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A bootstrap test for symmetry based on quantiles
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Abstract

In this paper, we construct a nonparametric test for the symmetry
assumption of an underling distribution based on the sample quantiles.
Bootstrap re-sampling from a symmetric empirical distribution function
is used to obtain the p-value of the test. The power of the new test
statistic is compared with some well-known symmetry tests using a
simulation study. The results show that the proposed test preserves its
level and it has reasonable power properties on the family of distribution
evaluated.
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1. Introduction

It is evident from the statistics literature that the assumption of symmetry plays an
important role in statistical inferences. For example, if one is interested in estimating
the measure of location, having a skewed distribution would give rise to consideration of
more than one such measure. It is obvious that the validity of the inference procedures
relies on holding the symmetry assumption. For instance, Munzel [9] warns against the
use of the popular Wilcoxon-signed-rank test unless we accept a symmetry hypothesis for
the distribution of the di�erences of the pairs. Many robust statistical methods (see [4])
depend on the assumption of symmetry. In case symmetry is not valid, one would need
to determine a symmetrizing transformation before applying the statistical procedures.
For more instances, we refer the reader to [5]. Furthermore, Ngatchou- Wandji [10] has
pointed out that, in economy and �nance for example, it is sometimes desirable to know
whether a distribution is skewed or not. It may thus be interesting to test for skewness
of distributions. Since then, the symmetry tests have received a great deal of attention
in the research literature. See for example, [7], [1], [6], [15] and [12].
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A random variable X with continuous distribution function F is said to be sym-
metrically distributed about point c if X − c and c − X are identically distributed or
equivalently, for any real x

(1.1) F (c+ x) = 1− F (c− x).

It can be shown that if X is symmetrically distributed about c, then c is equal to the
mean (if exist), median and mode of the distribution (if it is unique). Assume that F
is continuous, strictly increasing and let ξp = F−1(p), 0 < p < 1 be corresponding pth
quantile. It follows from equation(1.1) that

p = F (ξp) = F (ξp − c+ c) = 1− F (2c− ξp),

which implies that 2c−ξp = ξ1−p or equivalently 2ξ0.5−ξp = ξ1−p. Therefore, the absolute
value of the di�erence ξ1−p + ξp − 2ξ0.5 can be used as a measure of the deviation of the
distribution from the symmetry hypothesis. Note that for symmetric distributions this
di�erence is equal to zero and its large value shows the asymmetry of the distribution.
In this paper, we construct a test statistic based on the above measure for testing the
symmetry hypothesis.

The rest of the paper is organized as follows. In section 2 we give the proposed test
statistic. Section 3 is devoted to the bootstrap procedure and corresponding algorithm
for obtaining the critical values of the proposed test. In Section 4, we compare the power
of the test with those of some well-known tests via a simulation study.

2. Test Statistic

LetX1, . . . , Xn be a random sample from an unknown continuous distribution function
F . Let also

Fn(x) =
1

n

n∑
i=1

I(Xi ≤ x)

be the empirical distribution function and ξ̂p = F−1
n (p) be pth sample quantile. It is

well-known that ξ̂p is a consistent estimator of ξp. Regarding this, we propose our test
statistic Qn for testing the hypothesis

H0 : F (c+ x) = 1− F (c− x)

against the alternative

H1 : F (c− x) 6= 1− F (c− x)

by the following:

(2.1) Qn = max
0<p<0.5

|ξ̂1−p + ξ̂p − 2ξ̂0.5|,

for which the large values of Qn leads us to reject the null hypothesis in favor of the
alternative H1. The following theorem gives the asymptotic distribution of

√
nQn.

2.1. Theorem. Suppose that F is absolutely continuous and has a density f in neigh-

borhood of ξp, and that f is positive and continuous at ξp, p ∈ (0, 1/2). Then,

lim
n→∞

P (
√
nQn > x) = 2[1− Φσ2(x)].

Proof. First, note that the Theorem B in [11](p. 80) and the standard delta method
imply that under H0,

√
n(ξ̂1−p + ξ̂p − 2ξ̂0.5)

d→ N(0, σ2(p)),
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where σ2(p) = σ11 − 4σ12 + 4σ22 − 4σ23 + 2σ13 + σ33,

σ11 =
p(1− p)
[f(ξp)]2

, σ12 =
p

2f(ξp)f(ξ0.5)
, σ13 =

p2

f(ξp)f(ξ1−p)
,

σ22 =
1

4[f(ξ0.5)]2
, σ23 =

p

2f(ξ1−p)f(ξ0.5)
, σ33 =

p(1− p)
[f(ξ1−p)]2

.

