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Abstract
In this work, we determine the fine spectrum of quintet band matrix operator G(r, s, t, u, v)
over c0 and c. The quintet band matrix G(r, s, t, u, v) is the general form of the matrices
D(r, 0, s, 0, t), ∆4, Q(r, s, t, u), ∆3, D(r, 0, 0, s), B(r, s, t), ∆2, B(r, s), ∆, right shift and
Zweier matrices, where ∆4, Q(r, s, t, u), ∆3, B(r, s, t), ∆2, B(r, s) and ∆ are called fourth
order difference, quadruple band, third order difference, triple band, second order differ-
ence, double band(generalized difference) and difference matrix, respectively.
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1. Introduction
w, which is the set of all sequences with each real (or complex) term is a vector space

under the operations of point-wise addition and multiplication with scalar. Each vector
subspace of w is called a sequence space. The well known spaces such that the spaces
of all bounded, null, convergent and absolutely p-summable sequences are symbolized by
ℓ∞, c0, c and ℓp, respectively, where p ∈ [1, ∞). A BK-space is a Banach sequence space
whose each of the maps pi : X −→ C defined by pi(x) = xi is continuous for all i ∈ N.

The sequence spaces ℓ∞, c0 and c are known to be BK-spaces with their norm defined
by ∥x∥∞ = supj∈N |xj | and ℓp is known to be a BK-space with its norm defined by

∥x∥p =

 ∞∑
j=0

|xj |p
 1

p

where 1 ≤ p < ∞.
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Given a sequence x = (xk) and an infinite matrix A = (ank) with complex entires, the
A-transform of x is defined by

(Ax)k =
∞∑

j=0
akjxj

and is considered to be convergent for all k ∈ N [30].
Given two sequence spaces X and Y and an infinite matrix A = (ank) with complex

entires, the matrix domain of A on the sequence space X is defined by

XA =
{

x = (xj) ∈ w : Ax ∈ X
}

and the class of all matrices provided Ax ∈ Y, ∀x ∈ X is denoted by (X : Y ).
Let two Banach spaces X and Y and a bounded linear operator T : X −→ Y be

given. Then, the sets D(T ), R(T ) and B(X, Y ) are called the domain of T , the range of
T and the set of all bounded linear operators from X into Y , respectively. Also, we use a
notation of the form B(X) = B(X, X).

Let an arbitrary Banach space X be given, X∗ be continuous dual of X and T ∈ B(X).
Then, T ∗, which is the adjoint of T , is defined on the X∗ as follows:

(T ∗f)(x) = f(Tx)
for all f ∈ X∗ and x ∈ X.

Let I be the identity operator on D(T ). Then, the perturbed operator on D(T ) is
defined by the equality

Tα = T − αI

where α ∈ C [19].
If Tα has an inverse, it is denoted by T −1

α and is called the resolvent operator of T
because it is used to solve the equation Tαx = y, namely x = T −1

α y [19].
Spectral theory deals with the properties of the operators Tα and T −1

α depending on
the complex number α [19].

For a given linear operator T : D(T ) ⊂ X −→ X, where X ̸= {θ} is a normed space,
a complex number α is called a regular value of T if the following conditions are met.

(i) T −1
α exists

(ii) T −1
α is bounded

(iii) The domain of T −1
α is dense in X.

The resolvent set of T consists of all regular values α of T and is denoted by ρ(T, X)
[19].

The set defined by σ(T, X) = C \ ρ(T, X) is called spectrum of T . A complex number
α is called a spectral value of T in case of α ∈ σ(T, X) [19]. The set σ(T, X) can be
divided into three disjoint sets as follows:

The set of all α values in which T −1
α does not exists is called the point spectrum(or

discrete spectrum) of T and is denoted by σp(T, X). Each of the α elements belonging to
the σp(T, X) is called an eigenvalue of T [19].

The set of all α values in which T −1
α satisfies (i) and (iii) but does not satisfy (ii) is

called the continuous spectrum of T and is denoted by σc(T, X) [19].
The set of all α values in which T −1

α satisfies (i) (and may be bounded or not) but
does not satisfy (iii) is called the residual spectrum of T and is denoted by σr(T, X) [19].

For a given Banach space X and a perturbed operator Tα, from the Goldberg [17],
some possibilities of Tα can be classified as follows:

(I) R(Tα) = X,
(II) R(Tα) ̸= R(Tα) = X,

(III) R(Tα) ̸= X,
(1) T −1

α exists and is continuous,
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(2) T −1
α exists but is discontinuous,

(3) Tα has no inverse.
Considering these possibilities together, one can obtain nine different states labelled

by I1, I2, I3, II1, II2, II3, III1, III2 and III3. If Tα ∈ III1, it is understood as Tα satisfies
(III) and (1). In case of Tα ∈ I1 or Tα ∈ II1 this means that α ∈ ρ(T, X). In case of an
operator belongs to state II2, it is written α ∈ II2σ(T, X).

Spectral theory is one of the important topics of functional analysis, quantum me-
chanics,...which is related to certain inverse operators. These types of operators are used
in the problem of solving equations for instance systems of linear algebraic equations,
differential equations, integral equations,.... Considering the wide range of uses of this
theory, many authors have conducted research on the spectra of certain difference matrix
operators on some known sequence spaces. For example, the difference matrix operator
∆ on the sequence spaces c0, c, ℓ1, ℓp, bv and bvp in [2–4, 6, 20], the double band matrix
operator B(r, s) on the sequence spaces c0, c, ℓ1, ℓp, bv and bvp in [5, 9, 16], the second
order difference matrix operator ∆2 on the sequence space c0 in [13], the triple band ma-
trix operator B(r, s, t) on the sequence spaces c0, c, ℓ1, ℓp, bv and bvp in [8, 14, 15], the
matrix operator D(r, 0, 0, s) on the sequence spaces c0, c, ℓp, bv0 and bvp in [22–25], the
quadruple band matrix operator Q(r, s, t, u) on the sequence spaces c0, c, ℓ1, ℓp, bv and bvp

in [10, 11] and the matrix operator D(r, 0, s, 0, t) on the sequence spaces c0 and c in [28].
Also, some authors have examined the spectral property of special operators defined on
some of known sequence spaces. For example, Cesáro and p-Cesáro operators in [1,12,18],
Rhaly operators in [31–34], weighed mean operators in [26] and factorable operators in
[27].

2. Fine Spectrum Of Quintet Band Matrix Operator On c0 And c

In this section, we work on the fine spectrum of the quintet band matrix operator
G(r, s, t, u, v) defined on the sequence spaces c0 and c.

Let’s start with some lemmas that are used in the next.

