Hacettepe Journal of Hacet. J. Math. Stat.
Volume XX (x) (XXXX), 1-18
Mathematics & Statistics DOI : 10.15672/hujms.xx

RESEARCH ARTICLE

Some notes on the fine spectrum of quintet band
matrix operator over ¢, and c

Mustafa Cemil Biggin™'®, Kiibra Topal?

! Recep Tayyip Erdojan University, Faculty Of Arts And Sciences, Department Of Mathematics, Zihni
Derin Campus, 53100, Rize, Tiirkiye

2 Cay Vocational and Technical Anatolian High School, Hayrat, 53020, Rize, Tiirkiye

Abstract

In this work, we determine the fine spectrum of quintet band matrix operator G(r, s, ¢, u, v)
over ¢ and c¢. The quintet band matrix G(r, s, t,u,v) is the general form of the matrices
D(r,0,s,0,t), A, Q(r,s,t,u), A% D(r,0,0,s), B(r,s,t), A%, B(r,s), A, right shift and
Zweier matrices, where A%, Q(r, s,t,u), A3, B(r,s,t), A%, B(r,s) and A are called fourth
order difference, quadruple band, third order difference, triple band, second order differ-
ence, double band(generalized difference) and difference matrix, respectively.
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1. Introduction

w, which is the set of all sequences with each real (or complex) term is a vector space
under the operations of point-wise addition and multiplication with scalar. Each vector
subspace of w is called a sequence space. The well known spaces such that the spaces
of all bounded, null, convergent and absolutely p-summable sequences are symbolized by
U, co, ¢ and £, respectively, where p € [1,00). A BK-space is a Banach sequence space
whose each of the maps p; : X — C defined by p;(z) = x; is continuous for all i € N.

The sequence spaces {,, o and ¢ are known to be BK-spaces with their norm defined
by [[z]|c = supjey |z;| and £, is known to be a BK-space with its norm defined by

1
P

o
lzllp = | D_ lal?
j=0

where 1 < p < 0.
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Given a sequence x = () and an infinite matrix A = (a,) with complex entires, the
A-transform of z is defined by

o0
(A.T)k = Zaijj
§=0
and is considered to be convergent for all £ € N [30].
Given two sequence spaces X and Y and an infinite matrix A = (a,x) with complex
entires, the matrix domain of A on the sequence space X is defined by

XA:{:I::(J:j)Ew:AJJEX}

and the class of all matrices provided Az € Y,Vx € X is denoted by (X : Y).

Let two Banach spaces X and Y and a bounded linear operator 7' : X — Y be
given. Then, the sets D(T"), R(T) and B(X,Y) are called the domain of 7', the range of
T and the set of all bounded linear operators from X into Y, respectively. Also, we use a
notation of the form B(X) = B(X, X).

Let an arbitrary Banach space X be given, X* be continuous dual of X and T € B(X).
Then, T*, which is the adjoint of T', is defined on the X* as follows:

(T f)(z) = f(Tz)
forall f € X* and z € X.

Let I be the identity operator on D(T). Then, the perturbed operator on D(T) is

defined by the equality
To =T —al
where o € C [19].

If T, has an inverse, it is denoted by T,;! and is called the resolvent operator of T'
because it is used to solve the equation Ty = y, namely z = T, 'y [19].

Spectral theory deals with the properties of the operators T, and T, ! depending on
the complex number « [19].

For a given linear operator T': D(T) C X — X, where X # {6} is a normed space,
a complex number « is called a regular value of T if the following conditions are met.

(i) T ! exists

(i) T;! is bounded

(iii) The domain of T, ! is dense in X.

The resolvent set of 1" consists of all regular values v of T" and is denoted by p(T, X)
[19].

The set defined by (T, X) = C\ p(T, X) is called spectrum of 7. A complex number
a is called a spectral value of T' in case of a € o(T,X) [19]. The set o(T,X) can be
divided into three disjoint sets as follows:

The set of all a values in which T, 1 does not exists is called the point spectrum/(or
discrete spectrum) of 7" and is denoted by o,(T, X). Each of the a elements belonging to
the 0,(T, X) is called an eigenvalue of 7' [19].

The set of all a values in which T, ! satisfies (i) and (iii) but does not satisfy (ii) is
called the continuous spectrum of 7" and is denoted by o.(T, X) [19].

The set of all a values in which T,;! satisfies (i) (and may be bounded or not) but
does not satisfy (iii) is called the residual spectrum of 7" and is denoted by o, (T, X) [19].

For a given Banach space X and a perturbed operator T, from the Goldberg [17],
some possibilities of T;, can be classified as follows:

(I) R(Ta) =X,

(H) R(Ta) # R(Ta) =X,
(L) R(T,) # X,
) T

(1) T;;! exists and is continuous,
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(2) T;! exists but is discontinuous,
(3) T, has no inverse.

Considering these possibilities together, one can obtain nine different states labelled
by Iy, Io, I3, 111, 1o, [13, [111,1115 and [115. If T,, € 111y, it is understood as T, satisfies
(I11) and (1). In case of T, € I or T, € II; this means that a € p(T, X). In case of an
operator belongs to state Iy, it is written o € I1y0 (T, X).

