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Abstract 
Aim of study: Forests contribute significantly to the global climate by acting as carbon sinks and controlling 

energy and water flows. This study aimed to model the aboveground carbon (AGC) of pure Scots pine stands 

within the boundaries of the Sinop Regional Directorate of Forestry in Turkey, using data obtained from various 

sensor images, including Sentinel-1 (S1), Sentinel-2 (S2), Landsat 8 OLI (L8) and Unmanned Aerial Vehicle 

(UAV) images, with artificial neural network (ANN) and multiple linear regression (MLR) modeling techniques. 

Area of study: The study was carried out within pure Scots pine stands located in Sinop Regional Directorate 

of Forestry. 

Material and method: a total of 184 sample plots were taken and field measurements were made in these 

sample plots. 80% of the sample plots (150) were used to fit the models and 20% (34) were used to test the 

models. The AGC values of each sample plot were estimated with the allometric equation. Brightness values and 

backscatter values from S1, vegetation indices, reflectance and texture values obtained for different window sizes 

(3x3, 5x5, 7x7 and 11x11) and different orientations (0°, 45°, 90° and 135°) from L8 and S2, and vegetation 

indices, band reflectance and digital band obtained from UAV were used in the study.  

Main results: The results indicated that the texture variables obtained for the 15x15 of the Sentinel-2 image 

for AGC estimation, together with the MLR modeling technique, were the most successful technique compared 

to other images and ANN analysis (R2=0.86). 

Research highlights: The results have shown that AGC can be predicted at high success levels with ANN 

modeling technique with remote sensing data sets. 

Keywords: Aboveground Stand Carbon, Natural forests, Modeling, Satellite Images 

Farklı Uzaktan Algılama Verileri ve Modelleme Teknikleri 

Kullanılarak Topraküstü Karbonun Tahmin Edilmesi 

Öz 
Çalışmanın amacı: Ormanlar, karbonun depolanması, enerji ve su döngülerinin düzenlenmesi gibi süreçlerde 

küresel iklimde önemli bir rol oynamaktadır. Bu çalışmada Sinop Orman Bölge Müdürlüğü sınırlarında yayılış 

gösteren saf sarıçam meşcerelerinde Sentinel-1 (S1), Sentinel-2 (S2), Landsat 8 OLI (L8) ve İnsansız Hava Aracı 

(İHA) gibi farklı uzaktan algılama görüntülerinden elde edilen veriler ile topraküstü karbon (TÜK) arasındaki 

ilişkiler çoğul doğrusal regresyon (ÇDR) ve yapay sinir ağı (YSA) teknikleri ile modellenmesi amaçlanmıştır. 

Çalışma alanı: Çalışma, Sinop Orman Bölge Müdürlüğü'nde bulunan saf sarıçam meşcerelerinde 

gerçekleştirilmiştir. 

Materyal ve yöntem: Çalışma kapsamında toplam 184 adet örnek alan alınmış ve bu örnek alanlarda yersel 

ölçümler yapılmıştır. Alınan örnek alanların %80'i (150 adet) modellerin oluşturulmasında, %20'si (34 adet) ise 

modellerin test edilmesinde kullanılmıştır. Her bir örnek alanın TÜK değerleri allometrik denklem ile tahmin 

edilmiştir. Çalışmada uzaktan algılama verisi olarak, S1 görüntüsünden geri saçılma ve bant parlaklık değerleri, 

S2 ve L8 uydu görüntüleri için farklı pencere boyutlarına (3x3, 5x5, 7x7 ve 11x11) ve farklı yönelimlere (0°, 

45°, 90° ve 135°) göre yansıma değerleri, vejetasyon indeksleri ve doku özellikleri ile İHA görüntülerinden elde 

edilen dijital bant, bant reflektans ve vejetasyon indisleri kullanılmıştır. Yersel ölçümler ve uzaktan algılama 

verileri arasındaki ilişkiler ÇDR ve YSA teknikleri ile modellenmiştir.   

Temel sonuçlar: Sonuçlar, TÜK tahmininde S2 görüntüsünün 15x15 pencere boyutu için elde edilen doku 

değişkenleri ÇDR modelleme tekniği ile birlikte diğer görüntülere ve YSA analizine kıyasla en başarılı teknik 

olduğunu göstermiştir (R2=0.86). 

Araştırma vurguları: Sonuçlar, TÜK’ün uzaktan algılama veri setleri ile ÇDR modelleme tekniği ile yüksek 

başarı düzeylerinde tahmin edilebileceğini göstermiştir. 
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Introduction 

As a major component of terrestrial 

ecosystems, forests play a crucial role in 

maintaining ecological balance (Wu et al., 

2020; Zhang et al., 2022). In addition, forests 

are the largest carbon sink in these ecosystems 

(Zaninovich & Gatti, 2020). Forests 

contribute to carbon sequestration by 

absorbing 76% to 98% of the carbon present 

in terrestrial ecosystems (Cheng et al., 2009) 

and playing a key role in combating global 

warming caused by carbon emissions (Wang 

et al., 2013). According to report of the IPCC, 

the Earth's temperature increased by 1.2 °C 

between 1850 and 1900 (Mu et al., 2022; 

Aksoy, 2024). In recent years, when 

population and industrialization have 

increased rapidly, forests have emerged as the 

most effective and cost-efficient means of 

combating global warming. Since forests are 

the primary carbon sink on land, shifts in their 

carbon storage lead to changes in atmospheric 

carbon dioxide, thereby directly influencing 

global climate change (Fu, 2018; Liu et al., 

2020; Zhang et al., 2022; Seki & Atar, 2021). 

All this information shows that forests offer 

great potential for sequestering atmospheric 

carbon. Therefore, in recent years there has 

been an urgent need to measure forest carbon 

stocks accurately, quickly, efficiently, and 

reliably (Romanov et al., 2022; Zhang et al., 

2023). The most common method of 

determining above-ground carbon (AGC) is 

either by cutting the tree and calculating the 

amount of its biomass and carbon based on the 

biomass value or by carbon analysis of wood 

materials (Bi et al., 2015). However, this 

destructive method requires a lot of labor, 

time, and cost. In addition, the fact that local 

measurements require a lot of fieldwork, each 

fieldwork damages the forest ecosystem, and 

it is not practical to use it in large forest areas 

(Xu et al., 2022; Zhang et al., 2023; Aksoy and 

Günlü, 2025). 