Lemma 2.1 ([29]). Let an infinite matrix A = (ank) be given. Then, A = (ank) ∈ (c : c)
if and only if

sup
n∈N

∑
k

|ank| < ∞ (2.1)

lim
n→∞

ank = µk for all k ∈ N (2.2)

lim
n→∞

∑
k

ank = µ (2.3)

Lemma 2.2 ( [29]). Let an infinite matrix A = (ank) be given. Then, A = (ank) ∈ (c0 : c0)
if and only if (2.1) and (2.2) hold with µk = 0, ∀k ∈ N.

Lemma 2.3 ([21]). Given a BK-space X and an infinite matrix A = (ank). Then,
for all A = (ank) ∈ (X : X), there exists a T ∈ B(X) such that T (x) = Ax, that is
(X : X) ⊂ B(X).

For given r, s, t, u, v ∈ C \ {0}, the quintet band matrix G = G(r, s, t, u, v) =
(gnk(r, s, t, u, v)) is defined by

gnk(r, s, t, u) =



r , k = n
s , k = n − 1
t , k = n − 2
u , k = n − 3
v , k = n − 4
0 , otherwise
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for all n, k ∈ N. Here, it is clearly seen that the equalities G(r, 0, t, 0, v) = D(r, 0, s, 0, t),
G(1, −4, 6, −4, 1) = ∆4, G(r, s, t, u, 0) = Q(r, s, t, u), G(1, −3, 3, −1, 0) = ∆3, G(r, 0, 0, u, 0) =
D(r, 0, 0, s), G(r, s, t, 0, 0) = B(r, s, t), G(1, −2, 1, 0, 0) = ∆2, G(r, s, 0, 0, 0) = B(r, s) and
G(1, −1, 0, 0, 0) = ∆ are satisfied, where ∆4, Q(r, s, t, u), ∆3, B(r, s, t), ∆2, B(r, s) and
∆ are called fourth order difference, quadruple band, third order difference, triple band,
second order difference, double band and difference matrix, respectively. Because of this,
our findings obtained from the quintet band matrix G(r, s, t, u, v) are more general and
more comprehensive than the findings obtained from the matrices defined above.

If the Lemmas 2.1 and 2.2 are applied to the quintet band matrix, we write

sup
n∈N

∑
k

|gnk(r, s, t, u, v)| = |r| + |s| + |t| + |u| + |v| < ∞,

lim
n→∞

gnk(r, s, t, u, v) = 0 for all k ∈ N,

lim
n→∞

∑
k

gnk(r, s, t, u, v) = r + s + t + u + v

These result in G(r, s, t, u, v) ∈ (c : c) and G(r, s, t, u, v) ∈ (c0 : c0).
Also, considering Lemma 2.3, the following Corollaries can be given.

Corollary 2.4. The operator defined by G(r, s, t, u, v) : c −→ c is bounded and linear
provided ∥G(r, s, t, u, v)∥(c:c) = |r| + |s| + |t| + |u| + |v|.

Corollary 2.5. The operator defined by G(r, s, t, u, v) : c0 −→ c0 is bounded and linear
provided ∥G(r, s, t, u, v)∥(c0:c0) = |r| + |s| + |t| + |u| + |v|.

Let α ∈ C and r, s, t, u, v ∈ C \ {0} be given. Then, according to the fundamental
theorem of algebra, the fourth degree equation

(r − α)z4 + sz3 + tz2 + uz + v = 0 (2.4)
has four roots so that z1 = − s

4(r−α) + 1
2 (−a − b), z2 = − s

4(r−α) + 1
2 (−a + b), z3 = − s

4(r−α) +
1
2 (a − c) and z4 = − s

4(r−α) + 1
2 (a + c) where

a =

√√√√ s2

4(r − α)2 − 2t

3(r − α) + d

3(r − α) 3√2
+ (t2 − 3su + 12(r − α)v) 3√2

3(r − α)d ,

b =

√√√√ s2

2(r − α)2 − 4t

3(r − α) − d

3(r − α) 3
√

2
− (t2 − 3su + 12(r − α)v) 3

√
2

3(r − α)d −
− s3

(r−α)3 + 4ts
(r−α)2 − 8u

(r−α)

4a
,

c =

√√√√ s2

2(r − α)2 − 4t

3(r − α) − d

3(r − α) 3
√

2
− (t2 − 3su + 12(r − α)v) 3

√
2

3(r − α)d +
− s3

(r−α)3 + 4ts
(r−α)2 − 8u

(r−α)

4a
,

d = 3
√

ξ +
√

ξ2 − 4 (t2 − 3su + 12(r − α)v)3,

and
ξ = 2t3 − 9sut − 72(r − α)vt + 27(r − α)u2 + 27s2v

Moreover, using a simple calculation, the following equalities can be obtained.

z1 + z2 + z3 + z4 = − s

r − α
,

z1z2 + z1z3 + z1z4 + z2z3 + z2z4 + z3z4 = t

r − α
,

z1z2z3 + z1z2z4 + z1z3z4 + z2z3z4 = − u

r − α
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and

z1z2z3z4 = v

r − α

where r ̸= α.
Before moving on the main results, we would like to draw attention to the fol-

lowing remark. Herein and throughout the rest of the study, unless otherwise stated,
we suppose that φ1, φ2, φ3 and φ4 are random four roots of the equation (2.4) and
max{|φ1|, |φ2|, |φ3|} ≤ |φ4|. If other possibilities of the roots of the above equation are
chosen, the same results can be obtained using a similar method.

Theorem 2.6. Let the set S be defined as follows

S = {α ∈ C : 1 ≤ |φ4|}.

Then, σ(G(r, s, t, u, v), c0) = S.

Proof. What is required for the proof is to show that (G(r, s, t, u, v) − αI)−1 exists and
belongs to B(c0) for α /∈ S and G(r, s, t, u, v) − αI has not an inverse for α ∈ S.

When α /∈ S is taken, it is clearly seen that it must be α ̸= r. Because of this reason,
G(r, s, t, u, v) − αI is a triangle, that is G(r, s, t, u, v) − αI uniquely has an inverse such
that

(G(r, s, t, u, v) − αI)−1 =


a1 0 0 0 . . .
a2 a1 0 0 . . .
a3 a2 a1 0 . . .
a4 a3 a2 a1 . . .
...

...
...