On the other hand, since the limiting distribution of the sample quantile process

{
√
n(ξ̂p − ξp), 0 < p < 1}

is a Brownian process(cf. [11], p. 112), the limiting distribution of the process

{
√
n(ξ̂1−p + ξ̂p − 2ξ̂0.5), 0 < p < 0.5}

is also a Brownian process, say B(p). Hence, the limiting distribution of
√
nQn is just

the maximum of the Brownian process B(p) on ε ≤ p ≤ 0.5 − ε, ε > 0 and its survival
function is given by (cf. [13], p. 493)

P{ max
ε≤p≤0.5−ε

B(p) > x} = 2[1− Φσ2(x)],

where Φσ2(x) is the distribution function of a normal random variable with mean zero
and variance σ2 = σ2(0.5− ε), ε > 0. This completes the proof. �

It follows from the theorem that the mean and variance of the limiting distribution

of
√
nQn can be given by σ√

π
, σ

2(π−2)
2π

, respectively, which depend on the density of the

underling distribution F . In addition, in practice the size of the data set is not always
large enough for applying the asymptotic results. Thus, to obtain the critical values and
making decision on whether or not the null hypothesis is rejected, we apply the bootstrap
resampling method which is described in the next section.

3. The bootstrap test

Obtaining critical values and drawing statistical inferences rely on sampling distribu-
tion of statistics which is often di�cult. For this reason, statistical inferences are usually
drawn using limiting distributions and asymptotic results. Furthermore, limiting distri-
butions are not readily available and, when they are available, they may not be valid
for the �nite-sized sample at hand. Research results show that applying the bootstrap
procedure is really helpful in such cases. To make a decision on rejecting or accepting
H0, it is enough to obtain the p-value of the test using the bootstrap method. In order
to this, we need to take samples from the symmetric version of the empirical distribution
function or equivalently from the closest symmetric distribution to Fn. Modarres [8] has
shown that nonparametric maximum likelihood estimator of distribution function under
the symmetry assumption is

F sn(x) =
1

2
[Fn(x) + 1− Fn(2c− x)],

which is indeed the symmetrized version of the empirical distribution function Fn. Thus,
we take bootstrap samples from the distribution F sn. An unknown point c, the center
of symmetry, can be replaced with an appropriate estimator like the original sample
median. In similar testing problem [2] uses the sample mean for estimating the center
of symmetry which yields good performance as well. For a random sample of size n, the
following algorithm gives steps to decide whether reject or accept H0 on the basis of test
statistic Qn.

(1) Compute the observed Qn for the original sample.
(2) Generate B = 1000 samples of size n from distribution function F sn.
(3) Compute Qn for each of these bootstrap samples.
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(4) Compute the percentage of bootstrap samples with Qn values greater than the
observed Qn (the bootstrap p-value).

(5) If this percentage is greater than α = 0.05, accept H0; otherwise reject H0.

In next section, the simulation results for assessing the performance of test Qn is given.

4. Simulation study

In this section, we assess the performance of the test statistic Qn in terms of the
closeness of its size to nominal α = 0.05 level. We also compare the power of the test
with that of some well-known competitive tests. In a simulation study, while comparing
di�erent symmetry tests, [15] have found that the bootstrap test in [6] performs well and
has Type I error rate close to the nominal 0.05 level. The test statistic in [6] is given by

(4.1) T =
X̄ −M
J

,

where X̄ and M are the sample mean and median, respectively and

J =

√
π

2
.
1

n

n∑
i=1

|Xi −M |,

is a robust estimate of standard deviation. They have shown that under H0,
√
nT is

asymptotically normal with mean zero and approximate variance 0.5708. Throughout
this section, we denote the asymptotic version of the test by TNA and its bootstrap one
by TB .

Staudte [12] has considered a test based on the statistic

γ̂r =
X([nr]) +X(n−[nr]+1) − 2X

([n+1
2

])

X(n−[nr]+1) −X([nr])

,

and compared its power ( for r = 0.1) with tests based on the Studentized Sr =

X([nr])+X(n−[nr]+1)−2X
([n+1

2
])
(used also in [10]) and sample skewness measure Sk = µ̂3

S3 ,

where µ̂3 = 1
n

∑n
i=1(Xi − X̄)3 and S is the sample standard deviation.