Developments in remote sensing 

technology enable monitoring forest 

resources and are used as an alternative source 

of information to traditional field 

measurements. In particular, the real-time, 

fast, and broad-scale monitoring of areas has 

made it a popular source of information 

widely used in forestry, environment, and 

ecology (Fremout et al., 2022). Recently, there 

has been a rise in initiatives to combine 

remote sensing data with ground-based 

inventory data to achieve reliable and cost-

effective AGC estimation over extensive 

areas. Optical data, LiDAR, SAR data, and 

integrated remote sensing data derived from 

the combination of these sources are utilized 

for AGC estimation (Georgopoulos et al., 

2022). A wide range of spectral and textural 

data is provided by optical sensors (band 

information, vegetation indices, texture 

characteristics, etc.) and are often used to 

estimate stand parameters (Chrysafis et al., 

2019). Landsat and Sentinel-2 which are easy 

and inexpensive to access from optical 

sensors, are the most widely used data sources 

in research. The first satellite for natural 

resources, Landsat imagery, has traditionally 

been employed to assess stand parameters 

across large forested areas (Zheng et al., 2004; 

Günlü et al., 2014; Yavaşlı & Ölgen, 2017; 

Sakici & Günlü 2018; Turgut & Günlü, 2022; 

Bulut, 2023). The upgraded multispectral 

imager of Sentinel-2, with improved spatial 

resolution, includes three red-edge bands that 

are essential for accurately estimating the 

distribution and parameters of forest 

resources. Sentinel-1 C (SAR) active satellite 

imagery has all-weather imaging capability 

and is widely used for estimating stand 

parameters (Udali et al., 2021). Moreover, 

Radar and airborne LIDAR (ALS) data are 

frequently utilized for AGC estimation 

because of their ability to penetrate dense 

vegetation (Lu et al., 2012; Silva et al., 2018; 

Zhang et al., 2023). ALS data is costly to 

obtain and not spatially continuous, limiting 

AGC estimation in large forested areas 

(Listopad et al., 2011; Ehlers et al., 2022). 

Recently, rapidly developing unmanned aerial 

vehicles (UAVs) have also been used to 

estimate stand parameters and monitor forests. 

The advantages of UAVs, such as low cost, 

fast and less risky high-resolution and simple 

data collection, complement the shortcomings 

of traditional remote sensing (Lan et al., 2019; 

Aksoy, 2022; Aksoy, 2024). Some studies 

have found that AGC can be accurately 

estimated using high-resolution UAV imagery 

and tree height and crown data (Jucker et al., 

2017; Fermandes et al., 2020). 

Both parametric and non-parametric 

models are utilized in remote sensing-based 
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AGC estimation (Huang et al., 2019). The 
parametric model is highly regarded for its 

ability to assess the relationship between AGC 

and independent variables (Ou et al., 2019). 

Multiple linear regression (MLR), a widely 

used method, is particularly valued for its 

simplicity, ability to identify variables, and 

strong performance in AGC estimation (Li et 

al., 2020a). In addition, artificial neural 

networks (ANN) (Dong et al., 2019; Günlü et 

al., 2021; Zhang et al., 2023), k-nearest 

neighbor (k-NN) (Zhang et al., 2022), random 

forest (RF) (Li et al, 2020; Tang et al., 2022), 

support vector machine (SVM) (Sivasankar et 

al., 2013; Han et al., 2021), maximum entropy 

(MaxEnt) (Wang et al., 2022), extreme 

gradient boosting (XGBoost) (Li et al., 

2020b), multivariate adaptive regression 

splines (MARS) (Baloloy et al. 2018) were 

used modeling AGC. ANN, a non-parametric 

modeling technique, is widely used in AGC 

modeling (Alquraish & Khadr, 2021; Wang et 

al., 2022; Zhang et al., 2023). Additionally, 

ANN, which is part of artificial intelligence 

and imitates the function of the human brain, 

has become increasingly utilized in forestry 

applications (Strobl & Forte, 2007; Ogana & 

Ercanlı, 2022). Artificial neural networks 

have been frequently used by researchers in 

forestry, with significant success in predicting 

tree height, tree volume, tree biomass and 

carbon (Hamidi et al., 2021; Ogana & Ercanlı, 

2022). The study data are less affected by the 

above-mentioned disadvantages of ANN 

models against the low success levels that 

may occur with MLR modeling due to a non-

constant variance distribution in MLR 

modeling and the possibility of linearity of 

explanatory variables, and accordingly higher 

success levels can be achieved (Guisan et al., 

2002; Aertsen et al., 2010). Therefore, ANN 

modeling technique was also used in this 

study. 

In this study, (i) the relationships between 

AGC values calculated using data obtained 

from ground measurements with data 

obtained from Sentinel-1, Sentinel-2, Landsat 

8 OLI and UAV images were modeled using 

ANN and MLR modeling techniques, (ii) the 

results of the two modeling techniques were 

compared to investigate which modeling 

technique is more successful in AGC 

estimation. 

 

Material and Methods 

Study Area 

The study was conducted within the 

boundaries of the Sinop Regional Directorate 

of Forestry (RDF), which is located in the 

northernmost part of Turkey. It is located 

between 600000 and 710000 E longitude and, 

4560000 and 4665000 N latitude. The total 

area of Sinop RDF is 556275.50 ha and the 

total area of pure Scots pine stands is 7548.49 

ha. Since the study area receives rainfall at all 

times of the year, it is covered with rich and 

diverse forest cover. The average annual 

rainfall is 685.7 mm in the study area, which 

receives the most precipitation in October and 

the least in May. Pinus sylvestris, Abies 

nordmanniana, Fagus orientalis, Pinus nigra, 

Carpinus betulus, Quercus spp., Fraxinus 

excelsior, Juniperus sp., Populus tremula and 

Ulmus sp. are the most common tree species 

in Sinop RDF. The average annual 

temperature of the study area is 14 °C (GDF, 

2022). The map in Figure 1 provides the 

geographical location of the study area.
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Figure 1. Location map of the study area 

 

Field Measurements 

A total of 184 sample plots with different 

site index, crown closure and development 

stages classes were used for above-ground 

carbon (AGC) field measurements in this 

study. Traditional forest inventory 

measurements were made in the sample plots 

determined for the estimation of AGC values. 

Sample plots were assigned sizes of 800 m² 

(11-40%), 600 m² (41-70%), and 400 m² (71-

100%), according to the crown closure. In 

each sample plot, the diameter at breast height 

of trees with a diameter of 8 cm or greater was 

measured. To estimate the AGC of the trees in 

the sample plots, the allometric equation (Eq. 

1) developed by Yavuz et al. (2010) for pure 

Scots pine stands was used. The total AGC for 

each plot was computed by adding up the 

AGCs of all the trees in the respective sample 

plot. 

 

AGC = −28.360 + 0.413 ×  d1.3                     (1) 

 

Where: 

AGC: Aboveground carbon, 

d1.3: Tree diameter at breast height. 

