̄ − x̄

)
exp

[
(X̄−x̄)
X̄+x̄

]
, Ȳ 2

[
1−

(
γ4+2γ5γ3+γ1γ

2
3

γ1γ4−γ25

)]
(Ekpenyong and Enang [5])

where,

λ =
1− f
n

, f =
n

N

X̄ = N−1
N∑
i=1

xi,population mean of the auxiliary variable;

Ȳ = N−1
N∑
i=1

yi,population mean of the study variable;

x̄ = n−1
n∑
i=1

xi, sample mean of the auxiliary variable;

ȳ = n−1
n∑
i=1

yi, sample mean of the study variable;

Cx =
Sx

X̄
, the coe�cient of variation of the auxiliary variable;

Cy =
Sy

Ȳ
, the coe�cient of variation of the study variable;

ρ =
Sxy
SxSy

, the correlation coe�cient between the auxiliary and study variables;

Kij =
ρijCi
Cj

and f =
n

N
, the sampling fraction;

S2
x = (N − 1)−1

N∑
i=1

(
xi − X̄

)2
,population variance of the auxiliary variable;

S2
y = (N − 1)−1

N∑
i=1

(
yi − Ȳ

)2
, population variance of the study variable;

Sxy =

∑N
i=1

(
xi − X̄

) (
yi − Ȳ

)
(N − 1)2

, population covariance between the auxiliary

and study variables;



967

β1 (x) = Coe�cient of skewness; β2 (x) = Coe�cient of kurtosis;

b = Sample regression coe�cient; α = Intercept on Y axis;

β = Regression coe�cient;

Sx = Standard deviation of X; Sy = Standard deviation of Y;

X = Auxiliary variable; Y = Study variable;

∆j =
ajX̄ + bj
aj x̄+ bj

, aj and bjare constants or parameters of auxiliary variables.

α1 = 1 + λ
[
C2
y + ∈C2

x (3ε− 4K)
]
;

α2 = λC2
x, α3 = λC2

x (K − 2ε) ;

α4 = 1− λεC2
x (K − ε) ;

α5 = λεC2
x, ε =

aX̄

aX̄ + b
,K =

ρCy
Cx

;

V1 =
α2α

2
4 + 2α3α4α5 + α1α

2
5

α1α2 − α2
3

;

A = 1 + λ
[
C2
y + εC2

x (3ε− 4K)
]
, B = λC2

y , C = λC2
y (3ε−K) ;

D = 1 + λεC2
x (ε−K) , E = 2λεC2

x, V2 =
BD2 − 2CDE +AE2

AB − C2
;

ȳβ = ȳ + β
(
X̄ − x̄

)
,

C1 = 1 + λC2
y

(
1− ρ2

yx

)
, C2 = 1 + λ

[
C2
y + 3εC2

x (εs − 4K)
]
;

C3 = 1 + λ
[
C2
y

(
1− ρ2

yx

)
+ εsC

2
x (εs −K)

]
;

C4 = 1 + λεsC
2
x (ε−K) , εs =

X̄

X̄ − Sx
;

ȳSy =
ȳ

1 + λC2
y

, ȳSx =
ȳ

1 + λC2
x

, bSyx =
1 + λC2

x

1 + λC2
y

bxy ; byx =
ρSy
Sx

;

γ1 = 1 + λC 2
y, γ2 = λCx2 (K − 1) , γ3 =

λC 2
x

2
,

γ4 = λC 2
x, γ5 = λC2

x

(
K − 1

2

)
;

Θ1 =
γ4 + γ2γ4

γ1γ4 − γ2
2

, Θ2 =
R (γ2 + γ1γ4)

γ1γ4 − γ2
2

, θ1 =
γ4 + γ5γ3

γ1γ4 − γ2
5

, θ2 =
R (γ5 + γ1γ3)

γ1γ4 − γ2
5

,

R =
Ȳ

X̄
, 0 < Θ1, θ1 ≤ 1 and −∞ ≤ Θ2, θ2 ≤ ∞

η1, η2, t1, t2, ϕ1, ϕ2, P1, P2, ω, K1,K2, d1, d2, l1, l2, θ1, θ2,Θ1 and Θ2 are suitably
chosen constants to minimize the mean square error of the respective estimators.
The estimators of population mean obtained by Ekpenyong and Enang (2015) did not
have a mathematical method of obtaining the multiples in the exponential terms; they
were arbitrarily assigned to the terms. Moreover, in obtaining the optimal values of
Θ1, θ1,Θ2, θ2 , the authors did not consider the ranges of values given in the proposition
as constraints; they treated the minimization of the mean square errors as unconstrained
minimization problem.
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3. The Proposed Estimator

The proposed estimator of population mean in simple random sampling is given as:

(3.1) ȳpr = ψ1ȳ + ψ2

(
X̄ − x̄

)
exp

[
δ
(
X̄ − x̄

)
X̄ + x̄

]
ψ1 and ψ2 are suitably chosen scalars, such that 0 < ψ1≤1 and ψ2≥0, δ is a regulating
parameter. Equation (3.21) can be transformed in terms of e′s as follows:

ȳpr = ψ1Ȳ (1 + ey) + ψ2

[
X̄ − X̄ (1 + ex)

]
exp

{
δ
[
X̄ − x̄ (1 + ex)

]
X̄ + x̄ (1 + ex)

}
where

ey =
ȳ − Ȳ
Ȳ

, ex =
x̄− X̄
X̄

∴ȳpr = ψ1Ȳ (1 + ey)− ψ2X̄ex exp

[
−δex

2

(
1 +

ex
2

)−1
]

(3.2)

To obtain the range of values for this study, we recall that for stability and convergent of

exp

[
δ(X̄−x̄)
X̄+x̄

]
,

[
δ(X̄−x̄)
X̄+x̄

]
< 1. Therefore,

∣∣∣∣δex2 (
1 +

ex
2

)−1
∣∣∣∣ < 1

⇒ |δ| <
∣∣∣ 2
ex

(
1 + ex

2

)2∣∣∣, but |ex| < 1

Taking |ex| → 1, |δ| < |3|, but as |ex| → 0, |δ| < |∞|.
Therefore, [−3 < δ < 3]∩ [−∞ < δ <∞] = −3 < δ < 3. Hence, for δ being an integer
−2≤δ≤2.
Equation (3.2) could be expanded and approximated up to the �rst degree. This gives
the expression:

ȳpr = ψ1Ȳ (1 + ey)− ψ2X̄ex

[
1− δex

2

(
1 +

ex
2

)−1

+
δ2e2

x

8

(
1 +

ex
2

)−2

+ . . .

]
= ψ1Ȳ (1 + ey)− ψ2X̄ex

[
1− δex

2

(
1− ex

2
+
e2
x

4
+ . . .

)
+
δ2e2

x

8

]
∴ȳpr = Ȳ

(
ψ1 + ψ1ey − ψ2Mex + ψ2M

δe2
x

2

)
(3.3)

where

M =
X̄

Ȳ

The bias of ȳpr is obtained as:

B(ȳpr ) = E

{
Ȳ

[
(ψ1 − 1) + ψ1ey − ψ2Mex + ψ2M

δe2
x

2

]}
=

{
Ȳ

[
(ψ1 − 1) + ψ2M

δλC 2
x

2

]}
(3.4)
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The �rst degree approximation of its mean square error is obtained using (3) as:

MSE(ȳpr ) = E
(
ȳpr − Ȳ

)2
= E

{
Ȳ 2

[
(ψ1 − 1)2 + 2 (ψ1 − 1)ψ2M

δe2
x

2
+ ψ2

1e
2
y − 2ψ1ψ2Meyex

+ψ2
2M

2e2
x

]}
= E

{
Ȳ 2

[
1 + ψ2

1

(
1 + e2

y

)
− 2ψ1 − 2ψ1ψ2

(
Meyex −

M δe2
x

2

)
−2ψ2

M δe2
x

2
+ ψ2

2M
2e2
x

]}
= Ȳ 2

[
1 + ψ2

1

(
1 + λC 2

y

)
− 2ψ1 − 2ψ1ψ2M

(
λρCyCx −

δλC 2
x

2

)
−2ψ2

M δλC 2
x

2
+ ψ2

2M
2λC 2

x

]
= Ȳ 2

[
1 + ψ2

1r1 − 2ψ1 − 2ψ1ψ2MλC 2
x

(
K − δ

2

)
− 2ψ2

M δλC 2
x

2

+ψ2
2M

2λC 2
x

]
= Ȳ 2 (1 + ψ2

1r1 − 2ψ1 − 2ψ1ψ2Mr2 − 2ψ2Mr3 + ψ2
2M

2r4

)
(3.5)

where r1 = 1 + λC 2
y, r2 = λC 2

x

(
K − δ

2

)
, r3 =

δλC 2
x

2
, r4 = λC 2

x

To obtain the optimummean square error of the proposed estimator, (3.5) is di�erentiated
partially with respect to the unknown parameters ψ1, ψ2 and δ subject to the following
constraints:

ψ1≤1, ψ2≥0 and δ≤2

⇒ 1− ψ1≥0, ψ2 = (0,∞) and 2− δ≥0(3.6)

Since (3.6) are all greater than zero, the optimization problem can be stated as follows:

(3.7)
MinMSE(ȳpr ) = Ȳ 2 (1 + ψ2

1r1 − 2ψ1 − 2ψ1ψ2Mr2 − 2ψ2Mr3 + ψ2
2M

2r4

)
,

s.t1− ψ1≥0, ψ2≥0, 2− δ≥0, ψ1, ψ2, δ≥0

Applying Lagrange multiplier, the problem is solved thus:
The general objective function is:

(3.8)
G =Ȳ 2 (1 + ψ2

1r1 − 2ψ1 − 2ψ1ψ2Mr2 − 2ψ2Mr3 + ψ2
2M

2r4

)
− λ1 (1− ψ1)− λ2ψ2 − λ3 (δ − 2)

