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Abstract

The type-1I progressive hybrid censoring scheme, which is a mixture of
type-II progressive and hybrid censoring schemes, has become substan-
tially fashionable due to its flexibility of allowing for random removals
of the remaining survival units at each failure time and terminating
the experiment at a pre-specified time. In the literature, this censoring
scheme has been used to analyze lifetime data for general population
distributions such as exponential distributions and Weibull distribu-
tions. However, we seldom focus on parameter estimations for the
mixture distribution, which is an important class of models in relia-
bility analysis. This paper aims to investigate the estimation problem
of mixed generalized inverted exponential distribution (MGIED) under
the type-1I progressive hybrid censoring scheme. The maximum likeli-
hood estimators (MLEs) of the model are obtained via EM algorithm.
Some simulations are implemented and a case of analysis is provided
to illustrate the proposed method.
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1. Introduction

The type-II progressive censoring scheme has increasingly become attention-paying
for analyzing lifetime data in the literature of life testing in the past ten years, see
Balakrishnan & Aggarwala (2000), Balakrishnan et al. (2004), Balakrishnan et al. (2007),
Basak et al. (2009), Chen & Lio (2010), Hashemi et al. (2010), Wang (2010), Ragab &
Madi (2011), Ismail (2012), Balakrishnan & Kundu (2013), etc. This class of censoring
schemes considers random removals of the remaining survival units at each failure time
and has higher efficiency than the traditional type-I and type-II censoring schemes.

However, the type-II progressive censoring scheme has one defect that the test may
have a quite large length. Kundu & Joarder (2006) proposed a new censoring scheme
by combining hybrid censoring scheme with the progressive censoring scheme, which
is defined as the type-II progressive hybrid censoring scheme, where the experiment is
terminated at a pre-specified time. Some inferential results of this new censoring scheme
have been developed by Childs et al. (2008). In addition, Lin et al. (2012) discussed
inference for Weibull distributions (WD) with progressive hybrid censoring. Refer to
Balakrishnan & Kundub (2013) for a review about hybrid censoring, including progressive
hybrid censoring. Cho et al. (2015) proposed a generalized progressive hybrid censoring
scheme for exponential distribution.

Mixture models have been paid much attention to in many fields of applied sci-
ence, such as medicine research, cluster analysis and reliability analysis in the last three
decades. For example, for mixed exponential distribution (MED) under the complete
sample, conventional type-I censoring and type-II censoring have been widely studied.
However, we may be subjected to more complex censoring mechanisms like progres-
sive censoring or progressive hybrid censoring. For instance, Solimana (2006) developed
Bayesian estimators for the finite mixture of Rayleigh distribution with progressively
censored data. Afify (2011) researched the MLEs of mixed Rayleigh distribution for
progressively censored data. Tian et al. (2014) investigated the estimation problem of
the mixed generalized exponential distribution (MGED) based on progressively type-II
censored data. In this paper, we introduce a more flexible mixture distribution which
is composed of generalized inverted exponential distributions (GIEDs) and consider its
estimation under progressive type-II hybrid censored samples.

GIED was introduced by Abouammoh & Alshingiti (2009) and many of its good
distributional properties and reliability characteristics were also derived. They observed
that the hazard rate functions of GIED can be increasing, or decreasing but not constant
depending on the value of the shape parameter. They also said that in many situations,
GIED can provide a better fit than gamma, generalized exponential, Weibull and inverted
exponential distributions. Due to the convenient structure of this distribution, GIED has
been used in many application fields, for example in accelerated life testing, queue theory,
modeling wind speeds etc. Recently, Dey & Pradhan (2014) studied the estimation
problem of GIED under the hybrid censoring scheme. Krishna & Kumar (2014) studied
reliability estimation of GIED under progressive type II censored samples.

The MGIED with K components has its pdf (probability density function) and cdf
(cumulative distribution function) respectively as follows
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where p = (p1,- - ,px-1),A = (A, ,Ak);0 < pp < L,k =1,--- K -1, pg =
=S8 pes e >0,k=1,2,-- K.

The remaining of the article is arranged as follows. In section 2, we develop the MLEs
of MGIED under the type-II progressive hybrid censoring. In section 3, we derive the
closed form of the estimators via EM algorithm. In section 4, some simulation studies
are conducted to illustrate the performance of the proposed algorithm. In section 5, a
failure time data set is analyzed for further illustrated purpose. In the last section, we
come to some conclusions about this paper.