Satellite Data and Image Processing 

Landsat 8 OLI (L8), Sentinel-2 (S2), 

Sentinel-1 (S1) and Unmanned Aerial Vehicle 

(UAV) images were used. The S1 (October 17, 

2021) with a dual-polarized VV/VH image 

was downloaded from the 

https://scihub.copernicus.eu. The S2 (October 

15, 2021) with 13 spectral bands and L8 

(September 26, 2021) with 11 spectral bands 

were downloaded from the 

https://earthexplorer.usgs.gov. Finally, UAV 

images of the study area were taken by DJI 

Inspire-2 drone between August and October 

2021. S2 at 20 m and 10 m, L8 at 30 m and 15 

m, and UAV imagery at resolutions between 

2.5 cm and 3.5 cm were used in the study. 

Figure 2 presents the details of the UAV and 

camera specifications used in the study. 
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Figure 2. Technical specifications of the UAV platform and optical sensor 

 

In the study, pre-processing of S1 from 

remote sensing data sets was performed in 

SNAP. Band brightness and backscattering 

(dB) values of VH and VV polarizations were 

calculated from the S1. First, the image was 

preprocessed in SNAP using the "Graph 

Builder" tool in a total of 8 steps, including (i) 

read to image (ii) apply-orbit file (iii) thermal 

noise removal (iv) calibration (v) speckle 

filter (vi) terrain correction (vii) dB to linear 

(viii) write to image and made ready for 

analysis. The obtained images were overlaid 

with sample plot polygons in ArcGIS 10.7. 

With the overlay, one-to-one inference was 

made according to the sample plot boundary 

and data was obtained from all pixels 

corresponding to the boundary. Finally, using 

the "zonal statistics" tool in ArcGIS 10.7, dB 

values and numerical band values of VH and 

VV polarizations were acquired for each 

sample plot and S1 data sets were prepared for 

modeling. QGIS 3.8.1 version was used for 

the pre-processing of S2 and L8. The images 

were calibrated using the Semi-Automatic 

Classification "Plugin" tool, which includes 

the calibration of satellite images, and 

reflectance images were obtained for each 

band. The obtained images were overlaid with 

sample plot polygons in ArcGIS 10.7TM as in 

the creation of the S1 dataset and reflectance 

values were calculated for each sample plot 

using the "zonal statistics" tool. A total of 12 

vegetation indices were computed for S2 and 

L8 using reflectance values (Table 1). In 

addition, data sets with different texture 

characteristics were created from S2 and L8 

using ENVI 5.2. These datasets include 

variance (VAR), mean (M), correlation 

(COR), homogeneity (HOM), entropy (ENT), 

dissimilarity (DIS), second moment (SM) and 

contrast (CONT) from satellite imagery, and 

separate datasets for different window sizes 

(3x3, 5x5, 7x7, 9x9, 11x11, 13x13, and 

15x15) and different orientations (0°, 45°, 

90°, 135°). 
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Table 1. Formulas for vegetation indices obtained from Sentinel-2, Landsat 8 and UAV images 
Vegetation indices Sentinel 2 Formulas Landsat 8 OLI Formulas Reference 

NDVI (Normalized Difference 

Vegetation Index) 
(B8 - B4) / (B8 + B4) (B5-B4) / (B5+B4) Rouse et al. (1974) 

MSI (Moisture Stress Index)  (B11 / B8) (B6 / B5) Hunt and Rock (1989) 

NBR (Normalized Burn Ratio) (B8 - B12) / (B8 + B12) (B5-B7) / (B5+B7) 
Key and Benson 

(2006) 

EVI (Enhanced Vegetation Index) 
2.5 x (B8 - B4) / ((B8 + 6.0 x B4 - 
7.5 x B2) + 1.0) 

2.5 x ((B5 – B4) / (B5 + 6 x 
B4 – 7.5 x B2 + 1)) 

Liu and Huete (1995) 

SAVI (Soil Adjusted Vegetation Index) 
(B8 - B4) / (B8 + B4 + L) x (1.0 + 

L); L = 0.428 

((B5 – B4) / (B5 + B4 + 0.5)) 

x (1.5) 
Huete (1988) 

DVI (Difference Vegetation Index) (B8 / B4) (B5 - B4) Tucker (1980) 

GNDVI (Green Normalized Difference 

Vegetation Index) 
(B8 - B3) / (B8 + B3) (B5 - B3) / (B5 + B3) Gitelson et al. (1996) 

NDWI (Normalized Difference Water 

Index) 
(B8-B11) / (B8+B11) (B5 - B6) / (B5 + B6) McFeeters (1996) 

MSR (Modified Simple Ratio) (B8 - B1) / (B4 - B1) 
((B5 / B4) -1) / √ ((B5 / B4) 
+1) 

Chen (1996) 

NLI (Nonlinear vegetation index) (B8 - B4) / (B8) + B4) ((B5) - B4) / ((B5) + B4) Goel and Qin (1994) 

PSSR (Pigment Specific Simple Ratio) (B8 / B4) (B5 / B4) Blackburn (1998) 

EVI2 (Enhanced Vegetation Index 2) 2.4 x (B8 - B4) / (B8 + B4 + 1.0) 
2.4 x (B5 - B4) / (B5 + B4 + 

1.0) 
Jiang et al. (2008) 

UAV Vegetation indices UAV Formulas Reference  
RGBVI (Red-Green-Blue Vegetation 
Index) 

(G x G)- (R x B)/(G x G) +(R x 
B) 

Bendig et al. (2015)  

GLI (Green Leaf Index) (2 x G -R- B) / (2 x G + R+ B) Louhaichi et al. (2001)  

VARI (Visible Atmospherically 
Resistant Index) 

(G-R) / (G + R-B) Gitelson et al. (2002)  

NGRDI (Normalized Green Red 

Difference Index) 
(G-R) / (G+R) Tucker (1979)  

ERGBVE (Enhanced Red-Green-Blue 

Vegetation Index) 
π x ((G²-(R x B)) / (G² + (R x B)) Themistocleou (2019)  

GR (Simple red–green ratio) R / G Gamon and Surfus. (1999)  

RGBVI2 (RGB-based vegetation index 
2) 

(G – R) / B García-Fernández et al. (2021)  

TGI (Triangular Greenness Index) G−0.39 x R−0.61 x B Hunt et al. (2013)  

GRVI (Green–red vegetation index) (G – R) / (G + R) Tucker (1979)  

MGRVI (Modified green–red vegetation 
index) 

(G²- R²) / (G² + R²) Bendig et al. (2015)  

BG12 (Simple blue–green ratio) B / G Zarco-Tejada et al. (2005)  

VEG (Vegetativen) G / (Ra x B(1-a)); a=0.667 Hague et al. (2006)  

EXG (Excess green index) 2G – R- B Woebbecke et al. (1995)  

NGBDI (Normalized green-blue 

difference index) 
(G – B) / (G + B) Du and Noguchi (2017)  

RGBVI3 (RGB-based vegetation index 

3) 
(G + B) / R García-Fernández et al. (2021)  

 

UAV Data and Image Processing 

UAV images for the study were captured 

for each sample plot using a DJI Inspire-2 

drone. Flight plans were then developed to 

cover each sample plot, taking into account 

the drone's battery capacity (Figure 3). 