Spectral theory is one of the important topics of functional analysis, quantum me-
chanics,...which is related to certain inverse operators. These types of operators are used
in the problem of solving equations for instance systems of linear algebraic equations,
differential equations, integral equations,.... Considering the wide range of uses of this
theory, many authors have conducted research on the spectra of certain difference matrix
operators on some known sequence spaces. For example, the difference matrix operator
A on the sequence spaces ¢y, ¢, 1, {p, bv and bv, in [2-4,6,20], the double band matrix
operator B(r,s) on the sequence spaces cy, ¢, {1, {p, bv and bv, in [5,9, 16], the second
order difference matrix operator A% on the sequence space ¢g in [13], the triple band ma-
trix operator B(r,s,t) on the sequence spaces co, ¢, {1, {5, bv and bu, in [8,14,15], the
matrix operator D(r,0,0,s) on the sequence spaces co, ¢, £p, bug and bu, in [22-25], the
quadruple band matrix operator Q(r, s,t,u) on the sequence spaces cy, ¢, £1, £p, bv and bv,
in [10,11] and the matrix operator D(r,0,s,0,t) on the sequence spaces ¢y and ¢ in [28].
Also, some authors have examined the spectral property of special operators defined on
some of known sequence spaces. For example, Cesdro and p-Cesaro operators in [1,12,18],
Rhaly operators in [31-34], weighed mean operators in [26] and factorable operators in
[27].

2. Fine Spectrum Of Quintet Band Matrix Operator On ¢y, And ¢

In this section, we work on the fine spectrum of the quintet band matrix operator
G(r, s, t,u,v) defined on the sequence spaces ¢y and c.
Let’s start with some lemmas that are used in the next.

Lemma 2.1 ([29]). Let an infinite matric A = (ank) be given. Then, A = (ank) € (c: ¢)
if and only if

Supz |ank| < 0o (2.1)
neN k

nlgIolo ank = px for all ke N (2.2)
Jim zk: (nk = 1 (2.3)

Lemma 2.2 ([29]). Let an infinite matric A = (any) be given. Then, A = (ank) € (co : o)
if and only if (2.1) and (2.2) hold with p =0, Vk € N.

Lemma 2.3 ([21]). Given a BK-space X and an infinite matric A = (ank). Then,
for all A = (ank) € (X : X), there exists a T € B(X) such that T(x) = Az, that is
(X : X) € B(X).

For given r,s,t,u,v € C\ {0}, the quintet band matrix G = G(r,s,t,u,v) =
(gnr(r, 5,t,u,v)) is defined by

r , k=n

s , k=n-1

t , k=n-—2
gnk(T,S,t,U): U kL=mn—3

v , k=n—4

0 , otherwise
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for all n,k € N. Here, it is clearly seen that the equalities G(r,0,t,0,v) = D(r,0,s,0,t),
G(1,-4,6,—4,1) = A* G(r,s,t,u,0) = Q(r,s,t,u), G(1,-3,3,—1,0) = A%, G(r,0,0,u,0) =
D(r,0,0,s), G(r,s,t,0,0) = B(r,s,t), G(1,-2,1,0,0) = A%, G(r,s,0,0,0) = B(r,s) and
G(1,-1,0,0,0) = A are satisfied, where A*, Q(r,s,t,u), A3, B(r,s,t), A% B(r,s) and
A are called fourth order difference, quadruple band, third order difference, triple band,
second order difference, double band and difference matrix, respectively. Because of this,
our findings obtained from the quintet band matrix G(r,s,t,u,v) are more general and
more comprehensive than the findings obtained from the matrices defined above.

If the Lemmas 2.1 and 2.2 are applied to the quintet band matrix, we write

Sugz |9nk (7, 5,8, u,0)| = [r| + |s] 4 [t] + [u] + |v] < oo,
ne k

nlbngognk(r,s,t,u, v) =0 forall k€N,
HIL%;gnk(r,s,t,u,v) =r+s+t+utv
These result in G(r, s,t,u,v) € (¢:¢) and G(r, s,t,u,v) € (co : cp).
Also, considering Lemma 2.3, the following Corollaries can be given.

Corollary 2.4. The operator defined by G(r,s,t,u,v) : ¢ — ¢ is bounded and linear
provided ||G(r, s, t,u,)|(c:c) = |r[ + |s| + [t] + |u] + [v].

Corollary 2.5. The operator defined by G(r,s,t,u,v) : co — ¢ is bounded and linear
provided ||G(r, s, t,u, V) |(coice) = [7] + |8+ [t] + [ul + [v].

Let @ € C and r,s,t,u,v € C\ {0} be given. Then, according to the fundamental
theorem of algebra, the fourth degree equation

(r—a)t+s22 +t22 +uz+v=0 (2.4)
has four roots so that z; = —ﬁ—k% (—a—0b), z9 = —ﬁ—k% (—a+0b),z3= —ﬁ—k
3(a—c)and z4 = —m—i-%(a—kc) where
52 2t N d N (t2 — 3su + 12(r — a)v)V/2
a= - ,
4r—a)? 30r—a) 30r-—a)V2 3(r—a)d
b 52 I d B (12 — 3su + 12(r — a)v) /2 e (rfi)s + (itz)z — (Ts,ua)
2r—a)? 3(r—a) 3(r-—a)V?2 3(r—a)d 4a ’
2 at d 2~ 3su+ 12 R s el e R G
o s B B (8 = 3su+12(r — a)v) L TP T el T o)
2(r—a)? 3(r—a) 3(r—a)V2 3(r —a)d 4a ’
d= \?/f—k \/§2 —4(t2 = 3su + 12(r — a)v)®,
and

€ =2t3 — 9sut — 72(r — a)vt + 27(r — a)u? + 27s%v
Moreover, using a simple calculation, the following equalities can be obtained.
s

21t 22+ 23+ 24 = — )
rT—

t
2122 + 2123 + 2124 + 2223 + 2224 + 2324 = ,
r— o

u

212923 + 212224 + 212324 + 222324 = _r o
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and

v

R122%23%4 =
r—uo

where r # a.