2. The likelihood function

2.1. The censoring scheme. The type-II progressive hybrid censoring scheme in the
life testing can de depicted as follows: suppose we put n identical items to test under the
same external conditions and denote the lifetimes of all n units by X1, X5, -+, X,,. The
integer m < n is fixed in the beginning of the experiment and R, Rs,--- , Ry, are pre-
specified integers. The time point 7" is a specified constant before the experiment as well.
Denote the time of first failure as Xi.ym:n, when R; of the remaining surviving units are
randomly removed. Then, R; of the remaining surviving units are randomly removed at
the second failure time Xo.p,.n. This process continues till, at the time of the m-th failure
Ximim:m Or time point 7', all the remaining surviving units are removed and then the test
is terminated. And if the m-th failure occurs ahead of the time point T, the experiment
stops at the time point X,,.;m:n. To the contrary, if the m-th failure occurs after the time
point 7" and only J failures occur before the time point 7', with 1 < J < m, then, at the
time point 7', all the remaining R units are removed and the experiment is terminated.
Clearly, we have R =n—J—(R1+ Rz2+---+ Ry). Denote the two cases above as case I
and case II respectively. And this censoring scheme is so-called type-II progressive hybrid
censoring scheme. Particularly, under type-II progressive hybrid censoring scheme, we
only have one case of the following two types of observations:

(2) Case I {Ximin, Xomin, s Xmimin }y Xmemin < T

(3) Case II: {Xlzm:n, X2:m:n, s 7XJ:m:n}, Ximn <T < XJ+1:m:n4

It is clear that for case II, X jti:m:n, -+ » Xm:m:n are not observed and the experimental
time 7' is assumed to be bounded in practical applications.

2.2. The likelihood function. In this subsection, we try to consider how to obtain
the MLEs of model parameters p and A. Based on the observations (2) and (3), we give
the likelihood function as follows:

Case I:

L(p,\)

= [ @imnipA) - (1 = F@imnip, )]

i=1

A

e Oék)\ o o ¢ — s E—ap\R;
= Hzp Toman (1= € Tamn ) (D " pp(1— € Faoman )00) P,
k=1

i=1 k=1 Liimin

We obtain log-likelihood (LL) function as follows

m K

Ak A
@) ) = DI e B e (1 ¢ o))

i=1 k=1 min

- SV
+R I pe(1— e Tamam ).
k=1
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Case II:

J
L(p, \) H[f(mi:m:Mpa A) - (1 = F(imn; p, )‘))Ri] (1= F(T;p, )‘))R‘*]

A

= Oék)\k Y VIR -k R;
= H Z e Timin (1 — e Tomm )*F 0. (Zp’“(l — e Tamm )¥%) ]
i=1 k= k=1

’Lmn

(el — e )y,
k=1

The related LL function
J K

— e b -1
(5)  Up,N) = Z[ln( Prog e Tamn (1 — e Tamm )@+~ 1)
i=1 k=1 m:n
K o K e
+Ri (Y pre(l—e Foma ) )+ RyIn(Y_pe(l—e” 1)),
k=1 k=1

Note that LL functions in (4) and (5) can be combined as follows:

D X ARk A Ak 1
l A == l - Ti:m:n 1 — Tiim:n kT
©)  1p,N) D I ok e (1 — & Frmem )2+ 1)

i=1 k=1 min

AL

K K
—— 2k * _ 2k ap
n(>pe(1— e T )™ + RpIn(Y pr(1— e 1)),
k=1 k=1

where R, =0, D = m for case I and Rp = R, D = J for case II.

The MLEs of MGIED model (1) are too difficult to be solved in closed forms because
of the complexity of the above LL function. We will utilize the popular EM algorithm
to address this problem.

3. The proposed estimation

Suppose X1, Xs,--, X, are n identical independent samples from model(1), and de-
note

e Ak o e
fkj: kae zj(]‘ie :nj)ﬂk 17 Skj:(lie Ij)ak7 k:]‘a“'7m7

J

K K
fi = prfrss i =Y prsig i =1, ,n
k=1 k=1
An indicator vector of X is introduced by I; = (I;1,--- , Ik ), where I;; is a dichoto-
mous variable which only takes the value 1 if X; comes from the (k)th component, and
0 otherwise. Denote I = (I1,---,I,) as an indicator matrix composed of n indicator
vectors of all life variables X, -, X,. Additionally, it is easy to know that the random
vector I; = (I1,- - , Ik ) follows the multinomial distribution. But since I; is not observ-
able, we can deem it as the missing data. I(l) (I;P, e ,I](.}()) and I](-2) (Iﬁ)7 - Jﬁ())
are denoted as the indicator vectors of the complete data and the right-censored data
respectively in the remaining parts of the paper.