Sixteen flight plans were created to cover all 

the sample plots within the study area. For 

each flight plan, the UAV's takeoff point and 

corresponding altitude were identified. The 

minimum flight altitude was then calculated 

based on these two altitude values. As a result, 

the flight altitude was standardized at 120 

meters to maintain consistency across all 

flight parcels. Additionally, to achieve the 

study's objectives, the image overlap ratios for 

the front and sides were set at 80% and 70%, 

respectively. The camera angle was fixed at 

90° (nadir) for all flights, and the flights were 

conducted accordingly.
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Figure 3. UAV flight line and photo location, red points represent the sample plot centers where 

field measurements were conducted, the black polygon represents the boundary of the flight, and 

the white lines represent the path followed by the UAVs during the image capture phase 

 

After the images were taken, orthomosaic, 

digital terrain model (DTM), digital surface 

model (DSM) and reflectance (red, green, 

blue, and grayscale) images of the sample 

plots were created.  The images of all parcels 

included in the study consist of three bands: 

red, green, and blue. Additionally, a grayscale 

(panchromatic) band was generated as a 

fourth band, as described in Equation 2, 

resulting in images composed of a total of four 

bands. 

The production of orthomosaic, DTM, and 

DSM maps from UAV images was carried out 

in 3 main stages in PIx4D. In the first stage, 

the images were aligned and all images were 

calibrated for the relevant flight parcel using 

camera internal and external orientation 

parameters and tie points were created. In the 

second stage of the production process, a point 

cloud and solid model were created from the 

calibrated images. Then, the point cloud data 

were classified and DTM was generated. In 

addition, the images were grouped together 

with the 3D texture solid model. In the last and 

third stage, first the DSM filter was applied 

and then the DSM raster image was created. 

Then orthomosaic and DTM raster images 

were created. Finally, reflectance images (red, 

green, blue, and grayscale) and the index 

image of the study area obtained by 

combining these bands were created (Figure 

4). In creating orthophotos and reflectance 

images of the flights, 15 vegetation indices 

were computed from the satellite images using 

ArcGIS 10.7TM, and 15 vegetation indices 

were calculated from the UAV images 

(Table1). 

 

 

Greyscale = 0.0722 × Blue +  0.7152 × Green + 0.2126 × Red                                                                 (2) 
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Figure 4. Data obtained from UAV images (Sakız forest planning unit, Flight parcel no. 1) 

 

Modelling 

In the modeling stage, data sets were 

prepared to model the relationships between 

reflectance, vegetation indices, texture 

features, backscatter, and digital band values 

derived from S1, S2, L8, and UAV images, 

and AGC obtained from field measurements. 

Total 184 sample plots used in the study, 80% 

(150 sample plots) were utilized for model 

training, while 20% (34 sample plots) were 

reserved for model testing. MLR and ANN 

methods were employed for modeling the 

datasets, and the process took place in three 

phases. 

In the first stage, AGC was estimated 

through MLR using remote sensing data. In 

the second stage, the prediction models, 

developed from the training data sets, were 

applied to generate predictions for the test 

data. In the third stage, a paired t-test was 

performed to evaluate whether a significant 

difference existed between the predicted 

results and the observed data. 

 

Multiple linear regression analysis 

MLR was employed to model the 

relationship between AGC and remote sensing 

data, with the model structure outlined in 

Equation 3. 

 

AGC = β0+β1. X1 + β2. X2 + ⋯ + βn. Xn + ε           (3) 

The AGC was selected as the dependent 

variable in the model, while the independent 

variables (X1, X2, …, Xn) consisted of remote 

sensing data derived from S1, S2, L8, and 

UAV imagery. These data included texture 

features, vegetation indices, reflectance, 

digital band, brightness and backscattering 

values. The coefficients β0, β1, β2, …, βn 

represent the model parameters, and ε denotes 

the additive bias. 

 

Bayesian artificial neural networks 

Another modeling approach employed in 

the study to estimate AGC is ANN. In this 

technique, the independent variables were 

derived from remote sensing data such as 

brightness, backscatter, vegetation indices, 

reflectance, texture features and digital band 

values that were found to be significant for 

AGC estimation in the MLR method. 

MATLAB codes with various ANN model 

configurations were utilized in the study 

(Bolat, 2021). Although the network designed 

in ANN models yields good results for 

training datasets, it may perform poorly on the 

test dataset, or vice versa. This phenomenon is 

known as overfitting or misfit, and it 

represents one of the major drawbacks of 

ANN. Overfitting is particularly inevitable for 
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ANN models with small training datasets. 

Various approaches have been proposed to 

address the overfitting issue in ANN models. 

One such approach involves selecting an 

appropriate regularization training function, 

such as Levenberg-Marquardt or Bayesian 

methods (Van Havre et al., 2015; Okut, 2016; 

Bolat, 2021; Skudnik & Jevsenak, 2022; Seki, 

2023). Since Bayesian network structures 

have early stopping capability and are more 

compatible with the regularization parameter, 

Bayesian network structure is used in ANN 

modeling in this study. In ANN models, 

independent variables can be normalized 

using various techniques to enhance network 

complexity and improve robustness against 

outliers (Akıllı & Hülya, 2020). In this study, 

the independent variables were normalized 

using the min-max technique, transforming 

the data into values ranging from -1 to +1 

(Foresee & Hagan, 1997). Normalizing the 

variable data within this range enhances the 

generalization capability of the Bayesian 

network structure. The hyperbolic tangent 

transfer function was used in this study, as the 

data were organized within the [-1, 1] range. 

Another factor influencing network 

performance is the learning rate and 

momentum values. The momentum value is 

typically chosen between 0 and 1. The 

learning rate is a critical parameter in the 

network's training process; a small learning 

rate can lead to overfitting, while a large 

learning rate may result in underfitting and 

large errors (Lawrence et al., 1997). 