... . . .


where

a1 = 1
r − α

a2 = φ1 + φ2 + φ3 + φ4
r − α

=
− s

r−α

r − α
= − s

(r − α)2

a3 = φ2
1 + φ2

2 + φ2
3 + φ2

4 + φ1φ2 + φ1φ3 + φ1φ4 + φ2φ3 + φ2φ4 + φ3φ4
r − α

= 1
r − α

[
− s

r − α
(φ1 + φ2 + φ3 + φ4) − t

r − α

]
= 1

r − α

[
s2

(r − α)2 − t

r − α

]
= s2 − t(r − α)

(r − α)3
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a4 = 1
r − α

[
φ3

1 + φ3
2 + φ3

3 + φ3
4 + φ1φ2

2 + φ1φ2
3 + φ1φ2

4 + φ2φ2
1 + φ2φ2

3 + φ2φ2
4 + φ3φ2

1

+ φ3φ2
2 + φ3φ2

4 + φ4φ2
1 + φ4φ2

2 + φ4φ2
3 + φ1φ2φ3 + φ1φ2φ4 + φ1φ3φ4 + φ2φ3φ4

]
= 1

r − α

[
− s

r − α

[
(φ1 + φ2 + φ3 + φ4)2 − (φ1φ2 + φ1φ3 + φ1φ4 + φ2φ3 + φ2φ4 + φ3φ4)

]
− t

r − α
(φ1 + φ2 + φ3 + φ4) − u

r − α

]
= 1

r − α

[
− s3

(r − α)3 + 2st

(r − α)2 − u

r − α

]
= −s3 + 2st(r − α) − u(r − α)2

(r − α)4

a5 = 1
r − α

[
φ4

1 + φ4
2 + φ4

3 + φ4
4 + φ3

1(φ2 + φ3 + φ4) + φ3
2(φ1 + φ3 + φ4) + φ3

3(φ1 + φ2 + φ4)

+ φ3
4(φ1 + φ2 + φ3) + φ2

1(φ2φ3 + φ2φ4 + φ3φ4) + φ2
2(φ1φ3 + φ1φ4 + φ3φ4)

+ φ2
3(φ1φ2 + φ1φ4 + φ2φ4) + φ2

4(φ1φ2 + φ1φ3 + φ2φ3) + φ2
1φ2

2 + φ2
1φ2

3 + φ2
1φ2

4 + φ2
2φ2

3

+ φ2
2φ2

4 + φ2
3φ2

4 + φ1φ2φ3φ4

= − s

(r − α)2

[
(φ1 + φ2 + φ3 + φ4)3 − 3

[
(φ1 + φ2 + φ3 + φ4)(φ1φ2 + φ1φ3 + φ1φ4

+ φ2φ3 + φ2φ4 + φ3φ4) − 3(φ1φ2φ3 + φ1φ2φ4 + φ1φ3φ4 + φ2φ3φ4)
]

− 6(φ1φ2φ3

+ φ1φ2φ4 + φ1φ3φ4 + φ2φ3φ4)
]

+ 1
r − α

[
(φ1φ2 + φ1φ3 + φ1φ4 + φ2φ3 + φ2φ4 + φ3φ4)2

+ u

r − α
(φ1 + φ2 + φ3 + φ4) − φ1φ2φ3φ4

]

= − s

(r − α)2

[(
− s

r − α

)3
− 3

(
− s

r − α

t

r − α
+ 3 u

r − α

)
+ 6 u

r − α

]

+ 1
r − α

[(
t

r − α

)2
− u

r − α

s

r − α
− v

r − α

]
= s4 − 3(r − α)s2t + (r − α)2(t2 + 2su) − (r − α)3v

(r − α)5

...

and for all n ≥ 1, according to behavior of the roots φ1, φ2, φ3 and φ4 of equation (2.4),
an can be defined as follows:

Case 1: if φ1 ̸= φ2 ̸= φ3 ̸= φ4, we write

an = 1
r − α

[
φn+2

1
(φ1 − φ2)(φ1 − φ3)(φ1 − φ4) + φn+2

2
(φ2 − φ1)(φ2 − φ3)(φ2 − φ4)

+ φn+2
3

(φ3 − φ1)(φ3 − φ2)(φ3 − φ4) + φn+2
4

(φ4 − φ1)(φ4 − φ2)(φ4 − φ3)

]
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According to the suppositions α /∈ S and max{|φ1|, |φ2|, |φ3|} ≤ |φ4|, the inequalities
|φ1| < 1, |φ2| < 1, |φ3| < 1 and |φ4| < 1 are satisfied, which gives us the result

lim
n→∞

an = lim
n→∞

1
r − α

[
φn+2

1
(φ1 − φ2)(φ1 − φ3)(φ1 − φ4) + φn+2

2
(φ2 − φ1)(φ2 − φ3)(φ2 − φ4)

+ φn+2
3

(φ3 − φ1)(φ3 − φ2)(φ3 − φ4) + φn+2
4

(φ4 − φ1)(φ4 − φ2)(φ4 − φ3)

]
= 0

Case 2: if φ1 = φ2 = φ3 = φ4 = φ, we write

an = φn−1n(n + 1)(n + 2)
6(r − α)

According to the suppositions above, the inequality |φ| < 1 is satisfied, which gives us the
results

lim
n→∞

an = lim
n→∞

φn−1n(n + 1)(n + 2)
6(r − α) = 0

and (an) ∈ ℓ1.
Case 3: if φ = φi = φj ̸= φl = φ4 where i, j, l ∈ {1, 2, 3} we write

an = 1
(r − α)(φ − φ4)3

[
n(φ − φ4)(φn+1 + φn+1

4 ) − 2φφ4(φn − φn
4 )

]
According to the suppositions above, the inequalities |φ| < 1 and |φ4| < 1 are satisfied,
which gives us the results

lim
n→∞

an = lim
n→∞

1
(r − α)(φ − φ4)3

[
n(φ − φ4)(φn+1 + φn+1

4 ) − 2φφ4(φn − φn
4 )

]
= 0

and (an) ∈ ℓ1.
Case 4: if φ = φ1 = φ2 = φ3 ̸= φ4, we write

an = 1
2(r − α)(φ − φ4)3

[
φnφ2

4(n + 1)(n + 2) − 2φn+1φ4n(n + 2)

+ φn+2n(n + 1) − 2φn+2
4

]
According to the suppositions above, the inequalities |φ| < 1 and |φ4| < 1 are satisfied,
which gives us the results

lim
n→∞

an = lim
n→∞

1
2(r − α)(φ − φ4)3

[
φnφ2

4(n + 1)(n + 2) − 2φn+1φ4n(n + 2)

+ φn+2n(n + 1) − 2φn+2
4

]
= 0

and (an) ∈ ℓ1.
Case 5: if φi = φj = φ4 ̸= φl where i, j, l ∈ {1, 2, 3} we write

an = 1
2(r − α)(φ4 − φl)3

[
φn

4 φ2
l (n + 1)(n + 2) − 2φn+1

4 φln(n + 2)