Therefore, the Kuhn-Tucker conditions for the minimization problem are;

∂MSE
(ȳpr )

∂ψ1
= 2ψ1r1 − 2ψ2Mr2 − 2− λ1 = 0(3.9)

∂MSE
(ȳpr )

∂ψ2
= −2ψ1r2 − 2Mr3 + 2ψ2M

2r4 − λ2 = 0(3.10)

∂MSE
(ȳpr )

∂δ
= ψ1ψ2Mr4 − ψ2Mr4 − λ3 = 0(3.11)
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And

λ1 (1− ψ1) = 0(3.12)

λ2ψ2 = 0(3.13)

λ3 (2− δ) = 0(3.14)

1− ψ1 ≥ 0(3.15)

ψ2 ≥ 0(3.16)

2− δ ≥ 0(3.17)

λ1, λ2, λ3≤0(3.18)

Thus solutions corresponding to the following combinations of λi(i = 1, 2, 3) can be
obtained:

(i) λ1 = 0, λ2 6=0, λ3 6=0
(ii) λ1 6=0, λ2 = 0, λ3 6=0
(iii) λ1 6=0, λ2 6=0, λ3 = 0
(iv) λ1 = 0, λ2 = 0, λ3 6=0
(v) λ1 = 0, λ2 6=0, λ3 = 0
(vi) λ1 6=0, λ2 = 0, λ3 = 0
(vii) λ1 6=0, λ2 6=0, λ3 6=0
(viii) λ1 = 0, λ2 = 0, λ3 = 0

Only solutions for combinations (iv), (v) and (vi) satisfy the Kuhn Tucker conditions
and are solutions to the non-linear programming model given in equation (3.8).

(a) Solution for (iv) From equation (3.14), δ2 = 2. Also, using equation (3.9):
2ψ1r1 − 2− 2ψ2Mr2 = 0

(3.19) ⇒ ψ1r1 − ψ2Mr2 = 1

From equation (3.10): −2ψ1Mr2 − 2Mr4 + 2ψ2M
2r4 = 0

(3.20) ⇒ ψ1r2 − ψ2Mr4 = −r4

Solving equations (3.19) and (3.20) simultaneously gives

ψ∗12 =
r4 + r2r4

r1r4 − r2
2

(3.21)

ψ∗22 =
R (r2 + r1r4)

r1r4 − r2
2

(3.22)

Therefore, the minimum mean square error of this combination of λi≤0(i =
1, 2, 3) is determined by putting the values of ψ∗1 , ψ

∗
2 and δ∗ in equation (3.5)

and simplifying to obtain:

(3.23) MSEopt(ȳpr2 ) = Ȳ 2

[
1−

(
r4 + 2r2r4 + r1r

2
4

r1r4 − r2
2

)]
(b) Solution for (v) Under this condition, it is seen from equation (3.13) that

ψ2 = 0 and from equation (3.14), δ = 2. Putting this in equation (3.11) gives
λ3 = 0, and from equation (3.9); ψ1 = 1

r1
. Hence, the solution, using equation

(3.5) gives:

(3.24) MSE (ȳpr1 ) = Ȳ 2

(
1 +

1

r1
− 2

r1

)
= Ȳ 2

(
r1 − 1

r1

)
= Ȳ 2

(
λC2

y

1 + λC2
y

)
(c) Solution for (vi) With this condition, ψ1 = 1 from equation (3.12); equation

(3.13) also shows that λ3 = 0. Also, from equation (3.10),

−2ψ1Mr2 − 2Mr3 + 2ψ2M
2r4 = 0
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⇒ − (r2 + r3) + ψ2Mr4 = 0⇒ r2 + r3

Mr4
= ψ2

(3.25) ⇒ R(r2 + r3)

r4
= ψ2 = β

where β is the regression coe�cient

In this condition, it is observed that ψ2 is a function of δ since r2 and r3 are functions
of δ. In addition to this, it can also be seen that no matter the value of δ under this
condition, the mean square error would still be the same, but the ratio estimator will
di�er. Therefore, varying the values of δ within speci�ed constraints or conditions give
various members of this class of estimators. This condition gives the following class of
estimators:

(3.26) ȳpr3 = ȳ + ψ∗23

(
X̄ − x̄

)
exp

[
δ
(
X̄ − x̄

)(
X̄ + x̄

) ]
with mean square error given as:

(3.27) MSEopt3 (ȳpr ) = Ȳ 2λC2
y

(
1− ρ2)

The mean square error of equation (3.27) is similar to that of the regression estimator.
From the foregoing, the feasible optimal solutions to be considered for the minimization
problem are solutions for conditions (iv), (v) and (vi); the only clear solution where
all conditions are clearly and uniquely seen to satisfy the Kuhn Tucker conditions is
the solution for condition (iv). These solutions give feasible optimal solutions at various
values of the considered unknown parameters, but the solution which gives the least mean
square error would be considered as the most suitable one. Moreover, it has also been
observed that these feasible solutions produce existing ratio and regression estimators
with their corresponding mean square errors or variances.
It is also observed that values of (0≤δ≤2) other than the optimal value of 2 can yield
good existing estimators of population mean. For instance, if δ = 1, the estimator would
be:

(3.28) ȳpr4 = ψ∗14ȳ + ψ∗24

(
X̄ − x̄

)
exp

[(
X̄ − x̄

)(
X̄ + x̄

)]
where ψ∗14 and ψ∗24 can be obtained from equation (3.16)(16) by di�erentiating partially
with respect to ψ1 and ψ2 and setting the resulting equations to zero. Then substituting
δ = 1 and solving simultaneously the equations give:

ψ∗14 =
r4 + r5r3

r1r4 − r2
5

(3.29)

ψ∗24 =
R (r5 + r1r3)

r1r4 − r2
5

(3.30)

where r5 = λC2
x

(
K − 1

2

)
. This will give the mean square error as:

(3.31) MSEopt (ȳpr4 ) = Ȳ 2

[
1−

(
r4 + 2r5r3 + r1r

2
3

r1r4 − r2
5

)]
Also, if δ = 0, the same procedure is applied

(3.32) ȳpr5 = ψ∗15ȳ + ψ∗25

(
X̄ − x̄

)
which is Rao (1991) regression type estimator. From equation (3.16), we have

(3.33) ψ∗15 =
r4

r1r4 − r2
6
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(3.34) ψ∗25 =
Rr6

r1r4 − r2
6

with its mean square error as

(3.35) MSEopt (ȳpr5 ) = Ȳ 2

[
1−

(
r4

r1r4 − r2
6

)]
Therefore, varying the values of δ, ψ1 and ψ2 gives alternative estimators with unique
properties. Table 2 shows some forms of this proposed estimator with varying parame-
ters.

TABLE 2

Table 2. Some members of the proposed exponential estimator of pop-
ulation mean in simple random sampling and their MSEs

Estimators ψ1 ψ2 δ MSE

ȳpr1 = ψ11ȳ 1 0 δ Ȳ 2

(
λC2

y

1+λC2
y

)
(Searls [28])

ȳpr2 = ψ∗12ȳ + ψ∗23

(
X̄ − x̄

)
ψ∗22 ψ∗12 2 Ȳ 2

[
1−

(
r4+2r2r4+r1r

2
4

r1r4−r22

)]
exp

[
2(X̄−x̄)
(X̄+x̄)

]
(Ekpenyong and Enang [5])

ȳpr3 = ȳ +

ψ23

(
X̄ − x̄

)
exp

[
δ(X̄−x̄)
(X̄+x̄)

] 1 ψ∗22 =
β

δ Ȳ 2λC2
y

(
1− ρ2

)

ȳpr4 = ψ∗14ȳ +

ψ∗24

(
X̄ − x̄

)
exp

[
(X̄−x̄)
(X̄+x̄)

] ψ14 ψ24 1 Ȳ 2
[
1−

(
r4+2r5r3+r1r

2
3

r1r4−r25

)]

(Ekpenyong and Enang [5])

ȳpr3 = ȳ +

ψ23

(
X̄ − x̄

)
exp

[
δ(X̄−x̄)
(X̄+x̄)

]
1

ψ∗22 =
β

δ Ȳ 2λC2
y

(
1− ρ2

)

ȳpr5 = ψ∗15ȳ + ψ∗25

(
X̄ − x̄

)
, (Rao,

[24])

ψ15 ψ25 0 Ȳ 2
[
1−

(
r4

r1r4−r26

)]

Rao [24] and Ekpenyong and Enang [5] have shown that the estimators are more e�cient
than the usual regression estimator of population mean in simple random sampling. The
only estimator in Table 2 that is less e�cient than the regression estimator but more
e�cient than the simple random sample mean is the estimator of Searls [28], ȳpr1 .

4. The Proposed Generalized Estimator of Population Mean in

Simple Random Sampling

The general class of the proposed exponential ratio estimator of the population mean is
suggested as follows;

(4.1) ȳprg = Φ1ȳU + Φ2

(
X̄ − x̄

)
W
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where Φ1 and Φ2 are suitably chosen scalars, such that Φ1 > 0 and −∞ < Φ2 <∞ and

U = exp

[
δ1

(
X̄α − x̄α

X̄α + x̄α

)]
,W = exp

[
δ2

(
X̄α − x̄α

X̄α + x̄α

)]
α, δ1 and δ2 are suitably chosen to align with existing forms of ratio estimators proposed
by various authors such that∣∣∣∣δi( X̄α − x̄α

X̄α + x̄α

)∣∣∣∣≤1, i = 1, 2

which is a condition for proper approximation of Taylor's series.
To obtain the bias and the mean square error of the proposed estimator, equation (4.1)
is transformed and expressed in terms of e'-s Taking the �rst term on the Right Hand
Side (RHS) of equation (4.1), we have;

Φ1ȳU = Φ1Ȳ (1 + ey) exp

[
δ1

(
X̄α − x̄α

X̄α + x̄α

)]
= Φ1Ȳ (1 + ey) exp

{
δ1
[
1− (1 + αex + αα−1

2
e2
x + . . .)