Therefore, selecting appropriate learning rate 

and momentum values simultaneously is 

crucial for optimizing network performance 

(Bolat, 2021). In this study, based on the 

learning rate and momentum values, 17 

models were developed for AGC. These 

included 9 models where the learning rate was 

fixed at 0.1 and momentum varied between 

0.1 and 0.9, and 8 models where momentum 

was fixed at 0.1 and the learning rate varied 

between 0.1 and 0.9. Finally, model 

performance criteria were evaluated and the 

most successful model among the 17 models 

was selected. Each model obtained is 

numbered from 1 to 17 as AGC1, ...., AGC17. 

Here AGC1 refers to the first model obtained 

in the ANN modeling technique. 

 

Model performance criteria 

The predictive power of the models was 

assessed using several evaluation metrics, 

including the coefficient of determination 

(R2
adj, Eq. 4), root mean squared error (RMSE, 

Eq. 5), mean absolute error (MAE, Eq. 6), bias 

(Bias, Eq. 7), Akaike's information criterion 

(AIC, Eq. 8), and Bayesian information 

criterion (BIC, Eq. 9), all of which were 

calculated as described in Table 2. It is 

important to note that a model that performs 

well according to one criterion may not 

necessarily perform well according to another. 

To address this, the Relative Ranking Method 

proposed by Poudel and Cao (2013) was 

employed, which takes all criteria into 

account when selecting the most successful 

model (Rj, Eq. 10). In this approach, all 

success criteria are considered and ranked 

relatively based on their proximity and 

distance values. The Rj values calculated for 

each performance criterion are then summed, 

and the model with the smallest total Ri value 

is considered the most successful for the 

relevant criterion (Sakici & Ozdemir, 2018; 

Ercanlı et al., 2018). Explanations of the 

formulas are provided in Table 2, where n 

represents the number of observations, p is the 

number of parameters, yi are the measured 

AGC values, yî are the predicted AGC values, 

and y𝑖̅ is the mean of the measured AGC 

values. Ri is the relative rank of method i (i = 

1, 2, 3, …, m), k denotes the number of 

coefficients, Si refers to the goodness of fit 

statistics generated from the methods, Smin is 

the minimum value of Si, and Smax is the 

maximum value of Si.
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Table 2. Formulas for model performes criteria 

𝑅2 = 1 −
∑ (yg − yt)n

i=1
2

∑ (yg − yog)n
i=1

2 
(4) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖̂)

2
𝑛

𝑖=1
 

(5) 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑦𝑖̂|

𝑛

𝑖=1
 

(6) 

𝐵𝑖𝑎𝑠 =
∑ (𝑦𝑖 − 𝑦𝑖̂)

𝑛
𝑖=1

𝑛
 

(7) 

  𝐴𝐼𝐶 = ln(𝑅𝑀𝑆𝐸) + 2𝑘 
(8) 

 𝐵𝐼𝐶 = ln(𝑅𝑀𝑆𝐸) + ln(𝑘) 
(9) 

𝑅𝑗 = 1 +
(m − 1)(𝑆𝑖 − 𝑆𝑚𝑖𝑛)

𝑆𝑚𝑎𝑥 − 𝑆𝑚𝑖𝑛
 

(10) 

 

The study's methodology can be generally 

outlined in three key stages. The first step 

involves calculating the AGC using data 

obtained from field measurements. In the 

second step, images from S1, S2, L8, and 

UAV are processed to generate data sets. In 

the third and final step, AGC is estimated 

using MLR and ANN modeling techniques 

with the generated data sets, followed by the 

evaluation of model performance. The overall 

workflow of the methodology is illustrated in 

Figure 5. 
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Figure 5. Flowchart of the methodology of the study 
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Result 

Multiple Linear Regression Analysis 

Table 3 presents the success criteria values 

and total relative ranks for the relationships 

between AGC and remote sensing data, 

utilizing the MLR technique. A review of 

Table 3 reveals that the models corresponding 

to the dataset with the lowest total relative 

ranks are identified as the most successful. 

The highest success with reflectance data was 

recorded for the L8 (R²adj = 0.41), while the 

lowest success was observed for the UAV 

(R²adj = 0.24). For vegetation indices, the S2 

showed the highest success (R²adj = 0.64), 

whereas the UAV data yielded the lowest 

success (R²adj = 0.34). When analyzing the 

model results for texture features from L8 and 

S2, the highest success was achieved with the 

15x15 window size of the S2 (R²adj = 0.86), 

while the lowest success was recorded with 

the 3x3 window size of the L8 (R²adj = 0.71). 

In terms of texture feature orientation, the L8 

dataset showed the highest success at 0° (R²adj 

= 0.86), while the S2 had the lowest success at 

135° (R²adj = 0.59). This study did not develop 

any analytical model using UAV digital band 

datasets. Models derived from the backscatter 

and digital band data of the S1 demonstrated 

relatively low success. Figure 6 depicts the 

variation of the models based on the 

coefficient of determination and total relative 

rank.

 

 
Figure 6. The variation of models obtained from remote sensing data according to the coefficient 

of determination and total relative rank numbers 

 

When analyzing the success criteria of the 

MLR model applied to AGC, the highest 

success in remote sensing datasets was 

achieved with texture datasets (Table 3). 

Specifically, the variation in the dataset 

through different window sizes and 

orientation sizes greatly enhanced the model 

outcomes. The highest coefficient of 

determination for AGC using different filters 

was obtained in the 15x15 window size for 

texture features obtained from the S2 (Table 

4).    
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Table 3. Values for the success criteria and total relative ranks in the MLR 

Dataset 
Training Training Relative Rank 

R² RMSE MAE BIC AIC R² RMSE MAE BIC AIC Total  
UAV DN - - - - - - - - - - - 
UAV VIs 0.34 88.43 74.79 5.18 8.48 19.62 17.50 1.04 9.12 2.74 50.02 

UAV RV 0.24 95.56 76.72 4.56 6.56 23.24 19.81 1.04 1.00 1.00 46.09 

L8 VIs 0.43 82.45 66.70 5.51 10.41 16.62 15.55 1.03 13.54 4.49 51.24 
L8 RV 0.41 83.19 65.86 5.52 10.42 17.14 15.80 1.03 13.66 4.50 52.13 

L8 Orientation (0°) 0.86 38.89 30.85 6.49 37.66 1.79 1.41 1.00 26.51 29.20 59.91 

L8 Window Size (11×11) 0.84 42.24 31.77 6.31 29.74 2.48 2.49 1.00 24.06 22.02 52.06 
L8 Window Size (13×13) 0.86 39.03 30.71 6.23 29.66 1.66 1.45 1.00 23.02 21.95 49.07 

