Kastamonu Uni., Orman Fakiiltesi Dergisi, 2025, 25(2): 152-176 Research Article
Kastamonu Univ., Journal of Forestry Faculty
Doi:10.17475/kastorman. 1787120

Estimation of Aboveground Carbon Using Different

Remote Sensing Data and Modelling Techniques

Hasan AKSOY*! ®, Alkan GUNLU?

!Sinop University, Ayancik Vocational School, Ayancik, Sinop, TURKIYE
2Cankir1 Karatekin University, Faculty of Forestry, Cankiri, TURKIYE
*Corresponding Author: haksoy(@sinop.edu.tr

Received Date: 22.07.2024 Accepted Date: 26.12.2024

Abstract

Aim of study: Forests contribute significantly to the global climate by acting as carbon sinks and controlling
energy and water flows. This study aimed to model the aboveground carbon (AGC) of pure Scots pine stands
within the boundaries of the Sinop Regional Directorate of Forestry in Turkey, using data obtained from various
sensor images, including Sentinel-1 (S1), Sentinel-2 (S2), Landsat 8 OLI (L8) and Unmanned Aerial Vehicle
(UAV) images, with artificial neural network (ANN) and multiple linear regression (MLR) modeling techniques.

Area of study: The study was carried out within pure Scots pine stands located in Sinop Regional Directorate
of Forestry.

Material and method: a total of 184 sample plots were taken and field measurements were made in these
sample plots. 80% of the sample plots (150) were used to fit the models and 20% (34) were used to test the
models. The AGC values of each sample plot were estimated with the allometric equation. Brightness values and
backscatter values from S1, vegetation indices, reflectance and texture values obtained for different window sizes
(3x3, 5x5, 7x7 and 11x11) and different orientations (0°, 45°, 90° and 135°) from L8 and S2, and vegetation
indices, band reflectance and digital band obtained from UAV were used in the study.

Main results: The results indicated that the texture variables obtained for the 15x15 of the Sentinel-2 image
for AGC estimation, together with the MLR modeling technique, were the most successful technique compared
to other images and ANN analysis (R*=0.86).

Research highlights: The results have shown that AGC can be predicted at high success levels with ANN
modeling technique with remote sensing data sets.
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Farkh Uzaktan Algilama Verileri ve Modelleme Teknikleri

Kullanilarak Toprakiisti Karbonun Tahmin Edilmesi

Oz

Calismanin amaci: Ormanlar, karbonun depolanmasi, enerji ve su dongiilerinin diizenlenmesi gibi siireglerde
kiiresel iklimde 6nemli bir rol oynamaktadir. Bu ¢alismada Sinop Orman Boélge Miidiirliigii sinirlarinda yayilis
gdsteren saf sarigam mescerelerinde Sentinel-1 (S1), Sentinel-2 (S2), Landsat 8 OLI (L8) ve Insansiz Hava Araci
(IHA) gibi farkli uzaktan algilama gériintiilerinden elde edilen veriler ile toprakiistii karbon (TUK) arasindaki
iliskiler cogul dogrusal regresyon (CDR) ve yapay sinir ag1 (YSA) teknikleri ile modellenmesi amaglanmustir.

Calisma alani: Calisma, Sinop Orman Bolge Miidiirliigii'nde bulunan saf saricam mescerelerinde
gerceklestirilmistir.

Materyal ve yontem: Caligma kapsaminda toplam 184 adet drnek alan alinmig ve bu 6rnek alanlarda yersel
Olciimler yapilmigtir. Alinan 6rnek alanlarin %80' (150 adet) modellerin olusturulmasinda, %20'si (34 adet) ise
modellerin test edilmesinde kullanilmistir. Her bir 6rnek alanm TUK degerleri allometrik denklem ile tahmin
edilmigtir. Caligmada uzaktan algilama verisi olarak, S1 goriintiisiinden geri sagilma ve bant parlaklik degerleri,
S2 ve L8 uydu goriintiileri i¢in farkli pencere boyutlarina (3x3, 5x5, 7x7 ve 11x11) ve farkli yonelimlere (0°,
45°,90° ve 135°) gore yansima degerleri, vejetasyon indeksleri ve doku 6zellikleri ile THA goriintiilerinden elde
edilen dijital bant, bant reflektans ve vejetasyon indisleri kullanilmigtir. Yersel 6lglimler ve uzaktan algilama
verileri arasindaki iligkiler CDR ve YSA teknikleri ile modellenmistir.