Before moving on the main results, we would like to draw attention to the fol-
lowing remark. Herein and throughout the rest of the study, unless otherwise stated,
we suppose that o1, @2, ¢3 and ¢4 are random four roots of the equation (2.4) and
maz{|p1|, |p2], 3]} < |pa]. If other possibilities of the roots of the above equation are
chosen, the same results can be obtained using a similar method.

Theorem 2.6. Let the set S be defined as follows
S={aecC:1<|p4}.

Then, o(G(r,s,t,u,v),co) = S.

Proof. What is required for the proof is to show that (G(r,s,t,u,v) — al)~! exists and
belongs to B(cp) for aw ¢ S and G(r, s,t,u,v) — al has not an inverse for « € S.

When o ¢ S is taken, it is clearly seen that it must be « # r. Because of this reason,
G(r,s,t,u,v) — ol is a triangle, that is G(r, s,t,u,v) — ol uniquely has an inverse such
that

ag 0 0 O
a2a100

(G(T,S,t,u,’u)—a]')_lz az az a; 0
as a3z az ai

where

al =
r—«

:301+§02+§03+8047_rja S

2 r—a r—a (r—a)?

O3+ 05+ O+ 7 + P12 + P193 + P11+ P23 + Paps + P3pa
rT—

a3 =

1

s t
= - (p1+ @2+ @3+s) — ——
r—« r—« r—ao

1 [32 t
(r—a)? r—«a

52 —t(r —a)
3

r—o«

(r—a)



a4

as

+ o+ 4+
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— [sO? + 05 + 03 + 0+ P195 + 9195 + 191 + P2t + a0} + P2h + 3t

P33 + 0305 + Papt + P15 + Pap3 + P1P2P3 + Y1201 + P1P3P + 902803904}

1 s
- [ - [(@1 + 02 + @3+ ©a)” — (P12 + 9103 + V104 + P23 + V204 + 903304)}

t U
——(p14+ 2+ p3+ @4) —
r— r—

1 [ s3 n 2st u]
r—a r—a)p (r—-a)? r—a
—83 + 2st(r — a) —u(r — a)?

1

(r—a)

1
r—o
P3(p1 + @2 + 93) + ©1 (203 + V204 + P3004) + P3(P103 + P1P4 + V304)

P3(102 + P14 + P201) + P3(P102 + Y103 + P23) + PIPE + PIOE + VI + PR
0503 + P30 + P1P20304

[%‘ + @3+ 03 + 04 + 05 (02 + 03+ @a) + O3 (01 + 03+ 1) + @1 + P2 + Pa)

S
BCETP {(@1 + 2+ 3+ p4)* — 3 [(@1 + 2 + @3 + 1) (P12 + P13 + P14

V203 + Paa + P304) — (1203 + 1201 + P1Y3Ps + 902@3904)} — 6(p1203

1

P1P204 + P1P3P4 + @2@3@4)] R {(901@2 + 9103 + V194 + P23 + V204 + P301)°

u
m(@l + 2+ @3+ ) — <P1$02<P3804]

s s 3 s t U U
el ) et o
(r—a) r—a r—ar—a r—a r—a

1 [( { )2 u s v ]
r—o|\r—o r—ar—oa r—o

st —3(r — a)s’t 4 (r — a)?(t? 4 2su) — (r — a)3v
(r—a)d

and for all n > 1, according to behavior of the roots ¢1, p2, v3 and ¢4 of equation (2.4),
a, can be defined as follows:

Case 1: if 1 # 2 # p3 # w4, We write

. _ 1 S0111-"-2 N S012’L—‘r2
L=
r—al(pr—v2)(e1 —w3)(p1 — 1) (2 — p1)(02 — @3) (P2 — ©1)
(Pn+2 (Pn+2
+ 3 + 4

(p3 —1)(p3 — 92) (3 — 1) (s —91)(pa — p2)(Pa — ¢3)
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According to the suppositions a ¢ S and max{|e1], 2], |¢3]} < |@a4], the inequalities
lo1] < 1, |p2| < 1, |@3] <1 and |@4] < 1 are satisfied, which gives us the result

1 (pn+2 (Pn+2
lim a, = lim 1 + 2
n—00 n—oor —a | (o1 — 2)(p1 —3) (w1 —wa) (w2 —@1)(w2 — 3) (Y2 — @a)
n+2 n+2
+ ¥3 1 Py
(03— 1)(p3 — 92) (93 — 1) (pa—¢1)(pa — p2)(ps — @3)
= 0

Case 2: if p1 = 3 = 3 = p4 = @, we write

" tn(n +1)(n +2)
6(r — «)

Qp =

According to the suppositions above, the inequality |p| < 1 is satisfied, which gives us the
results
n—1
1 2
lim a, = lim g nn+1)(n+2)

n—00 n—00 6(r — a)

=0

and (a,) € £1.
Case 3: if o = p; = ¢; # ¢ = @4 where i, 5,1 € {1,2,3} we write

1
(r—a)(p —pa

an = E {n(w — ) (" + @) — 2004(@" — @Z)}
According to the suppositions above, the inequalities |¢| < 1 and |p4| < 1 are satisfied,
which gives us the results

1
lim a, = lim {n — ntl g ontly 9 no_ "}:0
0o 60 (1 — ) (p — pa)3 (v = @a)(p i) — 20pa(¢" — @)

and (ay) € 1.
Case 4: if p = o1 = o = 3 # P4, We write
1

o 2(r — a)(p — p4)? [go”api(n +1)(n+2) — 20" pyn(n + 2)