L8 Orientation (135°) 0.81 45.07 34.99 6.45 31.81 3.31 3.41 1.00 25.89 23.89 57.51 

L8 Window Size (15×15) 0.88 37.64 29.33 6.27 31.63 1.00 1.00 1.00 23.52 23.73 50.25 
L8 Window Size (3×3) 0.71 57.47 45.03 6.45 26.05 7.03 7.44 1.01 25.92 18.67 60.08 

L8 Orientation (45°) 0.79 48.06 38.31 6.58 33.87 4.24 4.38 1.01 27.65 25.76 63.05 

L8 Window Size (5×5) 0.68 60.53 36.15 6.05 18.10 7.90 8.44 1.01 20.64 11.47 49.45 

L8 Window Size (7×7) 0.74 54.15 43.43 6.29 23.99 5.90 6.36 1.01 23.88 16.80 53.95 

L8 Window Size (9×9) 0.78 49.43 38.14 6.39 27.90 4.48 4.83 1.01 25.08 20.35 55.74 

L8 Orientation (90°) 0.77 50.35 38.08 6.40 27.92 4.79 5.13 1.01 25.32 20.36 56.61 
S1 DN 0.03 104.03 86.55 4.64 6.64 30.45 22.57 1.04 2.12 1.08 57.26 

S1 dB 0.04 106.78 87.48 4.67 6.67 29.83 23.46 1.04 2.46 1.10 57.89 

S2 VIs 0.64 78.59 50.55 6.44 20.36 9.28 14.30 1.02 25.85 13.52 63.96 
S2 RV 0.41 83.45 67.98 5.52 10.42 17.28 15.88 1.03 13.70 4.50 52.39 

S2 Orientation (0°) 0.86 38.51 31.02 6.54 39.65 1.72 1.28 1.00 27.13 31.00 62.14 

S2 Window Size (11×11) 0.84 43.10 32.66 6.07 23.76 2.55 2.77 1.00 20.87 16.60 43.79 
S2 Window Size (13×13) 0.86 38.88 30.51 6.37 33.66 1.69 1.40 1.00 24.86 25.57 54.52 

S2 Orientation (135°) 0.59 68.04 51.93 6.42 22.22 11.03 10.88 1.02 25.50 15.20 63.63 

S2 Window Size (15×15) 0.86 39.74 31.17 5.88 21.68 1.69 1.68 1.00 18.41 14.71 37.49 
S2 Window Size (3×3) 0.83 54.66 32.73 6.83 38.00 2.66 6.53 1.00 31.00 29.50 70.69 

S2 Orientation (45°) 0.68 59.35 45.29 6.72 32.08 8.03 8.05 1.01 29.52 24.14 70.76 

S2 Window Size (5×5) 0.81 45.63 29.40 6.46 31.82 3.28 3.59 1.00 26.06 23.90 57.83 
S2 Window Size (7×7) 0.83 44.19 33.57 5.87 19.79 2.79 3.13 1.00 18.25 12.99 38.17 

S2 Window Size (9×9) 0.86 38.79 28.58 6.22 29.66 1.59 1.37 1.00 22.94 21.94 70.87 

S2 Orientation (90°) 0.77 50.07 38.91 6.69 35.91 4.93 5.04 1.04 29.04 27.61 97.62 

 

Table 4. Above ground carbon model generated using the 15x15 window size texture data from 

the S2 
Independent variables Coefficients of Independent variables t statistics p-value 
Constant -3500.740 -8.807 0.000 

COR_S2_15_90o 192.946 6.298 0.000 

SM_S5_15_135o -2010.659 -4.265 0.000 
CON_S6_15_0o -91.207 -3.802 0.000 

COR_S5_15_90o -300.979 -6.092 0.000 

SM_S7_15_0o -512.740 -9.566 0.000 
OM_S4_15_135o 3599.181 9.218 0.000 

M_S7_15_135o 98.795 4.633 0.000 

DIS_S4_15_135o 1148.961 7.969 0.000 
CON_S6_15_45o 52.021 10.808 0.000 

VAR_S2_15_0o -131.609 -1.932 0.055 
SM_S5_15_0o 3034.135 6.547 0.000 

DIS_S4_15_0o 632.743 4.802 0.000 

SM_S3_15_90o 236.889 8.673 0.000 
CON_S7_15_0o -197.697 -3.841 0.000 

S: Sentinel-2, S12: Band 12 of Sentinel-2, HOM: homogeneity, CONT: contrast, COR: correlation, DIS: dissimilarity, M: mean, VAR: 

variance, ENT: entropy and SM: second moment  
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Figure 7. Graph of observation, prediction, and error distribution based on the MLR 

 

Results of Multiple Linear Regression 

Analysis 

AGC was modeled using the ANN 

technique, employing the independent 

variables from the model that achieved the 

highest predictive success with the MLR 

technique (Table 4). The results of the 

prediction models are presented in Table 5. In 

the ANN technique, 17 different models for 

AGC were developed by applying various 

learning rates and momentum values. The 

results of these ANN models are presented in 

Table 5. Upon reviewing Table 5, the most 

appropriate coefficient of determination and 

the lowest total relative rank were achieved in 

the AGC16 model (Model R² = 0.89, Test R² 

= 0.77, learning rate = 0.8, momentum = 0.1, 

Rj = 13.44). Although the model specification 

coefficients of AGC2, AGC6, AGC10, and 

AGC11 are identical to those of AGC16, the 

overall relative ranks of these models are 

higher, making AGC16 the most successful 

model. The graph illustrating the model and 

test coefficients of determination for AGC is 

shown in Figure 8. Furthermore, the graph 

depicting the changes in the coefficient of 

determination and total relative rank for the 17 

ANN models obtained for AGC is presented 

in Figure 9. The prediction and observation 

graphs of AGC, as predicted by the ANN 

method for the model-test data sets, are shown 

in Figure 10. 
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Table 5. Values for the success criteria and total relative ranks in the artificial neural networks 

(ANNs) 

Model 

No 

Parameters Training Validation 

Lr. Mo. Input Output Hl. Neuron R² RMSE MAE BIC AIC 
Total 

Relative 

Rank 

R² RMSE MAE BIC AIC 
Total 

Relative 

Rank  
AGC1 0.1 0.1 14 1 1 2 0.83 45.24 34.29 6.45 31.81 73.77 0.74 56.78 46.61 6.68 32.04 64.62  