+ φn+2
4 n(n + 1) − 2φn+2

l

]



8 M.C. Bişgin, K.Topal

According to the suppositions above, the inequalities |φ| < 1 and |φ4| < 1 are satisfied,
which gives us the results

lim
n→∞

an = lim
n→∞

1
2(r − α)(φ4 − φl)3

[
φn

4 φ2
l (n + 1)(n + 2) − 2φn+1

4 φln(n + 2)

+ φn+2
4 n(n + 1) − 2φn+2

l

]
= 0

and (an) ∈ ℓ1.
Case 6: if φ = φi = φj ̸= φl ̸= φ4 where i, j, l ∈ {1, 2, 3} we write

an = 1
(r − α)(φ − φ4)2

[
φn+1

(
(n − 1)φ − φ4

φ − φl
+ φ2 − 2φ(φ4 + φl) + 3φ4φl

(φ − φl)2

)
+ φn+2

4
φ4 − φl

− (φ − φ4)2

(φ − φl)2(φ4 − φl)
φn+2

l

]

According to the suppositions above, the inequalities |φ| < 1, |φl| < 1 and |φ4| < 1 are
satisfied, which gives us the results

lim
n→∞

an = lim
n→∞

1
(r − α)(φ − φ4)2

[
φn+1

(
(n − 1)φ − φ4

φ − φl
+ φ2 − 2φ(φ4 + φl) + 3φ4φl

(φ − φl)2

)
+ φn+2

4
φ4 − φl

− (φ − φ4)2

(φ − φl)2(φ4 − φl)
φn+2

l

]
= 0

and (an) ∈ ℓ1.
Case 7: if φi = φ4 ̸= φl ̸= φj where i, j, l ∈ {1, 2, 3} we write

an = 1
(r − α)(φ4 − φj)2

[
φn+1

4

(
(n − 1)φ4 − φj

φ4 − φl
+ φ2

4 − 2φ4(φj + φl) + 3φjφl

(φ4 − φl)2

)

+
φn+2

j

φj − φl
− (φ4 − φj)2

(φ4 − φl)2(φj − φl)
φn+2

l

]

According to the suppositions above, the inequalities |φj | < 1, |φl| < 1 and |φ4| < 1 are
satisfied, which gives us the results

lim
n→∞

an = lim
n→∞

1
(r − α)(φ4 − φj)2

[
φn+1

4

(
(n − 1)φ4 − φj

φ4 − φl
+ φ2

4 − 2φ4(φj + φl) + 3φjφl

(φ4 − φl)2

)

+
φn+2

j

φj − φl
− (φ4 − φj)2

(φ4 − φl)2(φj − φl)
φn+2

l

]
= 0

and (an) ∈ ℓ1.
According to the results above, an → 0(n → ∞) and (an) ∈ ℓ1 are provided when α /∈ S.
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Now, considering that the inequalities |φ1| < 1, |φ2| < 1, |φ3| < 1 and |φ4| < 1 are
satisfied, we can write

∥(G(r, s, t, u, v) − αI)−1∥(c0:c0) = sup
n∈N

n∑
k=1

|ak| =
∞∑

k=1
|ak|

≤ 1
|r − α||(φ1 − φ2)(φ1 − φ3)(φ1 − φ4)|

∞∑
k=1

|φ1|k+2

+ 1
|r − α||(φ2 − φ1)(φ2 − φ3)(φ2 − φ4)|

∞∑
k=1

|φ2|k+2

+ 1
|r − α||(φ3 − φ1)(φ3 − φ2)(φ3 − φ4)|

∞∑
k=1

|φ3|k+2

+ 1
|r − α||(φ4 − φ1)(φ4 − φ2)(φ4 − φ3)|

∞∑
k=1

|φ4|k+2

< ∞.

This result shows us that σ(G(r, s, t, u, v), c0) ⊂ S.
Now, let’s take α ∈ S. In case of α = r, we obtain G(r, s, t, u, v) − αI = G(0, s, t, u, v).

In that case, since G(0, s, t, u, v) does not have a dense range, it is not invertible.
When φ1 = φ2 = φ3 = φ4 = φ, we have

an = φn−1n(n + 1)(n + 2)
6(r − α)

for all n ≥ 1. As per the assumption α ∈ S, the inequality |φ| ≥ 1 is satisfied. Because of
this, an ↛ 0, that is (G(r, s, t, u, v) − αI)−1 is not in B(c0).

When φ = φi = φj ̸= φl = φ4 where i, j, l ∈ {1, 2, 3}, we have

an = 1
(r − α)(φ − φ4)3

[
n(φ − φ4)(φn+1 + φn+1

4 ) − 2φφ4(φn − φn
4 )

]
for all n ≥ 1. As per the assumption α ∈ S, the inequality |φ4| ≥ 1 is satisfied. Because
of this, an ↛ 0, that is (G(r, s, t, u, v) − αI)−1 is not in B(c0).

When φ = φ1 = φ2 = φ3 ̸= φ4 we have

an = 1
2(r − α)(φ − φ4)3

[
φnφ2

4(n + 1)(n + 2) − 2φn+1φ4n(n + 2)

+ φn+2n(n + 1) − 2φn+2
4

]
for all n ≥ 1. As per the assumption α ∈ S, the inequality |φ4| ≥ 1 is satisfied. Because
of this, an ↛ 0, that is (G(r, s, t, u, v) − αI)−1 is not in B(c0).

When φi = φj = φ4 ̸= φl where i, j, l ∈ {1, 2, 3} we have

an = 1
2(r − α)(φ4 − φl)3

[
φn

4 φ2
l (n + 1)(n + 2) − 2φn+1

4 φln(n + 2)

+ φn+2
4 n(n + 1) − 2φn+2

l

]
for all n ≥ 1. As per the assumption α ∈ S, the inequality |φ4| ≥ 1 is satisfied. Because
of this, an ↛ 0, that is (G(r, s, t, u, v) − αI)−1 is not in B(c0).
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When φ = φi = φj ̸= φl ̸= φ4 where i, j, l ∈ {1, 2, 3} we write

an = 1
(r − α)(φ − φ4)2

[
φn+1

(
(n − 1)φ − φ4

φ − φl
+ φ2 − 2φ(φ4 + φl) + 3φ4φl

(φ − φl)2

)
+ φn+2

4
φ4 − φl

− (φ − φ4)2

(φ − φl)2(φ4 − φl)
φn+2

l

]
for all n ≥ 1. As per the assumption α ∈ S, the inequality |φ4| ≥ 1 is satisfied. Because
of this, an ↛ 0, that is (G(r, s, t, u, v) − αI)−1 is not in B(c0).