+ gp”“n(n + 1) _ 2902&2

According to the suppositions above, the inequalities |p| < 1 and |p4| < 1 are satisfied,
which gives us the results

: _ : 1 n 2 n+1
Jim a, = lim 30— a) (o= pr) [@ wi(n+1)(n+2) — 20" pan(n + 2)

+ @+ 1) - 260 = 0

and (a,) € 1.
Case 5: if p; = ¢; = w4 # ¢ where i, 7,1 € {1,2,3} we write

1
2(r — a)(pa — w1)?

b+ 1) - 20

eiet(n+1)(n+2) — 205 om(n + 2)

Ay ==
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According to the suppositions above, the inequalities || < 1 and |p4| < 1 are satisfied,
which gives us the results

. . . 1 n 2 n+1
Jim a, = lim 30— o) (o1 — ) {@4% (n+1)(n+2) =205 pin(n +2)
+ o+ 1) - 2002 =0

and (ay) € 1.
Case 6: if ¢ = ¢; = ¢ # ¢ # @4 where 7, 5,1 € {1,2,3} we write

1 — 2 —2p(pa+ 1) +3
an, = [+ <(n _pPe ¥ p(pa 4/31)2 wm)
(r—a)(e — ¢a) © =i (o — 1)
+ ‘PZ+2 (p — 904)2 n+2

vi—o1 (p— o) pa—r) !

According to the suppositions above, the inequalities || < 1, |¢;| < 1 and |p4| < 1 are
satisfied, which gives us the results

1 _ 2_9
lim a, = lim . gp"“((n L D T 4 plioa + W);r 3*0490’)
n—00 n—=oo (r — a)(¢ — ¢a) ©— (¢ — @)
it (p—p)? w2
+ 3 o =0
wa =1 (o —w1)*(ps— 1)

and (ay) € 1.
Case 7: if p; = p4 # 1 # @; where i, 7,1 € {1,2,3} we write

1 (s 2 2 S + 3.
0, = i ¢2+1((n N s L R 1Y <Pz)2 cpm)
(r—a)(ps — ©;) 04— Py (01 — 1)
+2
+ 90? (904 - ng)2 n+2

- @
ei—or  (pa—@)2(pj—@) !

According to the suppositions above, the inequalities |[¢;| < 1, [¢;] < 1 and |@4] < 1 are
satisfied, which gives us the results

1 _h. 2 2 . 30,
lim ap = lim > |t <(n _ P i 2eale o) & SOM)
n—00 n=oo (1 — a)(ps — ©5) 01— (1 — 1)
+2
i (p1 — ¢))? nt+2| _
+ . 20 ] =
vi—or (pa—@1)*(¢j — 1)

and (an) € 1.

According to the results above, a, — 0(n — o0) and (a,,) € ¢ are provided when a ¢ S.
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Now, considering that the inequalities |p1| < 1, |p2| < 1, |p3| < 1 and |p4] < 1 are
satisfied, we can write

H(G(T,S,t, u, U) - aI)_lu(cozco) = Supz ‘ak‘ - Z ‘ak‘

neN gy k=1
1 2
< 1|
7 — af|(e1 — p2) (01 — @3) (1 — ©4) ’ Z’ |
1 k42
+ ©2
[r —a|(p2 — ¢1) (P2 — ©3) (P2 — v4)] Z’ |
1
+ o3| "2
Ir = al[(ps — v1) (w3 — ¢2)(p3 — P4)| kz::l
1 x
+ |<P4|kJr2
Ir — al|(pa — 1) (1 — p2) (01 — p3)| kz::l

< 0Q.

This result shows us that o(G(r, s,t,u,v),co) C S.

Now, let’s take o € S. In case of & = r, we obtain G(r, s, t,u,v) —al = G(0,s,t,u,v).
In that case, since G(0, s,t,u,v) does not have a dense range, it is not invertible.

When @1 = p2 = p3 = 04 = ¢, we have

¢" 'n(n+1)(n+2)
6(r — )

Ay =

for all n > 1. As per the assumption « € S, the inequality |p| > 1 is satisfied. Because of
this, a, - 0, that is (G(r, s,t,u,v) — al)~! is not in B(cp).
When ¢ = ¢; = ¢; # ¢ = @4 where i, j,1 € {1,2,3}, we have
1
(r—a)(e— ¢4

" E nlp = o)™+ E) — 2opa(e” - )

for all n > 1. As per the assumption « € S, the inequality |p4| > 1 is satisfied. Because
of this, a, - 0, that is (G(r, s,t,u,v) — aI)~! is not in B(cp).
When ¢ = p1 = @2 = 3 # 4 we have
1

o 2(r — a)(p — p4)? [go”cpi(n +1)(n+2) — 20" pyn(n + 2)

+ S071—‘,—2 (7’L—|— 1) _ 2907L+2

for all n > 1. As per the assumption « € S, the inequality |p4| > 1 is satisfied. Because
of this, a, - 0, that is (G(r, s, t,u,v) —al)~! is not in B(cp).
When ¢; = ¢; = @4 # ¢; where 4, j,1 € {1,2,3} we have

1
2(r — a)(pa — w1)?

e+ 1) - 20

an = eiei(n+1)(n+2) — 205 om(n + 2)

for all n > 1. As per the assumption « € S, the inequality |p4| > 1 is satisfied. Because
of this, a, - 0, that is (G(r, s, t,u,v) —al)~! is not in B(cp).
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When ¢ = ¢; = ¢; # ¢ # w4 where 4, j,1 € {1,2,3} we write