For the complete observation data X, the joint pdf of X; and IJ(D is

K
(1)
gz, IV p, \) = [ lowfrs)ow -

k=1
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The conditional pdf of ") on X; is

P =1lz;,p,\) = chfkj,kzl,z...’[(
J

For the censored data X, the joint pdf of X; and IJ(?) is

K

(2)
9z, IV |p, X) = [ ] lpwsws] '+ .

k=1

The conditional pdf of I{* on X; is

P(IY = 1|z;,p, ) = @Jg: 1,2, K
J

Assume the life variable follows MGIED model (1). We conduct the life-testing ex-
periment with type-II progressive hybrid censoring as described in section 2. Then
in this type-II progressive hybrid censoring experiment, we can observe the complete
failure times of D units as Xi.min, X2:mmn, - s XD:m:n. Lhen, the observed data can
be simply denoted as X = (Xiimin, X2imin, - , XD:min). We denote Z = {Z;;,j =
1,2,--- ,Rp;i=1,2,--- ,D}YU{Zr,;,5=1,2,--- ,Rp}, where {Z;;,5 =1,2,--- |Rp;i =
1,2,---, D} represents the j-th censored variables at the failure time X;.im:n, and {Z7,;,7 =
1,2,--- ,Rp} denotes the j-th censored variables at the censored time 7. Then, all
Z={%j,j=1,2,--- ,Rp;i=1,2,--- ,D}U{Zr,,j=1,2,--- , R} are unobservable.
So we can denote all the missing data as (I, Z) and the complete data as W = (X, I, Z).
In the following paper, we will obtain the MLEs of all unknown parameters via EM
algorithm. For introduction of the EM algorithm, readers can refer to Dempster et al.
(1977) etc. EM algorithm is a most popular method in the fields of statistics and data
mining which is often used to recognize mixture models and address missing data.

The joint pdf of the complete data W is given by

DY p— - i ®
Fp,a, A|W) H[ H OhZk o™ Fremem (1 — € Fromm )k "y Ti )

lmn

X

=
o PN i

i B Ak bV (2)
QAR =S (1 ¢ ey )

(P

j=1k=1 ij
Rp K A A
R -k a1y
HH(pk 2 ° T (l—e *Ti) )ik
j=1k=1 T.j

Then, LL function of the complete data is

D K
A
In f(p,a, \\W) = ZZ{L‘(;)[IH(P/@&M/Q) — 2In(Zimen) — mi’“
i=1 k=1 min
Dk
+(Oék —1)-In(1 — ¢ Fimn )]
Ak _ Ak
JrZI]k[ln (prarAk) — 21n(z:;) — Z +(ar —1)-In(1 —e 7))}
R*D \
JrZZI( )[ln (prarAk) —21n(zr,;) — i
j=1k=1 y

Ak

+(ag —1)-In(1 —e *7.4)].
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There are two steps in each iteration for the EM algorithm: the Expectation step and
the Maximization step. For given initial values p® . a(® A© of unknown parameters
p, &, A, we can obtain the MLE via the following two steps:

E step: Given the (h — 1)-th iteration values -1 = {p(hfw, ah=b), )\““1)}, the Q
function of the h-th iteration is given by

(@|@““” W) = E[ln f(6|w)|e" ", w]

= Z {[ln pkak>\k) - 2111(331 m: n) - )\k + (ak — 1) . ln(l — 67%)]

Ti:m:n

R;
BT 10" 1) + Zznpkam E(I3)0" V) = 2B(1%) In(zi;)|0" V)

CME(IZ2510% ) + (an — 1) BUZ (1 — e )0 D))}
R}, K

+20 > In(prare) - B(LY107Y) = 2B(I) In(er,;)|0"Y)
j=1k=1

_)\kE(I(2) -1 |@(h DY)+ (o — 1) - E([](i) In(1 — *zTJ )"

D K
Ak R
= ZZ{[IH PraeAk) = 2In(Tiimin) — — + (o — 1) - In(1 — e Firmn )]
i=1 k=1 Ti:m:n
R;
AE(E(IZ.(;)‘@(hﬂ)’Z” n Z[ln(Pkak)\k) - B(B( ”k|9 (h—1) .2))
j=1
~2E(E(In(zi;) -Iff;llew*” 2)) - ME(B(z;" - 130", 7))
+(06k _ 1) . E(E(ln(l _ e_zlJ ) I(2)|@(h 1) Z))]}
R}, K
+2 > lin(prarhy) - BE(LR0" Y, 2)) = 2B(B(n(ery) - I |04, 2))
G=1k=1

Ak
—)\kE( (e - 110"V, 2)) + (ar — 1) - E(E(In(1 — ¢ ). 110" 7))

Ak Ak
= Z {In(praAr) = 2I(Timn) = —— + (o — 1) - In(1 — e~ Zimin )]
i=1 k=1 m:n
R;
aly ™ (@imen) + D [In(prardi) - BOL " (2i7)) — 2BV (215) - In(247))
j=1
_ Ak
MEGT (25) - 251 4 (= 1) - BT (245) - In(1 — e 7]}
R}, K
+3° S in(pra) - EGL ) (2r)) — 2B (2r,) - In(er))
j=1k=1