When φi = φ4 ̸= φl ̸= φj where i, j, l ∈ {1, 2, 3} we write

an = 1
(r − α)(φ4 − φj)2

[
φn+1

4

(
(n − 1)φ4 − φj

φ4 − φl
+ φ2

4 − 2φ4(φj + φl) + 3φjφl

(φ4 − φl)2

)

+
φn+2

j

φj − φl
− (φ4 − φj)2

(φ4 − φl)2(φj − φl)
φn+2

l

]
for all n ≥ 1. As per the assumption α ∈ S, the inequality |φ4| ≥ 1 is satisfied. Because
of this, an ↛ 0, that is (G(r, s, t, u, v) − αI)−1 is not in B(c0).

So, we may assume that α ̸= r and φ1 ̸= φ2 ̸= φ3 ̸= φ4.
Since α ̸= r, G(r, s, t, u, v) − αI is a triangular matrix. In addition, because of

φ1 ̸= φ2 ̸= φ3 ̸= φ4, from our supposition, max{|φ1|, |φ2|, |φ3|} ≤ |φ4| can be written,
which gives us the result

an = 1
r − α

[
φn+2

1
(φ1 − φ2)(φ1 − φ3)(φ1 − φ4) + φn+2

2
(φ2 − φ1)(φ2 − φ3)(φ2 − φ4)

+ φn+2
3

(φ3 − φ1)(φ3 − φ2)(φ3 − φ4) + φn+2
4

(φ4 − φ1)(φ4 − φ2)(φ4 − φ3)

]
↛ 0

that is
∑∞

m=1 |am| diverges. Therefore, (G(r, s, t, u, v) − αI)−1 is not in B(c0). This shows
us that the coverage S ⊂ σ(G(r, s, t, u, v), c0) is provided, namely S = σ(G(r, s, t, u, v), c0).
This completes the proof of theorem. □

Theorem 2.7. σp(G(r, s, t, u, v), c0) = ∅

Proof. Considering x ̸= θ = (0, 0, 0, ...), let us suppose that G(r, s, t, u, v)x = αx in c0.
Let the first non-zero term in the entries of the sequence x = (xn) be xn0 . Then, if we
solve the equation below

vxn0−4 + uxn0−3 + txn0−2 + sxn0−1 + rxn0 = αxn0

we obtain that α = r. Moreover, by solving the next equation
vxn0−3 + uxn0−2 + txn0−1 + sxn0 + rxn0+1 = αxn0+1

xn0 = 0 is obtained, which contradicts the supposition xn0 ̸= 0. This completes the proof
of theorem. □

As a preliminary to the next theorem, we would like to make the following two remarks
and a Lemma. The dual space of c0 is symbolized with c∗

0 which is isometrically isomorphic
to the sequence space ℓ1. If a bounded operator T : c0 −→ c0 is defined via the matrix
A, then the adjoint operator of T denoted by T ∗ : c∗

0 −→ c∗
0 is defined via the transpose

matrix At.

Lemma 2.8 ([17]). T has a dense range if and only if T ∗ is one to one.

Theorem 2.9. Let a set S1 be defined as
S1 = {α ∈ C : 1 < |φ4|}.

Then, σp(G(r, s, t, u, v)∗, c∗
0) = S1.
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Proof. Let us suppose that G(r, s, t, u, v)∗x = αx in c∗
0

∼= ℓ1 where x ̸= θ = (0, 0, 0, ...).
Let’s take a look the following system of linear equations

rx0 + sx1 + tx2 + ux3 + vx4 = αx0
rx1 + sx2 + tx3 + ux4 + vx5 = αx1
rx2 + sx3 + tx4 + ux5 + vx6 = αx2
rx3 + sx4 + tx5 + ux6 + vx7 = αx3

...

In case of α = r then x0 ̸= 0 can be chosen. Because of this, x = (x0, 0, 0, 0, ...) becomes
an eigenvector corresponding to α = r.

So now let’s assume that α ̸= r. Then, we obtain

xn = vbn−2x3 −
[
tbn−3 + sbn−4 + (r − α)bn−5

]
x2

−
[
sbn−3 + (r − α)bn−4

]
x1 − (r − α)bn−3x0

(2.5)

for all n ≥ 4, where
i-) in case of φ1 ̸= φ2 ̸= φ3 ̸= φ4

bn = 1
v

[ 1
φn+2

1( 1
φ1

− 1
φ2

)( 1
φ1

− 1
φ3

)( 1
φ1

− 1
φ4

) +
1

φn+2
2( 1

φ2
− 1

φ1

)( 1
φ2

− 1
φ3

)( 1
φ2

− 1
φ4

)
+

1
φn+2

3( 1
φ3

− 1
φ1

)( 1
φ3

− 1
φ2

)( 1
φ3

− 1
φ4

) +
1

φn+2
4( 1

φ4
− 1

φ1

)( 1
φ4

− 1
φ2

)( 1
φ4

− 1
φ3

)]
for all n ≥ 1,

ii-) in case of φ1 = φ2 = φ3 = φ4 = φ

bn = n(n + 1)(n + 2)
φn−16v

(2.6)

for all n ≥ 1,
iii-) in case of φ = φi = φj = φk ̸= φl where i, j, l, k ∈ {1, 2, 3, 4}

bn = 1
2v

( 1
φ − 1

φl

)3

[ 1
φnφ2

l

(n + 1)(n + 2) − 2
φn+1φl

n(n + 2)

+ 1
φn+2 n(n + 1) − 2

φn+2
l

] (2.7)

for all n ≥ 1,
iv-) in case of φ = φi = φj ̸= φk = φl where i, j, l, k ∈ {1, 2, 3}

bn = 1
v

( 1
φ − 1

φl

)3

[
n

( 1
φ

− 1
φl

) ( 1
φn+1 + 1

φn+1
l

)
− 2

φφl

( 1
φn

− 1
φn

l

)]
(2.8)

for all n ≥ 1,
v-) in case of φ = φi = φj ̸= φl ̸= φk where i, j, l, k ∈ {1, 2, 3} we write

bn = 1
v( 1

φ − 1
φk

)2

[ 1
φn+1

(
(n − 1)

1
φ − 1

φk

1
φ − 1

φl

+
1

φ2 − 2
φ( 1

φk
+ 1

φl
) + 3

φkφl

( 1
φ − 1

φl
)2

)

+
1

φn+2
k

1
φk

− 1
φl

−
( 1

φ − 1
φk

)2

( 1
φ − 1

φl
)2( 1

φk
− 1

φl
)