][
1 + (1 + αex + αα−1

2
e2
x + . . .)

] }

= Φ1Ȳ (1 + ey) exp

[
−δ1(αex + αα−1

2e2x)

(2 + αex + αα−1
2e2x)

]

= Φ1Ȳ (1 + ey) exp

[
−δ1

2

(αex + αα−1
2
e2
x)

(1 + h)

]
,whereh =

α

2
ex + α

α− 1

4
e2
x

∴ Φ1ȳU = Φ1Ȳ (1 + ey) exp

[
−δ1

2

(
αex + α

α− 1

2
e2
x

)
(1 + h)−1

]
Φ1ȳU = Φ1Ȳ (1 + ey)

[
∞∑
i=0

(
−δ1

2

(
αex + α

α− 1

2
e2
x

)
(1 + h)−1

)i]

= Φ1Ȳ (1 + ey)

{
1− δ1αex

2

(
1 +

α− 1

2
ex

)[
1− αex

2
− α(α− 1)

4
e2
x

]
+

[
αex

2
− α(α− 1)

4
e2
x

]2

+
δ2
1α

2e2
x

8

[(
1 + (α− 1) ex +

(α− 1)2

4
e2
x

)
(

1− αex −
α(α− 1)

2
e2
x + . . .

)]}
= Φ1Ȳ (1 + ey)

[
1− δ1αex

2
+
δ1α

2e2
x

4
− δ1α (α− 1)

4
e2
x +

δ2
1α

2e2
x

8

]
= Φ1Ȳ (1 + ey)

[
1− δ1αex

2
+
δ1αe

2
x

4
+
δ2
1α

2e2
x

8

]
Expanding, simplifying and ignoring terms of powers of e greater than 2, we proceed as
follows:

(4.2) Φ1ȳU = Ȳ

[
Φ1 −

Φ1δ1αex
2

+ Φ1
(2δ1α+ δ2

1α
2)

8
e2
x + Φ1ey −

Φ1δ1αeyex
2

]
Similarly,

Φ2

(
X̄ − x̄

)
W = −Φ2X̄ex

[
1− δ2αex

2
+

(
2δ2α+ δ2

2α
2
)

8
e2
x

]
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Ignoring terms of ` e' with powers greater than 2, we have

(4.3) Φ2

(
X̄ − x̄

)
W = −Φ2X̄ex +

Φ2X̄δ2αe
2
x

2

Adding equation (4.2) to equation (4.3) gives;

ȳprg = Ȳ

[
Φ1 −

Φ1δ1αex
2

+ Φ1
(2δ1α+ δ2

1α
2)

8
e2
x + Φ1ey

−Φ1δ1αeyex
2

− Φ2Mex +
Φ2Mδ2αe

2
x

2

]
(4.4)

(
ȳprg − Ȳ

)
= Ȳ

[
(Φ1 − 1)− Φ1δ1αex

2
+ Φ1

(2δ1α+ δ2
1α

2)

8
e2
x

+Φ1ey −
Φ1δ1αeyex

2
− Φ2Mex +

Φ2Mδ2αe
2
x

2

]
(4.5)

Therefore, the Bias of ȳprg is given by;

(4.6)

B (ȳprg) =E(ȳprg − Ȳ ) =

[
(Φ1 − 1) + Φ1

(2δ1α+ δ2
1α

2)λC2
x

8

−Φ1δ1αλCyCx
2

+
Φ2Mδ2αλC

2
x

2

]
Also,

(ȳprg − Ȳ )2 =Ȳ 2

[
(Φ1 − 1)2 + 2

(
Φ2

1 − Φ1

) (2δ1α+ δ2
1α

2)e2
x

8

−2
(
Φ2

1 − Φ1

) δ1αeyex
2

+ 2 (Φ1Φ2 − Φ2)
Mδ2αe

2
x

2

+
Φ2

1δ
2
1α

2e2
x

4
− 2Φ2

1δ1αeyex
2

+
2Φ1Φ2δ1αM e2

x

2

+Φ2
1e

2
y − 2Φ1Φ2Meyex + Φ2

2M
2e2
x

]
The mean square error of the class of estimators is given as;

(4.7)

MSE (ȳprg) = E(ȳprg − Ȳ )2

= Ȳ 2

{
1 + Φ2

1

[
1 + λC2

y +
δ1αλC

2
x

2
[(1 + δ1α)− 4K]

]
−2Φ1

[
1 +

δ1αλC
2
x

8
[(2 + δ1α)− 4K]

]
− 2Φ1Φ2MλC2

x[
K − (δ1 + δ2)α

2

]
− 2θ2Mδ2αC

2
x

2
+ λθ2

2M
2C2

x

}
(4.8) ⇒ MSE (ȳprg) = Ȳ 2 (1 + Φ2

1π1 − 2Φ1π2 − 2Φ1Φ2π3 − 2Φ2π4 + Φ2
2π5

)
where

π1 = 1 + λC2
y +

δ1αλC
2
x

2
[(1 + δ1α)− 4K] , π2 = 1 +

δ1αλC
2
x

8
[(2 + δ1α)− 4K]

π3 = MλC2
x

[
K − (δ1 + δ2)α

2

]
, π4 =

Mδ2αC
2
x

2
, π5 = λM2C2

x

From equation (4.8), it can be seen that the mean square error of the proposed class of
exponential estimators in simple random sampling is a function of δ1, δ2 and α. Varying
the values of δ1, δ2 and α gives various members of the family with their corresponding
mean square errors.
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When di�erent values of are δ1, δ2 and α substituted into equation (4.1), some members
of the family with their respective mean square error obtained from equation (4.8) can
be derived as shown in Table 3.