Ak

“MEOY TV (2r5) - 20 k) + (e — 1) - B(by ™V (215) - In(1 — e 779))],

where,

h—1 h—1 h—1 h—1

o 1)(x) pi ' Igz )(x) (h— 1)(:13) pgc ) ng )(.r)

ki h—1 ’ ki h—1 ’
F (@) st ()

i
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(h—l))\(h—l) (h=1) _ (h—1) _ (h—1)
R B . T s S b
X
K
h—1 h—1 h—1
@) = pl Y Y (@),
k=1

_)\211—1)171 a](ch,—l)

sp V(@) =(1-e ) ,

K
h—1 h—1 h—1
s D) =" pl Y stV (@),
k=1

fork=1,2,--- K, i=1,2,---,D.
In the above Q function, denote the conditional pdf(s) of all censored data Z;; for
1=1,2,---,D, j=1,2,--+ ,R; and Zr; for j =1,2,--- | R}, respectively, as follows

_ _ _ _ _ (h—1)
272 p e TOATY exp (A T e (1 —exp(-AY Ty !

pi(2) =

_ _ (h—1) ’
SE I —exp(—AtVak )
z € [Tismin, +00);
_ _ _ _ _ (h—1)
(o) = 2T Vel N exp(oN YT exp(oa VT
priz) = K (-1 (h—D) a1 ’
Zk:lpk (1—9XP(—)‘k T-1))%

z € [T, 400).

Then, we have
Qeje" 1, w)
D K
= 3> {n(prarir) — 2I(@imen) —

i=1 k=1

+RiIn(pragAy) - 287D — 2. A30Y 2 A4 4 (g — 1) - A5}

Ao
+ (o — 1) In(1 = e~ Toman )] - ALY

Tizm:n

K
+RD Y lIn(prarhe) - AT — 2 ATEY — N ASTY + (ap — 1) - ATV,

k=1
where -
ALY = ali D (@imen), D200 = / bV () - pix)da,

A3TY = /

iim:n

In(z) - b (@) - pi(z)dz, L40TY = / et bl (@) - pil)de,

o N o]
a5 = [T maee ) @) plade, 26050 = [ T80 @) e,
Tizm:n T

A7<T’f,;1>:/T In(z) - b~ (z) - pr(z)de, Asgj,j):/T 2 b (@) - pr(2)da,

S A
A9 = / (1 — e =) bV (@) - pr(a)de,
T

where A5$71) and A9¥f;l) can be simply approximated as

) o N
ASEJ;_I) ~ / In(1—e" e ) - bg;_l)(x) - pi(x)dz,
Tim:n
\(h=1)

AQ(T}IU R~ / In(1—e" N ) - bgfl)(az) -pr(z)dz.
T
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M step: We maximize numerically the Q function in E-step with respect to unknown
parameters p, a, A to update estimates of the parameters, denoted by pM oM A We
set

9 L N~ a0 - ; .
(7) aoci = DALY+ R 8207Y) + R - 867
=1
D ~
+[Z(h’l(1 — eXp(_Akxi_nln:n)) ) Alg'z_l) + Rl ’ A5;€}:_1))
i=1
+Rp - A9 Y]
= 0, k=1,---,K.
2Q 1L
(®) g = 3BT+ R 0207 + Ry - O60Y)
i=1
= 1 — apexp(—Apz; - )
(O o M) g
p— 1-— eXp(_Akmi:m:n)
+R - AA8D) 4 Ry - ASYY]
= 0k=1,-,K.
0Q 1
) e = Do (ALETY 4 R A2TV) 4+ R - 060
=1
1 D

Ty DAY + R 228 0) + R - 2651
—2ua=1 Pl =
= 0k=1, - ,K—1.

From (7), we obtain

D (a1 Ry 228 7D) 4+ Ry, - n60 Y

. (h)
(10) a< = — — — ~ — - —,
k YL (1 —exp(-AV ek ) - a1 4 Ry A5 TY] 4 Ry, - Aol
k=1,--- K.
From (8), we obtain
Dol + i a2 Y) + Ry 6l

2 (h
an A=

—(h) (h—1) _—1 ’
D _ 1—-& exp(—A Ii:m:n) (h—1) (h—1) * (h—1
Sililzimn l—kexp(—kl(chfl)ac;:mn) Al U Ri- Ay U4 R - A8y )
k=1,--, K.
From (9), we have
D
peD>_(A17Y + R 0287Y) + Ry - A6 Y]
i=1
K-1 D
5 D (210 + R A2 ) + Ry - A6 Y]
=1 =1

D
=AY+ R A2 ) + Ry ALY k=1, K -1
i=1
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From the above equations, we know the h-th iteration value in the M-step with respect
to parameters p;,--- ,prx—1 are the solutions of the linear equation group denoted by
AP = b, where P, A, b are given respectively by

P = (p17p27' o 7pK*1)T AK71 = (aZS)