1
φn+2

l

] (2.9)

for all n ≥ 1.
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If α is a complex number satisfying the condition 1 < |φ4|, in this case, when x0 = 1,
x1 = 1

φ4
, x2 = 1

φ2
4

and x3 = 1
φ3

4
are chosen, the following equality is obtained.

xn = vbn−2
φ3

4
−

[
tbn−3 + sbn−4 + (r − α)bn−5

] 1
φ2

4
−

[
sbn−3 + (r − α)bn−4

] 1
φ4

− (r − α)bn−3

= 1
φn

4

[−φ3
4 + (φ1 + φ2 + φ3)φ2

4 − (φ1φ2 + φ1φ3 + φ2φ3)φ4 + φ1φ2φ3
(φ1 − φ4)(φ2 − φ4)(φ3 − φ4)

]
= 1

φn
4

for all n ≥ 4. As a result, since 1
|φ4| < 1, we infer that x = (xn) ∈ ℓ1. This shows us that

S1 ⊂ σp(G(r, s, t, u, v)∗, ℓ1).
Let α ∈ C that satisfies the inequality |φ4| ≤ 1. Under this condition, we should prove

that α /∈ σp(G(r, s, t, u, v)∗, ℓ1).
The following equality can be written by using the (2.5) relation:

xn+1
xn

=
vbn−1x3 −

[
tbn−2 + sbn−3 + (r − α)bn−4

]
x2 −

[
sbn−2 + (r − α)bn−3

]
x1 − (r − α)bn−2x0

vbn−2x3 −
[
tbn−3 + sbn−4 + (r − α)bn−5

]
x2 −

[
sbn−3 + (r − α)bn−4

]
x1 − (r − α)bn−3x0

= bn−4
bn−5

[ vbn−1
(r−α)bn−4

x3 −
(

tbn−2
(r−α)bn−4

+ sbn−3
(r−α)bn−4

+ 1
)
x2 −

(
sbn−2

(r−α)bn−4
+ bn−3

bn−4

)
x1 − bn−2

bn−4
x0

vbn−2
(r−α)bn−5

x3 −
(

tbn−3
(r−α)bn−5

+ sbn−4
(r−α)bn−5

+ 1
)
x2 −

(
sbn−3

(r−α)bn−5
+ bn−4

bn−5

)
x1 − bn−3

bn−5
x0

]
.

Here, we would like to remind again that z1z2z3z4 = v
r−α , z1 + z2 + z3 + z4 = − s

r−α

and z1z2 + z1z3 + z1z4 + z2z3 + z2z4 + z3z4 = t
r−α .

So now let’s analyze the behaviour of the roots φ1, φ2, φ3 and φ4.
Case 1: |φi| < |φj | < |φk| < |φ4| ≤ 1, where i, j, k ∈ {1, 2, 3}, that is φ1 ̸= φ2 ̸= φ3 ̸=

φ4. So, we obtain

lim
n→∞

bn−3
bn−4

= lim
n→∞

bn−4
bn−5

= 1
φi

, lim
n→∞

bn−2
bn−4

= lim
n→∞

bn−3
bn−5

= 1
φ2

i

and
lim

n→∞
bn−1
bn−4

= lim
n→∞

bn−2
bn−5

= 1
φ3

i

If v
(r−α)φ3

i
x3 −

(
t

(r−α)φ2
i

+ s
(r−α)φi

+ 1
)
x2 −

(
s

(r−α)φ2
i

+ 1
φi

)
x1 − 1

φ2
i
x0 = 0, so, we get

xn = 1
φn

4
x0. Thus, x = (xn) /∈ ℓ1 since |φ4| ≤ 1 is satisfied. If the above equality does not

hold, we get

lim
n→∞

∣∣∣∣xn+1
xn

∣∣∣∣ = 1
|φi|

> 1.

Case 2: |φ| = |φ1| = |φ2| = |φ3| = |φ4| ≤ 1. In this situation, φ = φ1 = φ2 = φ3 = φ4
and by using (2.5), we write

lim
n→∞

bn−3
bn−4

= lim
n→∞

bn−4
bn−5

= 1
φ

, lim
n→∞

bn−2
bn−4

= lim
n→∞

bn−3
bn−5

= 1
φ2

and
lim

n→∞
bn−1
bn−4

= lim
n→∞

bn−2
bn−5

= 1
φ3

Thus, we have

lim
n→∞

∣∣∣∣xn+1
xn

∣∣∣∣ = 1
|φ|

> 1.
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Case 3: |φj | < |φi| = |φk| = |φ4| ≤ 1, where i, j, k ∈ {1, 2, 3}. In this situation,
φj ̸= φi = φk = φ4 and by using (2.7), we write

lim
n→∞

bn−3
bn−4

= lim
n→∞

bn−4
bn−5

= 1
φj

, lim
n→∞

bn−2
bn−4

= lim
n→∞

bn−3
bn−5

= 1
φ2

j

and
lim

n→∞
bn−1
bn−4

= lim
n→∞

bn−2
bn−5

= 1
φ3

j

Thus, we have

lim
n→∞

∣∣∣∣xn+1
xn

∣∣∣∣ = 1
|φj |

> 1.

Case 4: |φ| = |φi| = |φj | < |φk| = |φ4| ≤ 1, where i, j, k ∈ {1, 2, 3}. In this situation,
φ = φi = φj ̸= φk = φ4 and by using (2.8), we write

lim
n→∞

bn−3
bn−4

= lim
n→∞

bn−4
bn−5

= 1
φ

, lim
n→∞

bn−2
bn−4

= lim
n→∞

bn−3
bn−5

= 1
φ2

and
lim

n→∞
bn−1
bn−4

= lim
n→∞

bn−2
bn−5

= 1
φ3

Thus, we have

lim
n→∞

∣∣∣∣xn+1
xn

∣∣∣∣ = 1
|φ|

> 1.

Case 5: |φ| = |φi| = |φj | < |φk| < |φ4| ≤ 1, where i, j, k ∈ {1, 2, 3}. In this situation,
φ = φi = φj ̸= φk ̸= φ4 and by using (2.9), we write

lim
n→∞

bn−3
bn−4

= lim
n→∞

bn−4
bn−5

= 1
φ

, lim
n→∞

bn−2
bn−4

= lim
n→∞

bn−3
bn−5

= 1
φ2

and
lim

n→∞
bn−1
bn−4

= lim
n→∞

bn−2
bn−5

= 1
φ3

Thus, we have

lim
n→∞

∣∣∣∣xn+1
xn

∣∣∣∣ = 1
|φ|

> 1.