1 - 2 —20(ps+ 1) +3
an = ' {¢n+1 <(n Il o(pa soz)2 s04soz>
(r—a)(p — 1) © =@ (o — 1)
eit? (e —pa)? o+
ca—or (p—@)(pa—) !

for all n > 1. As per the assumption « € S, the inequality |p4| > 1 is satisfied. Because
of this, a, - 0, that is (G(r, s,t,u,v) — aI)~! is not in B(cp).
When ¢; = o4 # ¢ # ¢; where ¢, 5,1 € {1,2,3} we write

1 — @ | 91— 204(p; +¢1) + 3p;
0, = - @Z“(W I ek N Sl (G2 901)2 %w)
(r—a)(ps — ©;) P4 — @1 (01— 1)
+2
+ 90? _ (= Sﬁ’j)2 n—+2
T o2 (o !
i — ¥ (pa — 1) (‘PJ ©1)

for all n > 1. As per the assumption « € S, the inequality |p4| > 1 is satisfied. Because
of this, a, - 0, that is (G(r, s,t,u,v) — al)~! is not in B(cp).

So, we may assume that a # r and @1 # @2 # 3 # p4.

Since o # r, G(r,s,t,u,v) — ol is a triangular matrix. In addition, because of
©1 # p2 # @3 # g, from our supposition, maz{|e1], |p2|, @3]} < |p4a| can be written,
which gives us the result

1 ppt? hT2

r—al(pr—p2) (1 — @3)(p1 — pa) " (2 — 1) (92 — @3) (P2 — @4)
n+2 n+2

¥3 + ¥4
(03— 01)(03 — 2) (3 — 1) (1 — 1)(Pa — P2)(pa — p3)
that is >.0°_; |as,| diverges. Therefore, (G(r, s, t,u,v) —al)~! is not in B(cg). This shows
us that the coverage S C o(G(r, s,t,u,v), co) is provided, namely S = o(G(r, s,t,u,v), cp).
This completes the proof of theorem. O

anp, =

-0

Theorem 2.7. 0,(G(r,s,t,u,v),co) =0

Proof. Considering = # 6 = (0,0,0,...), let us suppose that G(r,s,t,u,v)r = az in c.
Let the first non-zero term in the entries of the sequence x = () be z,,. Then, if we
solve the equation below

VZpg—4 T UTpg—3 + tTpg—2 + STpg—1 + T'Tpy = Oy,
we obtain that a = r. Moreover, by solving the next equation
Vpo—3 + UTpg—2 + tTpg—1 + STpy + ITpg+1 = ATpg+1

Zn, = 0 is obtained, which contradicts the supposition z,, # 0. This completes the proof
of theorem. ]

As a preliminary to the next theorem, we would like to make the following two remarks
and a Lemma. The dual space of ¢y is symbolized with ¢jj which is isometrically isomorphic
to the sequence space £1. If a bounded operator T : ¢g — ¢¢ is defined via the matrix
A, then the adjoint operator of T' denoted by T™ : ¢ — ¢ is defined via the transpose
matrix A’

Lemma 2.8 ([17]). T has a dense range if and only if T* is one to one.
Theorem 2.9. Let a set S1 be defined as

Si={aeC:1<|p4|}.
Then, o,(G(r,s,t,u,v)*, cf) = Si.
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Proof. Let us suppose that G(r,s,t,u,v)*r = az in ¢ = ¢; where x # 6 = (0,0,0,...).
Let’s take a look the following system of linear equations

rxo + STr1 + tTe + uxrz + VT4 = T
rT1 + sxo + txrg + uxry + vT5 = axy
rT9 + sx3 + txrg + uxrs + vTrg = QX2
T3 + ST4 + tT5 + uxe + VX7 = X3

In case of a = r then xy # 0 can be chosen. Because of this, z = (x¢,0,0,0,...) becomes
an eigenvector corresponding to a = r.
So now let’s assume that a # r. Then, we obtain

Tp = Vbp_ow3 — [tby—g + Sbp—a + (r — a)bp_5] 2

(2.5)
— [sbp—g + (r — a)by_a]z1 — (r — a)by_320
for all n > 4, where
Qincaseofcpl#(pg#%?,?é(m
1 _1
p o L o n oyt
n = |71 Ty 1 Ty 1 1 i Ty 1 Ty 1 i
VG -RG @G w) GG e G o)
1 1
nt2 nt2
3 P4
+ I Ty 1 Ty 1 iy T 7T Ty 1 Ty 1 i
G- -G GG -G %)
forall n > 1,
@incaseofcplchzchsztmzw
nn+1)(n+2)
b, = 160 (2.6)
for all n > 1,
iii-) in case of ¢ = ¢; = ¢; = ¢, # ¢; where i,5,1,k € {1,2,3,4}
b ! { ! (n+1)(n+2) (n+2)
= n n ———n(n
(L = Ly et Pt
+ ! (n+1) 2
gn+1) =
(pn+ (pln
for all n > 1,
iv-) in case of ¢ = ¢; = p; # pr = ¢ where i, j, 1,k € {1,2,3}
b 1 (1 1><1+1> 2(1 1) (2.8)
= nl-—-— | —— ] - — - — )
T oL T\ @/ Nt ot oo\t g
TS !
forall n > 1,
v-) in case of ¢ = @; = p; # w1 # ¢ where i, j, [,k € {1,2,3} we write
11 1 2.1 1 3
oo 1 L (e w7 et a) T an
n v(l 1)2 n+1 1_ 1 (l_L)Q
¢ vk R PR
1 L 1w (2.9)
o G — %) 1
+ 3 i

for all n > 1.
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If o is a complex number satisfying the condition 1 < |4/, in this case, when g = 1,