Z?ﬂ(ﬁl(h 1)+A1(h 1))+R (Az(h 1)+A2(h 1))]+R* (AG(h 1)+A6(h 1))’ l—s
4= (A1“’ RIS (o 1))+R* A6TY 1#s
i=1 T
D
b= (a1 V4R a2+ Ry 268 T ,Z(m(h DR 020 D)+ Ry a6 0 )T

=1 i=1
Because the conditions Z (Alglh V4R A2(h 1)) + Rp - AG(h RIS 0,1=1,---,K
holds, we can prove that rank(A) = K — 1, namely, A is a rever51ble matrix. Thus, the
only solution of parameter vector P of the ¢-th iteration in the M-step is given by

12 ﬁ(h) _ ﬁ(h),ﬁ(m, . A(h) T= A"
1 2

»Pm—1

From the above (10), (11) and (12), we can update (p™, o™, \(")) by repeating E-
step and M-step till the total error of all estimated parameters approach the supposed
constraints. As recommended in the literature, in practical applications, it is helpful to
run the EM algorithm several times using different starting values to obtain more stable
estimates (see Muthen & Shedden (1999), Nityasuddhi & Bohning (2003) and Yao (2013),
etc).

4. Simulations

In this section, we carry out some simulation studies to illustrate the finite sample
performance of the proposed method under different sample sizes and different censoring
schemes. Suppose X;,i = 1,2,--- ,n are n identical independently distributed samples
generated from MGIED model (1), we only consider the situation including two mixture
components under progressively type-II hybrid censored data. To compare results of
different censoring schemes, the true values of parameters are taken as p1 = 0.3, 1 =
1.5, a2 = 0.8, \1 = 1.2, A2 = 3. The initial values are set as pﬁo) = 0.5,0750) = 1.8,0150> =
LAY =1, A“” 2.7.

The followmg three different censoring schemes with three different 7' values: T =
X[ )imin, T2 = X[% T3 = Xom:m:n + 2, respectively, are taken into account, where
[z] denotes the integral part of a positive number z.

]:m:ns

Scheme 1: Ry =n—m,Rs=---=R,, = 0.
Scheme 2: R1 =0,Re=n—m,Rs3 =---= R, =0.
Scheme 3: R1 =+ =Rp—1 =0, R, =n —m.

To generate a type-1I progressive hybrid censored sample from MGIED model (1), we
make use of the algorithm suggested in Balakrishnan & Aggarwala (2000) and also used
in Kundu & Joarder (2006), which involves the following steps:

(1) Generate m independent and identically distributed (iid) random numbers Uy, Ua,

, Un from the standard uniform distribution U|0, 1].

(2) Set Z; = —log(1 — U;), so that Z;’s are iid standard exponential distribution
variates.

(3) Given n, m and the censoring scheme R = (R1, R2, -+ , Rm), let Y1 = Z1/m and
fori=1,---,m

Yi=Yi1 + IZ :
(n— Z’ Rj—i+1)
Then, we can obtain a progressive type-II censored sample (Y7,Y2,---,Y,,) which

comes from standard exponential distribution with censoring scheme R = (R1, Rz, - , Rm).
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(4) Set W; =1 — exp(—Y;) so that W;’s form a progressive type-1I censored sample
from uniform distribution U/[0, 1].

(5) Set Xim:m = F~'(W;) so that X;’s form a type-IT progressive censored sample
from MGIED model (1), where F(z) is its cdf.

(6) If Xyn:m:n < T, then the corresponding progressive type-1I hybrid censored sample
of MGIED is the progressive type-II censored sample {(X1i.m:n, R1),"** , (Xmimin, Bm)}
and D = m, Rp = 0 in this case. If Xp.pm:n > T, we can find J such that X jm:m <
T < XJjt+1:m:m, then the corresponding progressive type-II hybrid censored sample is
{(X1mmn, R1),- -, (Xsimn, Ry)} and Rp = R%, D = J in this case, where R} is the
same as defined before.