Temel sonuglar: Sonuglar, TUK tahmininde S2 gériintiisiiniin 15x15 pencere boyutu igin elde edilen doku
degiskenleri CDR modelleme teknigi ile birlikte diger goriintiilere ve YSA analizine kiyasla en basarili teknik
oldugunu gostermistir (R?=0.86).

Arastirma vurgulari: Sonuglar, TUK "iin uzaktan algilama veri setleri ile CDR modelleme teknigi ile yiiksek
basar1 diizeylerinde tahmin edilebilecegini gostermistir.

Anahtar Kelimeler: Toprakiistii Mescere Karbonu, Dogal orman, Modelleme, Uydu Goriintiileri
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Introduction

As a major component of terrestrial
ecosystems, forests play a crucial role in
maintaining ecological balance (Wu et al.,
2020; Zhang et al., 2022). In addition, forests
are the largest carbon sink in these ecosystems
(Zaninovich &  Gatti, 2020). Forests
contribute to carbon sequestration by
absorbing 76% to 98% of the carbon present
in terrestrial ecosystems (Cheng et al., 2009)
and playing a key role in combating global
warming caused by carbon emissions (Wang
et al., 2013). According to report of the IPCC,
the Earth's temperature increased by 1.2 °C
between 1850 and 1900 (Mu et al., 2022;
Aksoy, 2024). In recent years, when
population and industrialization have
increased rapidly, forests have emerged as the
most effective and cost-efficient means of
combating global warming. Since forests are
the primary carbon sink on land, shifts in their
carbon storage lead to changes in atmospheric
carbon dioxide, thereby directly influencing
global climate change (Fu, 2018; Liu et al.,
2020; Zhang et al., 2022; Seki & Atar, 2021).
All this information shows that forests offer
great potential for sequestering atmospheric
carbon. Therefore, in recent years there has
been an urgent need to measure forest carbon
stocks accurately, quickly, efficiently, and
reliably (Romanov et al., 2022; Zhang et al.,
2023). The most common method of
determining above-ground carbon (AGC) is
either by cutting the tree and calculating the
amount of its biomass and carbon based on the
biomass value or by carbon analysis of wood
materials (Bi et al., 2015). However, this
destructive method requires a lot of labor,
time, and cost. In addition, the fact that local
measurements require a lot of fieldwork, each
fieldwork damages the forest ecosystem, and
it is not practical to use it in large forest areas
(Xuetal., 2022; Zhang et al., 2023; Aksoy and
Giinlii, 2025).

Developments remote  sensing
technology  enable  monitoring  forest
resources and are used as an alternative source
of information to traditional field
measurements. In particular, the real-time,
fast, and broad-scale monitoring of areas has
made it a popular source of information
widely used in forestry, environment, and
ecology (Fremout et al., 2022). Recently, there