TABLE 3

Table 3. Some Members of the generalized Family of exponential Ra-
tio Estimators

Estimator δ1 δ2 α Φ1 Φ2

ȳprg1 = ȳ, Samplemean 0 δ2 α 1 0

ȳprg2 = ȳ exp
(
X̄−x̄
X̄+x̄

)
, Bahland Tuteja [1] 1 δ2 1 1 0

ȳprg3 = ȳ + b
(
X̄ − x̄

)
, Regression estimator 0 0 α 1 b

ȳprg4 = ȳ + b
(
X̄ − x̄

)
exp

(
X̄−x̄
X̄+x̄

)
0 1 1 1 b

ȳprg5 = Φ1ȳ exp
(
X̄−x̄
X̄+x̄

)
+ Φ2

(
X̄ − x̄

)
1 1 1 Φ1 Φ2

exp
(
X̄−x̄
X̄+x̄

)
ȳprg6 = Φ11ȳ + Φ21

(
X̄ − x̄

)
exp

(
X̄−x̄
X̄+x̄

)
0 1 1 Φ11 Φ21

ȳprg7 = Φ12ȳ + Φ22

(
X̄ − x̄

)
exp

[
2(X̄−x̄)
(X̄+x̄)

]
0 2 1 Φ12 Φ22

ȳprg8 = θ1ȳ exp
(
X̄−x̄
X̄+x̄

)
, Yadav and Kadilar [58] 1 δ2 1 θ1 0

ȳprg9 = Φ14ȳ + Φ24

(
X̄ − x̄

)
, Rao [24] 0 0 α Φ14 Φ24

ȳprg10 = Φ∗16ȳ exp

[
(X̄−x̄)
(X̄+x̄)

]
+ Φ∗26

(
X̄ − x̄

)
1 2 2 Φ∗16 Φ∗26

exp 2(X̄2−x̄2)

(X̄2+x̄2)

ȳprg11 = Φ∗18ȳ + Φ∗28

(
X̄ − x̄

)
exp

(
X̄2−x̄2
X̄2+x̄2

)
0 1 2 Φ∗18 Φ∗2,8

ȳprg12 = [Φ∗1ȳ], Searls [28] 0 0 α Φ∗1 0

Table 3 indicates some members of the class of generalized exponential ratio estimator
of the population mean in simple random sampling. It is observed from the Table that
estimators of Yadav and Kadilar [58], Rao [24], Bahl and Tuteja [1], regression estimator
and simple random sample mean are members of this class of estimator. To obtain
the optimality conditions for the mean square error (MSE) for the proposed family of
estimators, equation (3.19) is partially di�erentiated with respect to Φ1 and Φ2 and set
to zero.
Therefore,

∂MSE(ȳprg)
∂Φ1

= 2Φ1π1 − 2π2 − 2Φ2π3 = 0

⇒ Φ1π1 − Φ2π3 = π2(4.9)

Also,

∂MSE(ȳprg)
∂Φ2

= −2Φ1π3 − 2π4 + 2Φ2π5 = 0

⇒ Φ1π3 − Φ2π5 = −π4(4.10)
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Solving equations (4.9) and (4.10) simultaneously gives the following expressions for Φ1

and Φ2.

Φ∗1 =
π2π5 + π3π4

π1π5 − π2
3

(4.11)

Φ∗2 =
π1π4 + π2π3

π1π5 − π2
3

(4.12)

Substituting equations (4.11) and (4.12) in equation (4.8) gives the optimum mean square
error as;

MSEopt (ȳprg) =Ȳ 2

[
1 +

(
π2π5 + π3π4

π1π5 − π2
3

)2

π1 − 2π2

(
π2π5 + π3π4

π1π5 − π2
3

)
−2π3

(
π2π5 + π3π4

π1π5 − π2
3

)(
π1π4 + π2π3

π1π5 − π2
3

)
− 2π4(

π1π4 + π2π3

π1π5 − π2
3

)
+ π5

(
π1π4 + π2π3

π1π5 − π2
3

)2
]

After simpli�cation, the mean square error becomes:

(4.13) MSEopt (ȳprg) = Ȳ 2

[
1−

(
π2

2π5 + 2π2π3π4 + π1π
2
4

)
(π1π5 − π2

3)

]

Remark:

(1) equation (4.13) gives the mean square error (MSE) for optimum Φ = (Φ∗1,Φ
∗
2).