Table 1: Bias(s) and RMSE(s) of estimators for Scheme 1

Bias RMSE

T |n|m P1 ai Qa2 A1 A2 p1 a1 [ A1 A2
40 | 20 | —0.137 —0.160 0.179 0.084 —0.485 | 0.148 0.569 0.233 0.619 0.802
30 | —0.051 —0.045 0.125 —-0.004 —0.073 | 0.082 0.256 0.171 0.315 0.483
35 | —0.018 0.024 0.097 0.004 0.262 | 0.059 0.216 0.147 0.294 0.608
60 | 30 | —0.039 —0.059 0.237 —0.057 —0.659 | 0.049 0.223 0.252 0.290 0.743
T 40 | —0.015 —0.047 0.174 —-0.063 —0.449 | 0.032 0.188 0.193 0.217 0.516
50 0.001 —-0.068 0.101 —-0.031 —-0.017 | 0.030 0.192 0.124 0.208 0.262
80 | 50 | —0.019 —0.048 0.188 —0.085 —0.551 | 0.030 0.171 0.200 0.209 0.597
60 | —0.004 —0.052 0.139 —-0.063 —0.298 | 0.025 0.164 0.156 0.174 0.364
70 0.009 —0.063 0.086 —0.038 0.080 | 0.028 0.171 0.109 0.171 0.242
40 | 20 | —0.092 —0.270 0.121 0.167 —0.496 | 0.113 0.395 0.200 0.599 0.725
30 | —0.015 —0.181 0.049 0.079 —0.204 | 0.063 0.286 0.149 0.336 0.410
35 0.018 —0.149 0.005 0.084 0.024 | 0.056 0.248 0.129 0.324 0.350
60 | 30 | —0.026 —0.145 0.174 —0.008 —0.678 | 0.042 0.240 0.203 0.285 0.749
Ts 40 0.001 —0.153 0.097 —-0.016 —0.497 | 0.031 0.220 0.139 0.211 0.543
50 0.021 —0.188 0.025 0.006 —0.148 | 0.039 0.243 0.097 0.201 0.243
80 | 50 | —0.005 —0.151 0.121 —0.045 —0.589 | 0.026 0.207 0.149 0.184 0.621
60 0.013 —-0.166 0.055 —0.025 —0.373 | 0.030 0.213 0.098 0.162 0.408
70 0.029 —0.188 0.009 —0.004 —0.074 | 0.042 0.230 0.079 0.160 0.170
40 | 20 | —0.080 —0.339 0.152 0.178 —0.549 | 0.103 0.438 0.226 0.570 0.733
30 | —0.007 —-0.263 0.077 0.073 —0.321 | 0.061 0.346 0.173 0.337 0.442
35 0.025 —0.237 0.028 0.064 —0.168 | 0.059 0.309 0.144 0.306 0.342
60 | 30 | —0.022 —0.184 0.186 0.010 —0.692 | 0.040 0.259 0.217 0.279 0.755
Ts 40 0.004 —0.197 0.102 —-0.023 —0.551 | 0.032 0.248 0.147 0.207 0.586
50 0.025 —0.234 0.028 —0.007 —0.282 | 0.042 0.276 0.111 0.194 0.331
80 | 50 | —0.002 —0.192 0.124 —-0.049 —-0.626 | 0.026 0.234 0.158 0.182 0.653
60 0.016 —0.210 0.060 —0.034 —0.456 | 0.033 0.245 0.109 0.159 0.480
70 0.001 —0.233 0.006 —0.017 —0.237 | 0.045 0.264 0.084 0.155 0.275
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Table 2: Bias(s) and RMSE(s) of estimators for Scheme 2
Bias RMSE

T | n|m p1 a1 o A1 A2 P o [ A1 A2
40 | 20 | —0.126 —0.070 0.195 0.033 —0.331 | 0.136 0.894 0.238 0.509 0.709
30 | —0.047 —-0.018 0.128 —0.013 0.068 | 0.077 0.236 0.171 0.304 0.510
35 | —0.016 0.040 0.098 0.002 0.367 | 0.056 0.211 0.146 0.289 0.696
60 | 30 | —0.039 —0.072 0.231 —0.049 —-0.535| 0.049 0.225 0.245 0.282 0.632
T 40 | —0.016 —0.050 0.169 —0.054 —0.314 | 0.032 0.191 0.188 0.216 0.419
50 0.001 —0.069 0.099 —-0.027 0.074 | 0.030 0.193 0.123 0.208 0.285
80 | 50 | —0.020 —0.052 0.184 —0.077 —0.443 | 0.031 0.173 0.196 0.207 0.505
60 | —0.004 —0.055 0.137 —0.057 —0.206 | 0.025 0.167 0.153 0.174 0.306
70 0.009 —0.064 0.085 —0.035 0.149 | 0.028 0.172 0.108 0.172 0.283
40 | 20 | —0.085 —0.217 0.128 0.122 —0.333 | 0.105 0.351 0.196 0.508 0.608
30 | —0.012 —0.163 0.050 0.074 —0.070 | 0.060 0.265 0.147 0.327 0.384
35 0.020 —0.140 0.006 0.084 0.117 | 0.055 0.239 0.130 0.320 0.391
60 | 30 | —0.026 —0.147 0.168 0.001 —0.552 | 0.042 0.242 0.196 0.278 0.635
Ts 40 0.001 —0.155 0.093 —0.007 —0.364 | 0.031 0.222 0.135 0.211 0.435
50 0.021 —0.369 0.023 0.010 —0.070 | 0.039 0.244 0.096 0.202 0.211
80 | 50 | —0.005 —0.154 0.118 —0.035 —0.483 | 0.026 0.210 0.145 0.184 0.525
60 0.012 —-0.168 0.053 —0.019 —0.284 | 0.031 0.216 0.096 0.163 0.335
70 0.029 —0.189 0.008 0.000 —0.012 | 0.042 0.231 0.079 0.162 0.161
40 | 20 | —0.073 —0.293 0.158 0.142 —0.389 | 0.096 0.395 0.226 0.511 0.607
30 | —0.005 —0.248 0.078 0.069 —0.201 | 0.058 0.328 0.173 0.330 0.375
35 0.026 —0.231 0.029 0.063 —0.088 | 0.058 0.301 0.145 0.303 0.329
60 | 30 | —0.022 —0.187 0.179 0.000 —0.569 | 0.040 0.262 0.210 0.275 0.641
Ts 40 0.004 —-0.199 0.097 —-0.013 —0.428 | 0.032 0.250 0.142 0.206 0.479
50 0.025 —0.236 0.026 —0.002 —0.206 | 0.042 0.277 0.110 0.195 0.274
80 | 50 | —0.002 —0.195 0.120 —-0.039 —0.525| 0.026 0.237 0.154 0.181 0.558
60 0.016 —0.212 0.058 —0.028 —0.374 | 0.033 0.247 0.107 0.160 0.407
70 0.003 —0.234 0.004 —-0.016 —0.182 | 0.045 0.265 0.084 0.157 0.233
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Table 3: Bias(s) and RMSE(s) of estimators for Scheme 3