T = i, To = @0%21 and x3 = %%Z are chosen, the following equality is obtained.
Vb 1 1
Ty = n3 2 _ [tbn—:s + 8bp—g + (r — a)bn_5} — = |:Sbn_3 + (r— a)b”_‘l} il
Pa P4 P4
—(r—a)by—3
_ 1 [—wi + (1 + 92+ 03)08 — (L1992 + 9193 + P203)04 + <p1902<p3}
oh (P1 — ©4) (w2 — 1) (03 — P4)
1

v
for all n > 4. As a result, since ﬁ < 1, we infer that = (z,) € ¢;. This shows us that
S1 C op(G(r,s,t,u,v)*, £1).
Let a € C that satisfies the inequality |p4] < 1. Under this condition, we should prove
that a ¢ 0,(G(r, s,t,u,v)*, 01).
The following equality can be written by using the (2.5) relation:
Tpt1 Vbp—123 — [thy—2 + sbp_3 + (r — @)bp_a]x2 — [sbp—2 + (r — a)bp_3]z1 — (r — @)bp_2z0
Tn Vbp—2x3 — [thy—3 + sby—a + (r — @)by_5]x2 — [sbp—3 + (r — @)by_a|z1 — (r — A)by_320
Vby— thy,— Sby,— Sby— b — bn—
bn_4 [(ra)bi;; r3 — ((rfa)bid; + (rfa)bs,z; + 1):62 - ((rfa)bj,4 + bn_i>x1 - bn_z ﬂ?(f|
b, _ Vb, — thy— sby— by by b
n=5 (T—a)bj,5 T3 — ((T—Ot)b:,75 + (r—a)b:75 + 1).21?2 - ((r—a)b2,5 + bn,:)'xl - bn,g o
Here, we would like to remind again that zj292324 =
and 2129 + 2123 + 2124 + 2923 + 2024 + 2324 = T_ta.
So now let’s analyze the behaviour of the roots ¢1, 2, 3 and 4.

M ‘%’ < ‘90]| < ’(Pk‘ < ‘@4‘ S 17 where iajak € {17273}7 that is ©1 7£ Y2 7é ©3 7&
w4. So, we obtain

S
r—«o

21+ 294+ 23+ 24 = —

v
r—ao’

. bn—3 o br—4 o 1 . brn—2 . brn—3 _ 1
lim = lim = —, lim = 1li =—
n—00 by, _4 n—00 b,,_s i n—oo bn—4 n—00 by, _g ©;
and
l. bn—l . bn72 . 1
im = lim = —
n—00 by, _4 n—o00 by, _s ©;
t 1 1 —
If mxg - <(Tia)¢? + maer T 1)302 - ((7’*2)@? + E)xl — g% = 0, so, we get
Ty = S%nxo. Thus, = (z,,) ¢ ¢1 since |p4] < 1 is satisfied. If the above equality does not
4
hold, we get
1
lim |2t = > 1.

Case 2: |¢| = |p1| = |p2| = |¢3] = |¢a] < 1. In this situation, ¢ = @1 = p2 = p3 = @4
and by using (2.5), we write

. b3 T br—4 o 1 . brn—2 - brn—3 o 1
lim = lim = —, lim = lim = —
n—00 by,_4 n—00 b,,_s p m—=00 b, _y n—00 b, _x @2
and
. bn—l . . bn_Q 1
lim =1l = —
n—00 b, _4 n—00 b, _s 903
Thus, we have
1
lim |2 = >1
n—oo | I, |sp’
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Case 3: |pj| < |¢il = |pr| = |pa| < 1, where i,5,k € {1,2,3}. In this situation,

©;j # @i = pr = @4 and by using (2.7), we write
. b3 T bn—a . 1 . bp—2 brn—3 _ 1
lim = lim = —, lim = lim =—
n—00 by, _4 n—00 b, _s pj Mmoo bp—4 n—00 by, _5 ©5
and
. bnfl . bn72 - 1
lim = lim = —
n—oo

Thus, we have

1
= — >1
|5
Case 4: |[¢| = |¢i| = |¢j| < |pr| = |pa| < 1, where 4, j, k € {1,2,3}. In this situation,
© = i = ¢j # ¢ = @4 and by using (2.8), we write

Tn41
Tn

lim

n—oo

bn73 . bn74 1

. o o . bn72 IRT] bn73 . 1
lim = lim = —, lim =1l = —
n—00 b, _4 n—00 b, _s p’ n—oo bn—a n—00 b, _g 902
and
. bn—l . . bn_Q . 1
lim = lim = —
n—00 b, _4 n—00 b, _s 903
Thus, we have
1
lim |22 = = s
n—oo | I, |@’

Case 5: |¢| = |¢i| = |¢j| < |ek] < |pa] <1, where i, j, k € {1,2,3}. In this situation,
© = i = ¢j # @i # @4 and by using (2.9), we write

. b3 T br—4 o 1 . brn—2 - brn—3 o 1
lim = lim = —, lim = lim = —
n—00 by, _4 n—00 b, _s p’ nm—oo bn—a n—00 b, _g @2
and
. bn—l . bn—2 1
lim = lim = —
N—00

Thus, we have

In

Case 6: |¢i| < |pj| < |grl = |pa| < 1, where 4,5,k € {1,2,3}. In this situation,
i # ¢j # ¢r = ¢4 and by using (2.9), we write
b

. . n—4 . bn—? bn—3 1
lim = li = lim =1 = —
n—00 by, _4 n—00 b,,_s (p; n—oo bn—a n—00 b, _g ©;
and
. bn—l o . bn72 . 1
lim =1 =—
n—00 by, _4 n—o00 by, _s ©;
Thus, we have
1
lim Intl) > 1.
n—oo | I, |801’