in
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has been a rise in initiatives to combine
remote sensing data with ground-based
inventory data to achieve reliable and cost-
effective AGC estimation over extensive
areas. Optical data, LiDAR, SAR data, and
integrated remote sensing data derived from
the combination of these sources are utilized
for AGC estimation (Georgopoulos et al.,
2022). A wide range of spectral and textural
data is provided by optical sensors (band
information, vegetation indices, texture
characteristics, etc.) and are often used to
estimate stand parameters (Chrysafis et al.,
2019). Landsat and Sentinel-2 which are easy
and inexpensive to access from optical
sensors, are the most widely used data sources
in research. The first satellite for natural
resources, Landsat imagery, has traditionally
been employed to assess stand parameters
across large forested areas (Zheng et al., 2004;
Giinlii et al., 2014; Yavash & Olgen, 2017;
Sakici & Giinlii 2018; Turgut & Giinlii, 2022;
Bulut, 2023). The upgraded multispectral
imager of Sentinel-2, with improved spatial
resolution, includes three red-edge bands that
are essential for accurately estimating the
distribution and parameters of forest
resources. Sentinel-1 C (SAR) active satellite
imagery has all-weather imaging capability
and is widely used for estimating stand
parameters (Udali et al., 2021). Moreover,
Radar and airborne LIDAR (ALS) data are
frequently utilized for AGC estimation
because of their ability to penetrate dense
vegetation (Lu et al., 2012; Silva et al., 2018;
Zhang et al., 2023). ALS data is costly to
obtain and not spatially continuous, limiting
AGC estimation in large forested areas
(Listopad et al., 2011; Ehlers et al., 2022).
Recently, rapidly developing unmanned aerial
vehicles (UAVs) have also been used to
estimate stand parameters and monitor forests.
The advantages of UAVs, such as low cost,
fast and less risky high-resolution and simple
data collection, complement the shortcomings
of traditional remote sensing (Lan et al., 2019;
Aksoy, 2022; Aksoy, 2024). Some studies
have found that AGC can be accurately
estimated using high-resolution UAV imagery
and tree height and crown data (Jucker et al.,
2017; Fermandes et al., 2020).

Both parametric and non-parametric
models are utilized in remote sensing-based
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AGC estimation (Huang et al., 2019). The
parametric model is highly regarded for its
ability to assess the relationship between AGC
and independent variables (Ou et al., 2019).
Multiple linear regression (MLR), a widely
used method, is particularly valued for its
simplicity, ability to identify variables, and
strong performance in AGC estimation (Li et
al., 2020a). In addition, artificial neural
networks (ANN) (Dong et al., 2019; Giinlii et
al., 2021; Zhang et al., 2023), k-nearest
neighbor (k-NN) (Zhang et al., 2022), random
forest (RF) (Li et al, 2020; Tang et al., 2022),
support vector machine (SVM) (Sivasankar et
al.,2013; Han et al., 2021), maximum entropy
(MaxEnt) (Wang et al., 2022), extreme
gradient boosting (XGBoost) (Li et al.,
2020b), multivariate adaptive regression
splines (MARS) (Baloloy et al. 2018) were
used modeling AGC. ANN, a non-parametric
modeling technique, is widely used in AGC
modeling (Alquraish & Khadr, 2021; Wang et
al., 2022; Zhang et al., 2023). Additionally,
ANN, which is part of artificial intelligence
and imitates the function of the human brain,
has become increasingly utilized in forestry
applications (Strobl & Forte, 2007; Ogana &
Ercanli, 2022). Artificial neural networks
have been frequently used by researchers in
forestry, with significant success in predicting
tree height, tree volume, tree biomass and
carbon (Hamidi et al., 2021; Ogana & Ercanli,
2022). The study data are less affected by the
above-mentioned disadvantages of ANN
models against the low success levels that
may occur with MLR modeling due to a non-
constant variance distribution in MLR
modeling and the possibility of linearity of
explanatory variables, and accordingly higher
success levels can be achieved (Guisan et al.,
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2002; Aertsen et al., 2010). Therefore, ANN
modeling technique was also used in this
study.

In this study, (i) the relationships between
AGC values calculated using data obtained
from ground measurements with data
obtained from Sentinel-1, Sentinel-2, Landsat
8 OLI and UAV images were modeled using
ANN and MLR modeling techniques, (ii) the
results of the two modeling techniques were
compared to investigate which modeling

technique is more successful in AGC
estimation.