AGC2 0.1 0.2 14 1 1 2 0.89 36.19 26.43 6.23 31.59 18.81 0.71 59.52 43.76 6.73 32.09 69.76  

AGC3 0.1 0.3 14 1 1 2 0.86 40.67 31.81 6.34 31.71 42.98 0.69 61.79 50.25 6.76 32.12 79.72  

AGC4 0.1 0.4 14 1 1 2 0.88 37.23 27.52 6.26 31.62 14.96 0.71 59.62 45.88 6.73 32.09 71.31  

AGC5 0.1 0.5 14 1 1 2 0.88 37.35 28.02 6.26 31.62 16.67 0.68 63.21 47.79 6.79 32.15 81.66  

AGC6 0.1 0.6 14 1 1 2 0.89 35.9 26.54 6.22 31.58 5.2 0.74 57.11 45.58 6.68 32.04 64.79  

AGC7 0.1 0.7 14 1 1 2 0.89 37.1 26.72 6.25 31.61 12.68 0.77 53.94 40.88 6.63 31.99 53.62  

AGC8 0.1 0.8 14 1 1 2 0.87 39.89 29.55 6.33 31.69 34.34 0.76 54.61 44.67 6.64 32 57.75  

AGC9 0.1 0.9 14 1 1 2 0.82 46.99 35.07 6.49 31.85 85 0.68 63.42 52.12 6.79 32.15 85  

AGC10 0.2 0.1 14 1 1 2 0.89 37.04 26.45 6.25 31.61 11.9 0.71 59.74 47.28 6.73 32.09 72.6  

AGC11 0.3 0.1 14 1 1 2 0.89 36.82 28 6.25 31.61 13.31 0.7 61.23 47.97 6.75 32.11 76.78  

AGC12 0.4 0.1 14 1 1 2 0.88 37.85 28.74 6.27 31.63 20.92 0.72 59 47.64 6.72 32.08 70.97  

AGC13 0.5 0.1 14 1 1 2 0.88 37.31 26.99 6.26 31.62 14.33 0.77 53.56 41.38 6.62 31.98 52.92  

AGC14 0.6 0.1 14 1 1 2 0.88 37.66 28.35 6.27 31.63 19.13 0.74 56.99 45.92 6.68 32.04 64.71  

AGC15 0.7 0.1 14 1 1 2 0.88 36.8 29.68 6.24 31.61 17.14 0.87 38.99 27.59 6.3 31.66 55  

AGC16 0.8 0.1 14 1 1 2 0.89 36.93 27.69 6.25 31.61 13.44 0.77 53.79 41.58 6.62 31.99 53.65  

AGC17 0.9 0.1 14 1 1 2 0.88 37.64 28.05 6.27 31.63 18.47 0.73 57.72 44.98 6.69 32.06 65.89  

Lr: Learning Rate, Mo: Momentum, Hl: Hidden Layer, AGC1: Aboveground biomass 1st model 

 
Figure 8. Graph of the coefficient of determination for aboveground carbon obtained using the 

ANNs model 
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Figure 9. Variation in the models derived from remote sensing data based on the coefficient of 

determination and total relative rank values 
 

 
Figure 10. Graph of observation, prediction, and error distribution based on the ANNs model 
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Additionally, a paired t-test was conducted to 

assess the compatibility of the test predictions 

with the observed data. The test results 

indicated that the models were applicable to 

the stands in the study area at a significance 

level of 0.05. The performance measures (R², 

MAE, AIC, BIC, BIAS, RMSE) and paired t-

test results for the most successful AGC 

model predictions obtained through the 

modeling techniques are presented in Table 6. 

 

Table 6. Performance metrics of the model obtained using the 15x15 texture data from the S2 for 

AGC  
Method R2 RMSE MAE BIC AIC BIAS Paired 

Training 
MLR 0.86 39.74 31.17 5.88 21.68 -7.38×10-14 t-test 

ANN 0.89 36.93 27.69 6.25 31.61 -7.38×10-14 t p value 

Validation 
MLR 0.82 46.75 38.24 6.48 31.84 7.13×10-16 -2.054 0.726 

ANN 0.77 53.79 41.58 6.62 31.99 -2.79×10-15 -1.365 0.119 

 

Discussion 

In this study, AGC was modeled, and 

predictions were obtained using data sets from 

S1, S2, L8 and UAV. Two different 

techniques, MLR and ANN, were used in 

modeling. Upon examining the results of 

AGC modeling, the highest performance 

across all datasets used in the study was 

achieved with the texture values from the 

15x15 window size derived from the S2 

(Table 3). High model specification 

coefficients were obtained in both MLR and 

ANN methods (MLR R2=0.86, ANN 

R2=0.89). Similarly, the test coefficients of 

determination of both methods were also high 

(MLR R2=0.82, ANN R2=0.77).  When the 

paired t-test results of the test data for AGC in 

MLR and ANN methods are analyzed, the p-

values are calculated as 0.726 and 0.119 for 

MLR and ANN, respectively (Table 6). 

Considering both the model and test 

specification coefficients and the p-value for 

the paired t-test for AGC, MLR was found to 

be the most applicable modeling technique. In 

both methods, the p-value for the paired t-test 

is greater than 0.05, indicating that the model 

network is feasible. Günlü and Ercanlı (2020), 

in their study to estimate AGC in pure beech 

stands using Alos Palsar L-band imagery, 

calculated the AGC of 153 sample plots by 

ground measurements, and for each sample 

plot, different window sizes (3×3, 5×5, 7×7, 

9×9 and 11×11) and eight texture attributes 

(correlation, second moment, dissimilarity, 

entropy, contrast, variance,  homogeneity and 

mean) with MLR and ANN modeling 

techniques. When the results obtained are 

analyzed, it is seen that the ability of ANN to 

predict AGC is better than MLR (ANN R² = 

0.52, MLR R² = 0.38). When compared to the 

AGC model results obtained using the S1 used 

in our study, it is seen that a very high success 

is achieved (Table 3). 

Keleş et al., (2021) modeled AGC using 

SVM and MLR modeling techniques with 

backscatter values, band and vegetation index 

values at different polarizations from S1 and 

S2. They obtained the best result with the 

SVM modeling technique (R² = 0.88). In the 

MLR method, they calculated the R² as 0.75. 

When the results are compared with our study, 

it is seen that similar results are obtained. 

Poorazimy et al., (2020) estimated the AGC 

stock by using MLR and nonparametric k-

NN, SVR and RF algorithms, using data from 

Airborne Lidar (ALS), Alos-2 L-band and 

UltraCam images alone and in combination. 

The results showed a low success rate of R² = 

0.34 with ALS data and R² = 0.41 with the 

combination of data. They found similar 

results with the model performance values 

obtained from the UAV data sets of our study. 