Case 7: |¢i| < |pj| = |erl < |pa] < 1, where 4,5,k € {1,2,3}. In this situation,
i # ¢j = ¢ # ¢4 and by using (2.9), we write

bn—3 bn—4 1

: : . bn—2 . bn—S 1
lim = lim = —, lim = lim =—
n—00 by, _4 n—00 b,,_s (p;  m—o0 bn—4 n—00 by, _g ©;
and
. bnfl . bnf2 1
lim = lim =

n—00 by, _4 n—00 b, _s ‘10?
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Thus, we have

1
|pil
Case 8: || = [p1] = [p2| = [p3] = [pa] < 1. In this situation, ¢ = 1 = p2 = @3 = @4

and by using (2.6), we write

> 1.

In

. br—3 T br—4 o 1 T brn—3 o 1
lim = lim =— = lim = —
n—0oo b,_4  n—00 b, _5 @ m—=oob, 4 n—0 b, g @2

and

Thus, we have

Tn

Case 9: || = [p1]| = |p2] = 3] = |pa| = 1. In this situation, ¢ = @1 = @2 = @3 = ¢u.
Let’s assume a € o0,(G(r,s,t,u,v)*,£1). This gives us that § # x € ¢;. Using the
expressions (2.5) and (2.6), the following equality can be written

(=1 —-2)(n—=3)r n 3 3n o n
= Gypn {n—?ﬁox?’ n_ ¥ M2t TeT T T
for all n > 4.
Since z = (z,,) € {1, that is lim, o |2Zn| = 0, we have two choices as follows. The
first of these x3 = 29 = x1 = x¢9 = 0 gives the result = 6 and the second of these

r3 = 8 a9 = 3 11 = T gives the result x, = Z&. These cause contradiction. Then,
@ ®

a ¢ op(G(r, s, t,u,v)*, £1) is obtained.

Considering d’Alembert test and cases 1, 2, 3, 4, 5, 6, 7, 8 together, we decide that
r = (x,) ¢ £1. In case 9, a € 0,(G(r,s,t,u,v)*, {1) gives rise to a contradiction. This
completes the proof of theorem. O

Theorem 2.10. Let the following set So be defined by
So={aeC:|py =1}
Then, the following two equalities are satisfied.
(1) o.(G(r,s,t,u,v),co) = Sy,
(I1) oc(G(r, s,t,u,v),co) = So.
Here, the set S1 is defined in the Theorem 2.9.

Proof. (I) It is known from Theorem 2.9 that o,(G(r,s,t,u,v)*,¢j) = Si. Therefore, it
is clear that G(r, s,t,u,v)* — al is not one to one, Vo € S;. When this result and Lemma
2.8 are evaluated together, it is concluded that G(r,s,t, u,v) — al does not have a dense
range, Vo € 5.

(IT) Since o(G(r, s,t,u,v), o) consists of three disjoint parts as follows:

o(G(r, s, t,u,v),co) = op(G(r,s,t,u,v),c0) Uoe(G(r, s, t,u,v),co) Uop(G(r,s,t,u,v),co)
one can conclude that o.(G(r,s,t,u,v),co) = Ss. d

Theorem 2.11. When a € o.(G(r, s,t,u,v),cp), it is satisfied that o € 1130(G(r, s,t,u,v), o)

Proof. Let’s take o € 0.(G(r,s,t,u,v),co). In this case, it can be deduced from Theorem
2.6 that (G(r,s,t,u,v) — al)~! is discontinuous and therefore (G(r,s,t,u,v) —al)~! is
unbounded, under the condition @1 = w9 = 3 = @4. Also from Theorem 2.9, we know
that G(r,s,t,u,v)* — al is one to one. Thus, by using Lemma 2.8, we conclude that
G(r,s,t,u,v) —al has a dense range.
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In the next step, it should be shown that G(r, s,t,u,v) —al is not surjective. Let’s take
y = (1,0,0,...) € ¢ provided (G(r,s,t,u,v) — al)xr = y. Then, we get z = (ay), where
ay, is defined as in the proof of Theorem 2.6. In conclusion, based on Theorem 2.6, we
obtain that = (a,) ¢ co in case of a belongs to the spectrum. This gives us the result
a € II0(G(r,s,t,u,v),cp). This completes the proof of theorem. O

Theorem 2.12. Let i1, 1o and p3 be random three roots of the equation sz3+tz>+uz+v =
0. Then, the followings hold.
(I) If the inequality |p;| < 1 is provided for every j € {1,2,3}, thenr € ITT,o(G(r,s,t,u,v),co),
(I) If the inequality |1 > 1 is provided for at least j € {1,2,3}, thenr € III,o(G(r,s,t,u,v),¢o)

Proof. According to Theorem 2.10(I), it is known that G(r,s,t,u,v) — al is in state
I1I, or Il in case of o = r. Moreover, the left inverse of G(0, s, t,u,v) symbolized by
H = (hyy) is defined by

n—k+1n—k—j+1

=i F o X T ey 1S k<n
mn - J= V=

0 , k=0ork>n+1

for all n, k € N. In this case, by using the Lemma 2.2, the followings can be written:

(I) When |p;| < 1 is provided for all j € {1,2,3}, then H = (hyn;) € B(cp), that is
G(0, s,t,u,v) has a continuous inverse. For this reason, r € II111o(G(r,s,t,u,v),cg), in
case of |p;| <1 for all j € {1,2,3}.