(2) When di�erent values of δ1, δ2 and α are substituted in the proposed family of
exponential ratio estimator, di�erent ratio estimators would be obtained with
their corresponding optimum mean square error.

4.1. E�ciency Comparison.

(a) A member ȳprgi of the proposed estimator would be more e�cient than another
member ȳprgj if;

MSE(ȳprgj )−MSE (ȳprgi) > 0

⇒ Ȳ 2

[
1− (π2

2jπ5j+2π2jπ3jπ4j+π1jπ
2
4j)

(π1jπ5j−π2
3j)

]
− Ȳ 2

[
1− (π2

2iπ5i+2π2iπ3iπ4i+π1iπ
2
4i)

(π1iπ5i−π2
3i)

]
> 0

⇒ x
(
π2
2iπ5i+2π2iπ3iπ4i+π1iπ

2
4i

π1iπ5i−π2
3i

)
−
(
π2
2jπ5j+2π2jπ3jπ4j+π1jπ

2
4j

π1jπ5j−π2
3j

)
> 0

⇒ qi − qj ≥ 0(4.14)

where

qi =
π2

2iπ5i + 2π2iπ3iπ4i + π1iπ
2
4i

π1iπ5i − π2
3i

, qj =
π2

2jπ5j + 2π2jπ3jπ4j + π1jπ
2
4j

π1jπ5j − π2
3j

.

When equation (4.14) holds, then ȳprgi will be more e�cient than ȳprgj .
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(b) Any member ȳprgi of the proposed estimator is said to be more e�cient than the
classical ratio estimator if;

MSE (ȳR)−MSE (ȳprgi) > 0

⇒ λȲ 2
(
C2
y − 2ρCyCx + C2

x

)
− Ȳ 2

[
1− (π2

2iπ5i+2π2iπ3iπ4i+π1iπ
2
4i)

(π1iπ5i−π2
3i)

]
> 0

⇒ Ȳ 2
[
1 + λC2

y + λC2
x (1− 2K)− 1

]
− Ȳ 2 (1− qi) > 0

⇒ Ȳ 2
{[
λC2

y + λC2
x (1− 2K)− 1

]
− Ȳ 2qi

}
> 0

⇒
{[
λC2

y + λC2
x (1− 2K)− 1

]
− qi

}
> 0

⇒ (r1 + r2 − 1)− (1− qi) > 0(4.15)

When equation (4.15) holds, then ȳprgi will be more e�cient than the classical
ratio estimator.

(c) Any member of the proposed family of estimators ȳprgi is said to be more e�cient
than the Gupta and Shabbir (2012) estimator if;

(4.16) qi − v1≥0

5. Numerical Illustration

To validate our theoretical claims and assess the e�ciencies of our proposed estimators
over the existing ones considered in this work under certain optimal conditions, data
from the following ten populations are used.

TABLE 4

Table 4. Populations and Parameters considered for the proposed ex-
ponential ratio estimators in simple random sampling

Source of Population Parameter
N n ρ Cy Cx Ȳ X̄

I (Murthy, [23]) 80 20 0.9413 0.3542 0,7507 51.8264 11.2646
II (Murthy, [23]) b80 20 0.9150 0.3542 0.9484 51.8264 2.8512
III (Cochran, [3]) 10 4 0.6515 0.1449 0.1281 101.1 58.8
IV (Kadilar and Cingi, [14]) 200 50 0.9 15 2 500 25
V (Koyuncu and Cingi, [19]) 923 180 0.9543 1.7183 1.8645 436.435 11440.5
VI (Kadilar and Cingi, [16]) 106 20 0.86 5.22 2.1 2212.59 27421.7
VII (Kadilar and Cingi, [17]) 104 20 0.865 1.866 1.653 625.37 13.93
VIII (Kadilar and Cingi, [13]) 204 50 0.71 2.4739 1.7171 966 26441
IX (Kadilar and Cingi, [16]) 256 100 0.887 1.42 1.4 56.47 44.45
X (Das, [4]) 278 25 0.7313 1.4451 1.6198 39.068 25.111
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TABLE 5

Table 5. Percent Relative E�ciencies (PRE) of the proposed and re-
lated estimators of population mean in simple random sampling

Population
Estimators I II III IV V VI VII VIII IX X

ȳprg1 11.40 16.28 57.55 19.00 8.93 26.04 25.18 49.59 21.32 47.97
ȳprg2 89.05 47.55 92.92 21.51 34.50 37.50 58.56 79.01 57.86 94.88
ȳprg3 100 100 100 100 100 100 100 100 100 100
(Regression Estimator)
ȳprg4 100 100 100 100 100 100 100 100 100 100
ȳprg5 101.91 103.37 100.25 166.64 100.83 135.06 107.12 105.83 100.65 106.61
ȳprg6 105.34 105.59 100.41 220.54 105.70 196.26 125.34 110.50 102.48 113.03
ȳprg7 122.55 124.89 100.73 349.49 122.65 598.67 203.08 120.01 107.23 132.84