In this section, we denote the above three test by TST , TNW , and TSK , respectively.
In Clear way, TST =

√
nK(γ̂r), where

K(γ̂r) =
1√
a2

[sinh−1{l(γ̂r)/D} − sinh−1{l(a1)/D}], l(x) = a1 + 2a2x,

a0 = [r(1− r)(g2r + g21−r) + g20.5 + 2r2grg1−r − 2rg0.5(gr + g1−r)]/R
2
r,

a1 = −2[r(1− r)(g21−r − g2r)− rg0.5(g1−r − gr)]/R2
r,

a2 = [r(g2r + g21−r)− r2(gr + g1−r)
2]/R2

r,

D2 = 4a0a2 − a21, Rr = X(n−[nr]+1) −X([nr]), gr = [f(F−1(r))]−1.

For more details about the statistic TST see [12]. The asymptotic distribution of TST

under the null hypothesis is the standard normal distribution. In addition, TNW =
√
nŜr

Rr
√
a0

which is also asymptotically normal. Furthermore, TSK =
√
nSk/τ̂ , where

τ̂2 = (µ̂6 − 6µ̂2µ̂4 + 9µ̂3
2)/µ̂3

2, µ̂k =
1

n

n∑
i=1

(Xi − X̄)k,

which have a limiting standard normal distribution provided that 6 moments exist (cf.
[3]). In our simulation, we use the asymptotic version of the above three tests.

We also consider the bootstrap test based on statistic γ̂r, for r = 0.1, and denote it
by TBγ . Hence, we compare the power and size of six tests TNA, TB , TST , TNW , TSK
and TBγ with that of our proposed test Qn.
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To compare the size of the tests, we choose �ve symmetric distributions standard
normal, t-student, standard logistic, Beta distribution with parameters (a, b) = (2, 2) and
uniform distribution with parameter (a, b) = (0, 1). Figure 1 depicts plot of the density
function of these distributions. To assess the power performance of the above tests, we
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Figure 1. Symmetric distributions

choose eight asymmetric distributions with di�erent values of skewness measures. The
�rst is a mixture of two normal distribution. We choose four distributions coming from
the generalized lambda distribution family. We denote this family byGLD(λ1, λ2, λ3, λ4).
The corresponding inverse of distribution function is given by

F−1(u) = λ1 +
uλ3 − (1− u)λ4

λ2
.

We also use Gamma distributions with parameters (α, β) = (5, 7) and (α, β) = (3, 5)
and F distribution with parameter (n1, n2) = (8, 9) in our evaluation. Figure 2 gives
the plot of the density function of these distributions along with their skewness measure

γ = E(X−µ)3
σ3 .
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Figure 2. Asymmetric distributions
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The comparison is based on di�erent sample sizes 30, 50, 100, 300 and for each dis-
tribution and sample size, 1000 samples are simulated. It should be mentioned that to
draw the maximum value in statistic Qn, 50 equispaced points in (0, 0.5) are used. The
size of tests and power comparison results are reported on Tables 1 to 3.

Table 1 shows that, in terms of size of test, statistics Qn performs well and have Type
I error rate close to the nominal 0.05 level. Furthermore, Table 2 shows that, for normal
mixture and GLD(−0.1167,−0.3517,−0.13,−0.16), the TNA test is more powerful than
the other tests. But for other distributions, the Qn test shows a better performance.
Tables 2 and 3 show that Qn is more powerful than the other tests for most of the
simulated distributions.

Table 1. Size of the Tests

Dist. n TB TNA Qn TBγ TST TSK TNW
30 0.046 0.035 0.018 0.017 0.055 0.026 0.042

N(0, 1) 50 0.051 0.042 0.020 0.027 0.065 0.020 0.056
100 0.057 0.062 0.020 0.040 0.068 0.045 0.064
300 0.063 0.056 0.025 0.041 0.064 0.049 0.063

30 0.029 0.074 0.027 0.007 0.077 0.028 0.049
t(3) 50 0.044 0.093 0.023 0.017 0.085 0.018 0.064

100 0.032 0.112 0.027 0.025 0.080 0.020 0.068
300 0.051 0.133 0.058 0.032 0.090 0.023 0.083

30 0.048 0.047 0.024 0.029 0.067 0.020 0.063
Beta(2, 2) 50 0.061 0.053 0.025 0.036 0.066 0.041 0.059

100 0.058 0.061 0.034 0.037 0.056 0.036 0.054
300 0.065 0.067 0.042 0.050 0.067 0.051 0.067

30 0.103 0.094 0.039 0.056 0.090 0.041 0.087
U(0, 1) 50 0.077 0.096 0.035 0.048 0.077 0.046 0.075

100 0.066 0.089 0.042 0.058 0.069 0.042 0.067
300 0.071 0.109 0.045 0.058 0.073 0.040 0.073