Material and Methods

Study Area

The study was conducted within the
boundaries of the Sinop Regional Directorate
of Forestry (RDF), which is located in the
northernmost part of Turkey. It is located
between 600000 and 710000 E longitude and,
4560000 and 4665000 N latitude. The total
area of Sinop RDF is 556275.50 ha and the
total area of pure Scots pine stands is 7548.49
ha. Since the study area receives rainfall at all
times of the year, it is covered with rich and
diverse forest cover. The average annual
rainfall is 685.7 mm in the study area, which
receives the most precipitation in October and
the least in May. Pinus sylvestris, Abies
nordmanniana, Fagus orientalis, Pinus nigra,
Carpinus betulus, Quercus spp., Fraxinus
excelsior, Juniperus sp., Populus tremula and
Ulmus sp. are the most common tree species
in Sinop RDF. The average annual
temperature of the study area is 14 °C (GDF,
2022). The map in Figure 1 provides the
geographical location of the study area.
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Figure 1. Location map of the study area

Field Measurements

A total of 184 sample plots with different
site index, crown closure and development
stages classes were used for above-ground
carbon (AGC) field measurements in this
study. Traditional forest inventory
measurements were made in the sample plots
determined for the estimation of AGC values.
Sample plots were assigned sizes of 800 m?
(11-40%), 600 m? (41-70%), and 400 m? (71-
100%), according to the crown closure. In
each sample plot, the diameter at breast height
of trees with a diameter of 8 cm or greater was
measured. To estimate the AGC of the trees in
the sample plots, the allometric equation (Eq.
1) developed by Yavuz et al. (2010) for pure
Scots pine stands was used. The total AGC for
each plot was computed by adding up the
AGCs of all the trees in the respective sample
plot.

AGC = —28.360 + 0.413 X d, 5 (1)
Where:

AGC: Aboveground carbon,

d; 3: Tree diameter at breast height.
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Satellite Data and Image Processing

Landsat 8 OLI (L8), Sentinel-2 (S2),
Sentinel-1 (S1) and Unmanned Aerial Vehicle
(UAV) images were used. The S1 (October 17,
2021) with a dual-polarized VV/VH image
was downloaded from the
https://scihub.copernicus.eu. The S2 (October
15, 2021) with 13 spectral bands and L8
(September 26, 2021) with 11 spectral bands
were downloaded from the
https://earthexplorer.usgs.gov. Finally, UAV
images of the study area were taken by DIJI
Inspire-2 drone between August and October
2021.S2 at20 mand 10 m, L8 at 30 m and 15
m, and UAV imagery at resolutions between
2.5 cm and 3.5 cm were used in the study.
Figure 2 presents the details of the UAV and
camera specifications used in the study.
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DJT Insper 2

DJI Zenmuse XS

DIJI Inspire 2 DIJI Zenmuse X-5S

Maximum take-off weight 8.821bs (4000g) Micro Four Thirds sensor

Maximum flight time Approx. 27 min (with zenzenx4s)  5.2K video recording at 30fps and 4K at 60fps
Operating temperature -4° to 104°F (-20° to 40°C) 20.8 MP still image capture

Battery capacity 4280mAh

12.8 stops of dynamic range

Maximum speed 58 mph or 94 kph (sport mode) 12-bit raw photos

Energy 97.58Wh 20£ps contmuous burst shooting
Voltage 228V

Type quadcopter

Live view 1080p

Figure 2. Technical specifications of the UAV platform and optical sensor

In the study, pre-processing of S1 from
remote sensing data sets was performed in
SNAP. Band brightness and backscattering
(dB) values of VH and VV polarizations were
calculated from the S1. First, the image was
preprocessed in SNAP using the "Graph
Builder" tool in a total of 8 steps, including (i)
read to image (ii) apply-orbit file (iii) thermal
noise removal (iv) calibration (v) speckle
filter (vi) terrain correction (vii) dB to linear
(viii) write to image and made ready for
analysis. The obtained images were overlaid
with sample plot polygons in ArcGIS 10.7.
With the overlay, one-to-one inference was
made according to the sample plot boundary
and data was obtained from all pixels
corresponding to the boundary. Finally, using
the "zonal statistics" tool in ArcGIS 10.7, dB
values and numerical band values of VH and
VV polarizations were acquired for each
sample plot and S1 data sets were prepared for
modeling. QGIS 3.8.1 version was used for
the pre-processing of S2 and L8. The images
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were calibrated using the Semi-Automatic
Classification "Plugin" tool, which includes
the calibration of satellite images, and
reflectance images were obtained for each
band. The obtained images were overlaid with
sample plot polygons in ArcGIS 10.7TM as in
the creation of the S1 dataset and reflectance
values were calculated for each sample plot
using the "zonal statistics" tool. A total of 12
vegetation indices were computed for S2 and
L8 using reflectance values (Table 1). In
addition, data sets with different texture
characteristics were created from S2 and L8
using ENVI 5.2. These datasets include
variance (VAR), mean (M), correlation
(COR), homogeneity (HOM), entropy (ENT),
dissimilarity (DIS), second moment (SM) and
contrast (CONT) from satellite imagery, and
separate datasets for different window sizes
(3x3, 5x5, 7x7, 9x9, 11x11, 13x13, and
15x15) and different orientations (0°, 45°,
90°, 135°).
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Table 1. Formulas for vegetation indices obtained from Sentinel-2, Landsat 8§ and UAV images