Case 6: |φi| < |φj | < |φk| = |φ4| ≤ 1, where i, j, k ∈ {1, 2, 3}. In this situation,
φi ̸= φj ̸= φk = φ4 and by using (2.9), we write

lim
n→∞

bn−3
bn−4

= lim
n→∞

bn−4
bn−5

= 1
φi

, lim
n→∞

bn−2
bn−4

= lim
n→∞

bn−3
bn−5

= 1
φ2

i

and
lim

n→∞
bn−1
bn−4

= lim
n→∞

bn−2
bn−5

= 1
φ3

i

Thus, we have

lim
n→∞

∣∣∣∣xn+1
xn

∣∣∣∣ = 1
|φi|

> 1.

Case 7: |φi| < |φj | = |φk| < |φ4| ≤ 1, where i, j, k ∈ {1, 2, 3}. In this situation,
φi ̸= φj = φk ̸= φ4 and by using (2.9), we write

lim
n→∞

bn−3
bn−4

= lim
n→∞

bn−4
bn−5

= 1
φi

, lim
n→∞

bn−2
bn−4

= lim
n→∞

bn−3
bn−5

= 1
φ2

i

and
lim

n→∞
bn−1
bn−4

= lim
n→∞

bn−2
bn−5

= 1
φ3

i



14 M.C. Bişgin, K.Topal

Thus, we have
lim

n→∞

∣∣∣∣xn+1
xn

∣∣∣∣ = 1
|φi|

> 1.

Case 8: |φ| = |φ1| = |φ2| = |φ3| = |φ4| < 1. In this situation, φ = φ1 = φ2 = φ3 = φ4
and by using (2.6), we write

lim
n→∞

bn−3
bn−4

= lim
n→∞

bn−4
bn−5

= 1
φ

, lim
n→∞

bn−2
bn−4

= lim
n→∞

bn−3
bn−5

= 1
φ2

and
lim

n→∞
bn−1
bn−4

= lim
n→∞

bn−2
bn−5

= 1
φ3

Thus, we have
lim

n→∞

∣∣∣∣xn+1
xn

∣∣∣∣ = 1
|φ|

> 1.

Case 9: |φ| = |φ1| = |φ2| = |φ3| = |φ4| = 1. In this situation, φ = φ1 = φ2 = φ3 = φ4.
Let’s assume α ∈ σp(G(r, s, t, u, v)∗, ℓ1). This gives us that θ ̸= x ∈ ℓ1. Using the
expressions (2.5) and (2.6), the following equality can be written

xn = (n − 1)(n − 2)(n − 3)
6φn

[ n

n − 3φ3x3 − 3n

n − 2φ2x2 + 3n

n − 1φx1 − x0
]

for all n ≥ 4.
Since x = (xn) ∈ ℓ1, that is limn→∞ |xn| = 0, we have two choices as follows. The

first of these x3 = x2 = x1 = x0 = 0 gives the result x = θ and the second of these
x3 = x0

φ3 , x2 = x0
φ2 , x1 = x0

φ gives the result xn = x0
φn . These cause contradiction. Then,

α /∈ σp(G(r, s, t, u, v)∗, ℓ1) is obtained.
Considering d’Alembert test and cases 1, 2, 3, 4, 5, 6, 7, 8 together, we decide that

x = (xn) /∈ ℓ1. In case 9, α ∈ σp(G(r, s, t, u, v)∗, ℓ1) gives rise to a contradiction. This
completes the proof of theorem. □

Theorem 2.10. Let the following set S2 be defined by
S2 = {α ∈ C : |φ4| = 1}.

Then, the following two equalities are satisfied.
(I) σr(G(r, s, t, u, v), c0) = S1,

(II) σc(G(r, s, t, u, v), c0) = S2.
Here, the set S1 is defined in the Theorem 2.9.

Proof. (I) It is known from Theorem 2.9 that σp(G(r, s, t, u, v)∗, c∗
0) = S1. Therefore, it

is clear that G(r, s, t, u, v)∗ − αI is not one to one, ∀α ∈ S1. When this result and Lemma
2.8 are evaluated together, it is concluded that G(r, s, t, u, v) − αI does not have a dense
range, ∀α ∈ S1.

(II) Since σ(G(r, s, t, u, v), c0) consists of three disjoint parts as follows:
σ(G(r, s, t, u, v), c0) = σp(G(r, s, t, u, v), c0) ∪ σc(G(r, s, t, u, v), c0) ∪ σr(G(r, s, t, u, v), c0)

one can conclude that σc(G(r, s, t, u, v), c0) = S2. □

Theorem 2.11. When α ∈ σc(G(r, s, t, u, v), c0), it is satisfied that α ∈ II2σ(G(r, s, t, u, v), c0)
.

Proof. Let’s take α ∈ σc(G(r, s, t, u, v), c0). In this case, it can be deduced from Theorem
2.6 that (G(r, s, t, u, v) − αI)−1 is discontinuous and therefore (G(r, s, t, u, v) − αI)−1 is
unbounded, under the condition φ1 = φ2 = φ3 = φ4. Also from Theorem 2.9, we know
that G(r, s, t, u, v)∗ − αI is one to one. Thus, by using Lemma 2.8, we conclude that
G(r, s, t, u, v) − αI has a dense range.
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In the next step, it should be shown that G(r, s, t, u, v)−αI is not surjective. Let’s take
y = (1, 0, 0, ...) ∈ c0 provided (G(r, s, t, u, v) − αI)x = y. Then, we get x = (an), where
an is defined as in the proof of Theorem 2.6. In conclusion, based on Theorem 2.6, we
obtain that x = (an) /∈ c0 in case of α belongs to the spectrum. This gives us the result
α ∈ II2σ(G(r, s, t, u, v), c0). This completes the proof of theorem. □

Theorem 2.12. Let µ1, µ2 and µ3 be random three roots of the equation sz3+tz2+uz+v =
0. Then, the followings hold.

(I) If the inequality |µj | < 1 is provided for every j ∈ {1, 2, 3}, then r ∈ III1σ(G(r, s, t, u, v), c0),
(II) If the inequality |µj | ≥ 1 is provided for at least j ∈ {1, 2, 3}, then r ∈ III2σ(G(r, s, t, u, v), c0)

Proof. According to Theorem 2.10(I), it is known that G(r, s, t, u, v) − αI is in state
III1 or III2 in case of α = r. Moreover, the left inverse of G(0, s, t, u, v) symbolized by
H = (hnk) is defined by

hnk =


1
s

n−k+1∑
j=0

n−k−j+1∑
ν=0

µn−k−j−ν+1
1 µν

2µj
3 , 1 ≤ k ≤ n + 1

0 , k = 0 or k > n + 1

for all n, k ∈ N. In this case, by using the Lemma 2.2, the followings can be written:
(I) When |µj | < 1 is provided for all j ∈ {1, 2, 3}, then H = (hnk) ∈ B(c0), that is

G(0, s, t, u, v) has a continuous inverse. For this reason, r ∈ III1σ(G(r, s, t, u, v), c0), in
case of |µj | < 1 for all j ∈ {1, 2, 3}.