Zhang et al., (2023) investigated the 

estimation and temporal variation of AGC 

using MLR and DL methods with Landsat 

satellite images. The results showed that the 

DL method (R² = 0.64) was more successful 

than the MLR method (R² = 0.34). In 

comparison to our results, it is evident that the 

texture dataset derived from Landsat images 

is highly effective in modeling AGC and 

contributes significantly to achieving high 

levels of success. This study also involves 

modeling the relationships between AGC and 

variables such as digital band, reflectance, and 

vegetation index obtained from UAV imagery. 
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This study also encompasses the modeling of 

the relationships between AGC, and variables 

such as digital band, reflectance, and 

vegetation index obtained from UAV imagery. 

When the modeling results were evaluated, in 

contrast to the relationships obtained with 

satellite data sources, very low model 

successes were obtained in modeling AGC 

with UAV data. The coefficients of 

determination ranged between R2=0.24 for 

band reflectance and R2=0.34 for vegetation 

indices. Lower model successes were 

obtained compared to the model successes 

created with the datasets obtained from 

satellite imagery (Table 3). A significant 

model for AGC could not be developed using 

the digital band values from the UAV imagery 

dataset. The main reason for this can be 

explained by the number of pixels 

representing the sample areas. In satellite 

imagery, a sample area may be represented by 

just a few pixels, whereas in UAV imagery, the 

same area is represented by a greater number 

of pixels, resulting in changes to the 

homogeneity of the sample area data. When 

extracting reflectance values from 2.5 cm 

resolution UAV images for the sample areas, 

the average reflectance values capture not 

only reflections from treetops but also from 

gaps, substrates, and the forest floor. 

Including reflections from objects in the forest 
understory and floor layers introduces more 
variation in the average reflectance values 

within the sample area, thereby expanding the 

dataset's range. All this explains the 

discrepancy between the results of the UAV 

and satellite imagery and shows the 

proportional relationship between the 

resolution and the diversity of reflectance 

values.  

This directly affects the performance of the 

model. To address this issue, it is anticipated 

that using tree-specific reflectance values 

derived from UAV imagery can help 

standardize reflectance values and enhance 

model performance by reducing the number of 

pixels representing the entire sample area. The 

following single-tree-based studies provide 

support for this conclusion. In their study 

aimed at estimating carbon stock using UAV, 

Abdullah et al. (2021) achieved a coefficient 

of determination of R² = 0.66. 

In our study, the highest coefficient of 

determination was obtained with vegetation 

index values obtained from UAV images 

(R²=0.38). It can be said that the higher 

success of the aforementioned study can be 

attributed to the fact that, unlike our study, 

estimation was made using single tree-based 

data. Muhsoni et al., (2021) aimed to model 

the carbon of a mangrove tree using UAV 

images, and the results show that they 

obtained successful results in modeling with 

MLR technique (R2=0.75). It is thought that 

the reason for their higher success compared 

to our study is again due to single tree-based 

modeling. Qin et al. (2021) evaluated the 

potential of combining UAV LIDAR data with 

hyperspectral imagery to estimate carbon in 

individual trees. Their results indicated that 

using LIDAR and hyperspectral data 

separately yielded carbon estimates with R² 

values of 0.74 and 0.75, respectively. They 

discovered that merging both LIDAR and 

hyperspectral data improved the accuracy of 

tree-level carbon stock estimation, with an R² 

value of 0.89. Upon reviewing the existing 

literature on UAVs, it becomes evident that 

there are limited studies focusing on AGC 

estimation using variables derived from UAV 

imagery, particularly in natural forests. The 

literature review on UAVs reveals that there 

are limited studies on AGC estimation using 

variables derived from UAV imagery, 

particularly in natural forests. As highlighted 

earlier, most studies primarily focus on 

estimating AGC for individual trees by 

integrating UAV imagery with satellite data 

such as S1, S2, L8, and LIDAR. Moreover, the 

literature on UAV data usage primarily 

concentrates on estimating AGC using single-

tree characteristics such as diameter and 

height derived from UAV imagery (RGB and 

NIR bands) or LIDAR data integrated with 

UAV imagery (Ye et al., 2019; Liu et al., 2022; 

Lin et al., 2022; Basyuni et al., 2023). Bulut et 

al. (2024) attempted to model tree height and 

tree volume using drone imagery datasets. 

They found coefficients of determination of 

0.96 for tree height and 0.72 for tree volume. 

These high coefficients of determination in 

their study can be attributed to the creation of 

datasets based on individual tree reflectance 

values, in contrast to our approach. As 

mentioned above, the successful model 
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predictions with UAV imagery show that 

modeling with datasets obtained from 

individual tree data will yield higher results. 

In this study, the datasets for UAV imagery 

were calculated over sample plots rather than 

individual trees. Therefore, high resolution 

UAV images (2.5 cm - 3.5 cm) provide a lot of 

detail and different reflectance values are 

obtained from these details. This causes a lot 

of variability in the sample plot image values. 

Therefore, this situation negatively affects 

modeling success. The reason why the 

datasets in this study are created on a sample 

plot basis is that it should be the same as the 

logic of creating a satellite image dataset. 

Because the study investigated whether UAV 

images can be an alternative data source to 

satellite images in modeling. The results show 

that UAV datasets created in a similar process 

to satellite image processing and dataset 

creation processes show lower model success 

and therefore cannot be an alternative to 

satellite imagery in this approach. 

 

Conclusions 

In this study, MLR and ANN modeling 

techniques were used to estimate AGC in pure 

yellow pine stands in northern Turkey using 

data from L8, S2, S1 and UAV images. The 

results showed that the texture values obtained 

from the S2 were able to predict AGC better 

with the MLR method compared to other 

images and variables and ANN analysis. The 

analysis of performance criteria across all 

datasets related to MLR revealed that the most 

successful model was achieved by using the 

texture values from the S2 15x15 window size 

as the independent variables. The lowest 

model successes were found in the models 

developed with the backscatter and band 

brightness values generated from the S1. 

When the digital band values obtained from 

UAV images were analyzed in relation to 

AGC, no significant model was found, 

indicating the limited success of using UAVs 

in predicting AGC. Model successes for 

modeling AGC with vegetation indices values 

were 0.34, 0.43, and 0.64 for UAV, L8 and S2, 

respectively. As a result, the texture variables 

obtained from S2 images with MLR showed 

superior performance in AGC estimation 

compared to other satellite images and 

variables derived from them. The results 

obtained from this study can potentially 

provide valuable information for application 

in comparable forest ecosystems. In future 

research, combining variables from both 

active and passive satellite imagery, 

integrating topographic data, and 

investigating various modeling techniques 

such as XGBoost, RF, SVM, ensemble 

methods, and MARS could significantly 

improve the model's success in predicting 

AGC. 
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