(II) When |p;| > 1 is provided for at least j € {1,2,3}, then H = (hy) ¢ B(co) that is
G(0, s,t,u,v) does not have a continuous inverse. For this reason, r € I1Is0(G(r, s,t,u,v), co)
whenever |p;| > 1 for at least j € {1,2,3}. This completes the proof of theorem. O

Theorem 2.13. Let o # r be given. If o belongs to o (G(r, s,t,u,v),co), then o belongs
to I1150(G(r,s,t,u,v),cp).

Proof. Assume that a # r and a € 0, (G(r, s,t,u,v), o). Then, the matrix G(r, s, t,u,v)—
al becomes a triangle which yields that it has an inverse. Moreover, it is known that
1 < |p4] in case of a € o,(G(r,s,t,u,v),co). This results in lim, o |a,| = 0o namely
G(r,s,t,u,v) — al has an unbounded inverse, (a,) used here is as defined in the proof of
Theorem 2.6. Also, we infer from Theorem 2.9 and Lemma 2.8 that G(r,s,t,u,v)* — al
is not one to one, namely G(r,s,t,u,v) — «l does not have a dense range. If these are
taken into consideration, we conclude that o € ITI,0(G(r,s,t,u,v),cp). This completes
the proof of theorem. O

Now, let us take a bounded operator such that L : ¢ — ¢, L(z) = Dz. Then, L* :
c* — ¢* acting on C @ ¢; is defined by

« _|x O
L_[n Dt}

where D = (d,) is an infinite matrix, D! is transpose of D, x = x(D) = lim, o0 3_j dnk —
> limy, o0 dp and n = () is a sequence defined by 1 = lim,, o dpyi for all k € N.
By applying this concept to the operator G(r,s,t,u,v) : ¢ — ¢, one can write

" r+s+t+u+tv 0
G(r,s,t,u,v)" = { 0 G(r,s,t,u,v)t
for G(r,s,t,u,v)* € B({y).

Theorem 2.14. Given a set Si as defined in Theorem 2.9. Then, o,(G(r,s,t,u,v)*, c*) =
SiU{r+s+t+u+uv}.
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Proof. By taking a sequence x # 0 = (0,0,0, ...), let us suppose that G(r, s, t,u,v)*r = ax
in £1. Then, by solving the following system of linear equations

(r+s+t+u+uv)rg = axg
rT1 + Sxo + trg + uxry +vr5 = axy
rTo + sx3 + txrg + uxs + VT = QX2
rx3 + ST4 + tT5 + uxe + VX7 = QX3

we obtain
Ty = Vbp_oy — [tby—g + sby—a + (r — a)by_5]x3
— [8bp—g + (r — @)bp—4]x2 — (r — @)bp_321

for all n > 5. Here, the definition of the sequence (b,,) is as in Theorem 2.9.

By taking xg # 0, one can obtain a = r + s + t + u. Because of this, a becomes an
eigenvalue according to eigenvector z = (x¢,0,0,...).

By taking o # r + s +t + u + v, one can obtain xg = 0. Then, if the method used in
Theorem 2.9 is followed similarly, x = (z,,) ¢ ¢1 is obtained. This completes the proof of
theorem. O

The fine spectrum of the quintet band matrix operator G(r,s,t,u,v) on ¢ can be de-
termined by following similar methods by substituting ¢ instead of ¢y in the relevant
Theorems above. Therefore, the next theorem is given without proof.

Theorem 2.15. Given two sets S and Sy as defined in Theorem 2.6 and Theorem 2.10,
in turn. Then, the following expressions are satisfied.
(i) (G(r s, t,u,v),c) = S,
(ii) op(G(r,s,t,u,v),¢)
(iii) 03,«( (r,s,t,u,v),c) =
(iv) oo(G(r, s, t,u,v),c) = Sg\{r—i-s—i-t—i-u—l—v},
(v) In case ofa gé o(G(r,s,t,u,v),c), G(r,s, t,u,v) — al € Iy is provided
)
i)
)
x)

,C ( (r,s,t,u, ), ),

(vi) If the inequality |pu;| <1 is pmmded for all] € {1 2,3}, thenr € [I11o(G(r,s,t,u,v),c),

(vii) If the inequality |p;| > 1 is provided for at least j € {1,2,3}, thenr € I11,0(G(r,s,t,u,v),c)
(viii) In case of a € 0.(G(r, s,t,u,v),c), a € [I,0(G(r,s,t,u,v),c) is provided

(ix) In case of a € o, (G(r, sjt,u,v),c) \{r}, a € III,0(G(r,s,t,u,v),c) is provided

where 1, pio and pz are random three roots of the equation sz 4 tz% +uz 4+ v = 0.

3. Conclusion

When the quintet band matrix operator G(r, s, t, u, v) defined here is examined, it is eas-
ily seen that G(1,—4,6,—4,1) = A* G(r,s,t,u,0) = Q(r,s,t,u), G(1,-3,3,—-1,0) = A3,
G(T, 07 07 U, 0) = D(T, 07 07 S)’ G(T‘, 5,1, Oa O) = B(h S, t)? G(la _27 17 07 0) = AZ’ G(T‘, S, 07 07 0) =
B(r,s) and G(1,-1,0,0,0) = A, where A*, Q(r,s,t,u), A%, B(r,s,t), A%, B(r,s) and A
are named fourth order difference, quadruple band, third order difference, triple band,
second order difference, double band and difference matrix, respectively. Because of this,
our results obtained from the quintet band matrix operator are more general and more
comprehensive than the results on [4], [5], [10], [13], [14] and [22]. Additionally, our study
includes the right shift and Zweier matrices [7].
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