(II) When |µj | ≥ 1 is provided for at least j ∈ {1, 2, 3}, then H = (hnk) /∈ B(c0) that is
G(0, s, t, u, v) does not have a continuous inverse. For this reason, r ∈ III2σ(G(r, s, t, u, v), c0)
whenever |µj | ≥ 1 for at least j ∈ {1, 2, 3}. This completes the proof of theorem. □

Theorem 2.13. Let α ̸= r be given. If α belongs to σr(G(r, s, t, u, v), c0), then α belongs
to III2σ(G(r, s, t, u, v), c0).

Proof. Assume that α ̸= r and α ∈ σr(G(r, s, t, u, v), c0). Then, the matrix G(r, s, t, u, v)−
αI becomes a triangle which yields that it has an inverse. Moreover, it is known that
1 < |φ4| in case of α ∈ σr(G(r, s, t, u, v), c0). This results in limn→∞ |an| = ∞ namely
G(r, s, t, u, v) − αI has an unbounded inverse, (an) used here is as defined in the proof of
Theorem 2.6. Also, we infer from Theorem 2.9 and Lemma 2.8 that G(r, s, t, u, v)∗ − αI
is not one to one, namely G(r, s, t, u, v) − αI does not have a dense range. If these are
taken into consideration, we conclude that α ∈ III2σ(G(r, s, t, u, v), c0). This completes
the proof of theorem. □

Now, let us take a bounded operator such that L : c −→ c, L(x) = Dx. Then, L∗ :
c∗ −→ c∗ acting on C ⊕ ℓ1 is defined by

L∗ =
[
χ 0
η Dt

]
where D = (dnk) is an infinite matrix, Dt is transpose of D, χ = χ(D) = limn→∞

∑
k dnk −∑

k limn→∞ dnk and η = (ηk) is a sequence defined by ηk = limn→∞ dnk for all k ∈ N.
By applying this concept to the operator G(r, s, t, u, v) : c −→ c, one can write

G(r, s, t, u, v)∗ =
[
r + s + t + u + v 0

0 G(r, s, t, u, v)t

]
for G(r, s, t, u, v)∗ ∈ B(ℓ1).

Theorem 2.14. Given a set S1 as defined in Theorem 2.9. Then, σp(G(r, s, t, u, v)∗, c∗) =
S1 ∪ {r + s + t + u + v}.
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Proof. By taking a sequence x ̸= θ = (0, 0, 0, ...), let us suppose that G(r, s, t, u, v)∗x = αx
in ℓ1. Then, by solving the following system of linear equations

(r + s + t + u + v)x0 = αx0
rx1 + sx2 + tx3 + ux4 + vx5 = αx1
rx2 + sx3 + tx4 + ux5 + vx6 = αx2
rx3 + sx4 + tx5 + ux6 + vx7 = αx3

...
we obtain

xn = vbn−2x4 −
[
tbn−3 + sbn−4 + (r − α)bn−5

]
x3

−
[
sbn−3 + (r − α)bn−4

]
x2 − (r − α)bn−3x1

for all n ≥ 5. Here, the definition of the sequence (bn) is as in Theorem 2.9.
By taking x0 ̸= 0, one can obtain α = r + s + t + u. Because of this, α becomes an

eigenvalue according to eigenvector x = (x0, 0, 0, ...).
By taking α ̸= r + s + t + u + v, one can obtain x0 = 0. Then, if the method used in

Theorem 2.9 is followed similarly, x = (xn) /∈ ℓ1 is obtained. This completes the proof of
theorem. □

The fine spectrum of the quintet band matrix operator G(r, s, t, u, v) on c can be de-
termined by following similar methods by substituting c instead of c0 in the relevant
Theorems above. Therefore, the next theorem is given without proof.

Theorem 2.15. Given two sets S and S2 as defined in Theorem 2.6 and Theorem 2.10,
in turn. Then, the following expressions are satisfied.

(i) σ(G(r, s, t, u, v), c) = S,
(ii) σp(G(r, s, t, u, v), c) = ∅,
(iii) σr(G(r, s, t, u, v), c) = σp(G(r, s, t, u, v)∗, c∗),
(iv) σc(G(r, s, t, u, v), c) = S2 \ {r + s + t + u + v},
(v) In case of α /∈ σ(G(r, s, t, u, v), c), G(r, s, t, u, v) − αI ∈ I1 is provided
(vi) If the inequality |µj | < 1 is provided for all j ∈ {1, 2, 3}, then r ∈ III1σ(G(r, s, t, u, v), c),
(vii) If the inequality |µj | ≥ 1 is provided for at least j ∈ {1, 2, 3}, then r ∈ III2σ(G(r, s, t, u, v), c)

(viii) In case of α ∈ σc(G(r, s, t, u, v), c), α ∈ II2σ(G(r, s, t, u, v), c) is provided
(ix) In case of α ∈ σr(G(r, s, t, u, v), c) \ {r}, α ∈ III2σ(G(r, s, t, u, v), c) is provided

where µ1, µ2 and µ3 are random three roots of the equation sz3 + tz2 + uz + v = 0.

3. Conclusion
When the quintet band matrix operator G(r, s, t, u, v) defined here is examined, it is eas-

ily seen that G(1, −4, 6, −4, 1) = ∆4, G(r, s, t, u, 0) = Q(r, s, t, u), G(1, −3, 3, −1, 0) = ∆3,
G(r, 0, 0, u, 0) = D(r, 0, 0, s), G(r, s, t, 0, 0) = B(r, s, t), G(1, −2, 1, 0, 0) = ∆2, G(r, s, 0, 0, 0) =
B(r, s) and G(1, −1, 0, 0, 0) = ∆, where ∆4, Q(r, s, t, u), ∆3, B(r, s, t), ∆2, B(r, s) and ∆
are named fourth order difference, quadruple band, third order difference, triple band,
second order difference, double band and difference matrix, respectively. Because of this,
our results obtained from the quintet band matrix operator are more general and more
comprehensive than the results on [4], [5], [10], [13], [14] and [22]. Additionally, our study
includes the right shift and Zweier matrices [7].
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