30 0.044 0.041 0.020 0.018 0.062 0.019 0.046
Logis(0, 1) 50 0.054 0.058 0.024 0.019 0.077 0.026 0.066

100 0.050 0.051 0.024 0.028 0.071 0.031 0.065
300 0.056 0.056 0.039 0.039 0.092 0.039 0.085

4.1. Application on real life data. In this subsection, we apply the above tests for the
data set used also in [15] which reports revenues available per-pupil in the 89 Educational
Agencies or school districts in New Mexico and available in the R package, lawstat. The
results in Table 4 show that all the tests accepted the symmetry hypothesis. These results
are consistent with the right skewness of the data seen in the histogram in Figure 3.

5. Conclusion

In this paper, we proposed a nonparametric test for testing symmetry based on the
maximum of the sum of two symmetric quantiles minus twice the median in which the
bootstrap resampling method is used to compute the corresponding p-value. An extensive
simulation exercise was undertaken to compare the performance of this test statistic and
six other well-known test statistics. The results revealed that the proposed test has Type
I error rate close to the nominal level. These results also indicated that, in most cases,
the proposed test statistic is more powerful than the other competitive tests. Finally,
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Table 2. Power of the Tests

Dist. n TB TNA Qn TBγ TST TSK TNW
30 0.883 0.902 0.813 0.837 0.851 0.317 0.851

0.6N(−6, 1) + 0.4N(6, 4) 50 0.954 0.972 0.915 0.954 0.939 0.484 0.940
100 0.981 0.991 0.967 0.979 0.973 0.747 0.973
300 1.000 1.000 1.000 1.000 1.000 0.995 1.000

30 0.188 0.214 0.359 0.170 0.330 0.220 0.296
GLD(0, 1, 1.4, 0.25) 50 0.279 0.341 0.629 0.287 0.437 0.494 0.418

100 0.469 0.585 0.922 0.548 0.685 0.881 0.676
300 0.862 0.946 1.000 0.947 0.981 1.000 0.980

30 0.050 0.084 0.049 0.021 0.111 0.039 0.078
GLD(−0.1167,−0.3517, 50 0.053 0.096 0.069 0.046 0.115 0.047 0.093

−0.13,−0.16) 100 0.093 0.146 0.092 0.054 0.151 0.050 0.133
300 0.188 0.275 0.184 0.161 0.259 0.108 0.253

30 0.133 0.162 0.208 0.087 0.245 0.135 0.199
G(5, 7) 50 0.219 0.261 0.458 0.177 0.325 0.292 0.276

100 0.422 0.486 0.848 0.445 0.534 0.683 0.507
300 0.916 0.935 1.000 0.917 0.934 0.982 0.933

Table 3. Power of the Tests

Dist. n TB TNA Qn TBγ TST TSK TNW
30 0.233 0.301 0.397 0.142 0.356 0.199 0.288

G(3, 5) 50 0.369 0.461 0.715 0.325 0.524 0.424 0.467
100 0.662 0.734 0.991 0.697 0.756 0.794 0.729
300 0.986 0.993 1.000 0.994 0.995 0.979 0.994

30 0.229 0.317 0.379 0.153 0.389 0.182 0.299
GLD(0,−1, 0.0075,−0.03) 50 0.429 0.539 0.650 0.350 0.594 0.368 0.522

100 0.748 0.837 0.928 0.765 0.830 0.627 0.810
300 0.997 0.999 0.998 0.994 0.995 0.926 0.994

30 0.695 0.873 0.963 0.474 0.830 0.276 0.716
GLD(0,−1,−0.0001,−0.17) 50 0.886 0.967 0.999 0.775 0.947 0.408 0.874

100 0.999 0.999 0.999 0.996 0.996 0.513 0.990
300 1.000 1.000 0.996 1.000 1.000 0.751 1.000

30 0.491 0.695 0.793 0.294 0.667 0.220 0.535
F (8, 9) 50 0.777 0.891 0.982 0.637 0.844 0.343 0.764

100 0.979 0.989 1.000 0.974 0.976 0.496 0.950
300 1.000 1.000 0.994 1.000 1.000 0.676 1.000

Table 4. P -values of the Tests

TB TNA Qn TBγ TST TSK TNW
0.0079 0.0000004 0.01 0.017 0.0017 0.03544 0.00665

using a numerical example, the use of the test statistic for testing symmetry of data was
illustrated.
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