ȳprg8 102.71 108.15 100.18 134.94 100.00 109.84 101.54 103.45 100.11 104.74
(Yadav and Kadilar [58])
ȳprg9 100.07 100.01 100.18 164.13 100.12 128.78 103.59 104.58 100.26 103.65

(Rao [24])
ȳprg10 135.59 371.30 100.08 364.08 100.04 697.05 105.48 105.83 100.08 100.04
ȳprg11 122.55 124.89 100.73 349.49 122.65 598.67 203.08 120.01 107.23 132.84

ȳprg12 11.45 16.36 57.73 83.13 9.05 54.82 28.72 54.17 21.59 51.62
(Shabbir, et
al) [31]

106.75 112.40 100.33 169.26 102.22 142.52 112.15 107.26 101.21 110.66

(Singh,
Rathour
and Solanki)
[35]

100.07 100.10 100.18 169.91 100.15 152.11 117.87 113.32 100.26 104.10

(Singh, Ku-
mar and
Chaudhary)
[43]

100.07 100.01 100.18 164.13 100.12 128.78 103.59 104.58 100.26 103.65

(Jittavech
and Lorchira-
choonkul)
[10]

100.94 100.94 100.63 1914.06 102.66 443.25 130.10 119.33 102.47 115.78

(Singh and
Solanki) [42]

135.59 371.30 100.08 364.08 100.04 697.05 105.48 105.83 100.08 100.04

(Gupta and
Shabbir) [6]

100.49 100.10 100.18 168.22 100.12 135.06 103.98 104.80 100.26 104.03

(Grover and
Kaur) [7]

101.91 103.37 100.25 166.64 100.83 135.06 107.12 105.83 100.65 106.61

*Figures in bold indicate the largest PRE in each population.

6. Discussion of Results

The proposed exponential ratio-type estimator of population mean under simple random
sampling scheme, in the presence of one auxiliary variable, given in equation (3.1) con-
tains some unknown parameters ψ1, ψ2 and δ, whose range of values have been de�ned.
Signi�cantly, the range of values of the regulating parameter δ obtained through appro-
priate mathematical proof and solving a formulated non-linear programming model are
used to obtain the Asymptotic Optimal Estimators for the proposed family, which are
shown with their Mean Square Errors in Table 2. This approach shows advancement over
the works of [43] and [31], whose choice of parameters were given intuitively without any
concrete mathematical backup. From Table 2, it has also been observed that Asymptotic
Optimal Estimators (AOE) include some existing estimators of [28] and [24].
A generalization of this proposed exponential estimator of the population mean is pro-
posed in equation (36) with appropriate choices of unknown parameters ϕ1, ϕ2, α, δ1 and
δ2 to produce members of this general family of estimators as shown in Table 3. Table
3 shows that even the Asymptotic Optimal Estimators of the �rst proposed exponential
estimator of population mean in Table 2 are all members of this generalized exponen-
tial estimator; estimator of [1], classical regression estimator, [58] and other generated
estimators are also members of this proposed family of estimators of population mean
under simple random sampling scheme. The optimal Mean Square Error of this proposed
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general family of exponential estimators is given in (4.13) from where it can be observed
that the optimality condition is dependent upon the other three parameters α, δ1 and
δ2, whose choices leads to various Asymptotic Optimal Estimators (AOE's) with their
di�erent Mean Square Errors (MSE's).
Ten (10) populations presented in Table 5 have been used in empirical analysis. The
results presented in Table 5 indicate the Percent Relative E�ciencies (PRE) of some ex-
isting estimators and members of the proposed family of exponential estimators obtained
with respect to the classical regression estimator. Table 5 shows that estimator denoted
by ȳprg10 , which is the same as ȳpr4 in Table 2 has the greatest PRE of 135.9%, 371.3%,
697.05% in populations I, II, and VI respectively among all estimators considered (both
existing and proposed), except for the estimator of [42], which has the same PRE. Also,
ȳprg11 , which is the same as ȳpr5 in Table 2, has the greatest PRE of 100.73%, 122.65%,
203.08%, 120.01%, 107.23% and 132.84% in populations III, V, VII, VIII, IX, X respec-
tively among all estimators considered. The only deviation here is in population IV,
where [10] estimator has the greatest e�ciency. All other members except ȳprg1 , ȳprg2 ,
and ȳprg12 have their e�ciencies greater than the classical Regression estimator. On the
whole, Table 5 has indicated that ȳprg10 ( ȳpr4 ) and ȳprg11 ( ȳpr5 ) have signi�cant gains
in e�ciencies in the ten (10) populations except population IV. However, [42] estimator
and ȳprg15 (ȳpr4 ) have the same performance in all populations. Hence, there are greater
gains in e�ciency among the proposed estimators of population mean in simple random
sampling.
The proposed estimators ȳprg15 ( ȳpr4 ) and ȳprg17 (ȳpr5 ) have demonstrated tremendous
gains in e�ciencies under simple random sampling strategies. They have therefore been
found useful for estimating the population mean in simple random sampling strategies
under certain optimal conditions.
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