Bias RMSE

T|n|m P1 ay o A1 A2 D1 a1 as A1 A2
40 | 20 | —0.092 0.125 0.204 —0.007 0.389 | 0.101 0.570 0.228 0.380 1.068
30 | —0.023 0.189 0.117 0.028 0.829 | 0.053 0.968 0.151 0.319 1.554
35 | —0.004 0.158 0.088 0.036 0.891 | 0.046 0.533 0.135 0.304 1.468
60 | 30 | —0.033 —0.033 0.185 —0.041 0.215 | 0.044 0.221 0.198 0.255 0.484
T 40 | —0.009 —-0.017 0.130 —0.035 0.432 | 0.031 0.195 0.149 0.205 0.616
50 0.006 —0.046 0.077 —0.009 0.621 | 0.031 0.188 0.102 0.205 0.769
80 | 50 | —0.012 —0.025 0.138 —0.052 0.383 | 0.027 0.174 0.149 0.196 0.493
60 0.002 —0.032 0.102 —0.034 0.502 | 0.026 0.171 0.119 0.170 0.602
70 0.013 —0.052 0.067 —0.020 0.595 | 0.030 0.173 0.092 0.171 0.670
40 | 20 | —0.024 0.186 0.104 0.174 0.902 | 0.053 0.764 0.145 0.443 1.631
30 0.024 —0.003 0.022 0.160 0.824 | 0.050 0.233 0.122 0.349 1.080
35 0.039 —0.077 —-0.012 0.130 0.611 | 0.060 0.022 0.120 0.339 0.793
60 | 30 | —0.005 —0.079 0.086 0.080 0.624 | 0.035 0.020 0.116 0.269 0.809
Ts 40 0.021 —0.109 0.030 0.072 0.644 | 0.039 0.198 0.087 0.228 0.751
50 0.034 —-0.172 —-0.011 0.059 0.539 | 0.048 0.232 0.084 0.219 0.595
80 | 50 0.017 —0.017 0.041 0.051 0.627 | 0.033 0.192 0.076 0.190 0.690
60 0.029 —0.147 0.000 0.047 0.598 | 0.042 0.205 0.065 0.172 0.648
70 0.039 —0.180 —0.020 0.035 0.480 | 0.050 0.226 0.073 0.167 0.517
40 | 20 0.004 0.034 0.093 0.252 0.798 | 0.047 0.568 0.148 0.465 1.269
30 0.040 —0.146 0.022 0.173 0.468 | 0.061 0.244 0.147 0.369 0.627
35 0.049 —-0.199 -0.015 0.117 0.236 | 0.069 0.272 0.145 0.330 0.405
60 | 30 0.013 —0.124 0.060 0.140 0.613 | 0.039 0.213 0.106 0.305 0.736
Ts 40 0.035 —0.182 0.001 0.093 0.499 | 0.050 0.238 0.089 0.240 0.561
50 0.043 —0.242 —-0.034 0.049 0.282 | 0.056 0.279 0.102 0.207 0.339
80 | 50 0.031 —0.183 0.010 0.076 0.546 | 0.043 0.229 0.073 0.195 0.595
60 0.040 —-0.216 —-0.021 0.050 0.405 | 0.051 0.251 0.079 0.167 0.445
70 0.007 —0.242 —-0.046 0.023 0.204 | 0.057 0.272 0.092 0.158 0.255

We consider different n, m and T for the given four censoring schemes. We repeat the
process s = 500 times for different sample sizes n = 40, 60, 80 respectively. If we denote
parameter estimates of the k-th experiment as @) = (i)ﬁ’“),dﬁ’“), dgk), J\ﬁ’“’, S\Qk)), (k=
1,---,s), the final means and root mean square errors (RMSEs) of the estimates are given

respectively by Mean(6;) = 1% 0% and RMSE(©;) = \/5 Yo (6F — 0,2,

s

where é]- is the j-th coordinate of the unknown parameter vector ©. All the computation
results for different (n,m) and T" and censoring schemes are shown in Table 1, Table 2
and Table 3, respectively. All computations are conducted via matlab2013. Computer
codes for all simulations and additional results can be obtained from the first author
upon request.

From Table 1 to Table 3, it can be seen that on the whole, the EM algorithm has
good estimation effect for MGIED model (1) under type-II progressive hybrid censored
samples. For all given three sampling schemes, we observe that for fixed n and m, as
T increases, RMSEs of estimates for most of estimated parameters decline as expected.
Similarly, for fixed n and 7T, as m increases, RMSEs decrease as expected. For fixed m
and T, as n increases, overall, RMSEs decrease for most of parameters. Additionally,
for fixed n,m and T, overall, there is no more significant estimation difference for three
sampling Schemes.

5. Real-world data analysis

In this section, we discuss a group of failure time data of the air conditional system in
Linhart & Zucchini (1986). The following data are failure times of the air conditioning
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system of an airplane: 23, 261, 87, 7, 120, 14, 62, 47, 225, 71, 246, 21, 42, 20, 5, 12, 120,
11, 3, 14, 71, 11, 14, 11, 16, 90, 1, 16, 52, 95.

This data set has been analyzed by Gupta & Kundu (2001) and Tian et al. (2014).
Gupta & Kundu (2001) fitted this data using three life distributions and concluded that
the Weibull distribution (WD) can provide a better fit than Gamma distribution (GD)
and generalized exponential distribution (GED). Tian et al. (2014) fitted this data better
by using MED with two components. Tian et al. (2014) fitted this data by using MGED
with two components. They noticed that mixture distributions has better fit effect than
single-population lifetime distributions. In this paper, we also provide the estimation
results based on MGIED model (1) with two components. MLEs, K-S distances and
p-values of Kolmogorov-Smirnov test, LL values for different life models is listed in Table
4.

Table 4: Estimation results of failure time data

Model MLEs K-S p-value LL
GED(}, 5) & =0.813, A = 0.015 0.183 0.237 —152.22
GD(B) & =0.813,1 = 0.014 0.171 0310 —152.17
WD(), 8) & =0.855,A = 0.018 0.154 0432 —151.94
MGED()\)  py = 0.489,dy = 1.126, i = 1.052, A; = 0.044, X, = 0.011  0.139  0.562 —151.22
MED()) p1 = 0.346, X; = 0.065, Xo = 0.012 0.124  0.697 —151.17

MIGED(A) p1 = 0.877, a1 = 1.117, a2 = 0.930, X = 23.788,2 =2339 0.116 0.768 —151.08

From Table 4, we can see that three considered mixture distributions fit better than
three single-population life distributions in Gupta & Kundu (2001). In addition, it is
observed that MIGED fits the best for this failure time data whereas MED fits the best
in the second data in terms of likelihood and Kolmogorov-Smirnov goodness-of-fit test.
Therefore, it can be said MIGED works better than other considered distributions. The
above data can be deemed as samples form MIGED model (1). Figure 1 is given to
compare the Kaplan-Meier product distribution with the fitted survival function. The
fitted failure rate function is also listed in Figure 1.

Table 5: The progressive type-IT hybrid censored samples.

i 1 2 3 4 5 6 7 8 9 10
t; 13 5 7 11 12 16 20 23 71
d 2 2 2 2 2 2 2 2 2 2

Next, we estimate MGIED model based on type-II progressive hybrid censoring scheme
R =(2,2,2,2,2,2,2,2,2,2) with n = 30, m = 10, T = 80. The censoring scheme and
the censored samples are displayed in Table 5. In this case, the MLEs of MGIED with
two mixture components based on the type-II progressive hybrid censoring scheme are

p1 = 0.927, d1 = 0.870, &1 = 2.702, Ay = 20.748, Ao = 2.809.

The fitted survival function and failure rate function under this type-II progressive
hybrid censoring data are plotted in Figure 2.

6. Conclusion

Estimation of MGIED under the type-II progressively hybrid censored data is dis-
cussed in this paper. The EM algorithm is employed to obtain the closed form of esti-
mators. Some Monte Carlo simulations are implemented to investigate the performance
of the proposed estimation procedure. Finally, a real-world case analysis is presented to
illustrate a special application.
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