Vegetation indices

Sentinel 2 Formulas

Landsat 8 OLI Formulas

Reference

NDVI (Normalized Difference
Vegetation Index)

MSI (Moisture Stress Index)
NBR (Normalized Burn Ratio)

EVI (Enhanced Vegetation Index)

SAVI (Soil Adjusted Vegetation Index)

DVI (Difference Vegetation Index)

GNDVI (Green Normalized Difference
Vegetation Index)

NDW!I (Normalized Difference Water
Index)

MSR (Modified Simple Ratio)

NLI (Nonlinear vegetation index)
PSSR (Pigment Specific Simple Ratio)

EVI2 (Enhanced Vegetation Index 2)

(B8 - B4) / (B8 + B4)
(B11/B8)
(B8 - B12)/ (B8 + B12)

2.5 (B8 - B4)/ ((BS + 6.0 x B4 -
7.5x B2) + 1.0)

(B8 -B4)/ (B8 +B4+L)x (10 +
L); L=0.428

(B8/B4)

(B8 - B3) / (B8 + B3)

(B8-B11) / (B8+B11)

(B8 - B1)/ (B4 - B1)

(B8 - B4) / (B8) + B4)

(B8/B4)

2.4 x (B8 - B4)/ (B8 + B4 + 1.0)

(B5-B4) / (B5+B4)
(B6/B5)
(B5-B7) / (B5+B7)

2.5x ((B5—B4)/ (B5 + 6 x
B4—7.5x B2 +1))
((B5-B4)/ (B5 + B4 +0.5))
X (1.5)

(B5 - B4)

(B5 - B3) / (B5 + B3)

(B5-B6)/(B5 + B6)
((B5/B4) -1)/ ((B5/B4)
+1)

((B5) - B4) / ((B5) + B4)
(B5/B4)

2.4x (B5 - B4)/ (B5 + B4 +
1.0)

Rouse et al. (1974)

Hunt and Rock (1989)

Key and Benson
(2006)

Liu and Huete (1995)
Huete (1988)

Tucker (1980)
Gitelson et al. (1996)

McFeeters (1996)

Chen (1996)

Goel and Qin (1994)
Blackburn (1998)

Jiang et al. (2008)

UAYV Vegetation indices

UAV Formulas

Reference

RGBVI (Red-Green-Blue Vegetation
Index)

GLI (Green Leaf Index)

VARI (Visible Atmospherically
Resistant Index)

NGRDI (Normalized Green Red
Difference Index)

ERGBVE (Enhanced Red-Green-Blue
Vegetation Index)

GR (Simple red—green ratio)

RGBVI2 (RGB-based vegetation index
2)

TGI (Triangular Greenness Index)

GRVI (Green-red vegetation index)
MGRVI (Modified green-red vegetation
index)

BG12 (Simple blue-green ratio)

VEG (Vegetativen)

EXG (Excess green index)

NGBDI (Normalized green-blue
difference index)

RGBVI3 (RGB-based vegetation index
3)

(GXxG)- (RxB)I(GxG) +(R x
‘(BZ)XG-R-B)/(ZXG+R+ B)
(G-R)/ (G + R-B)

(G-R)/ (G+R)

7% (G=R x B))/ (G* + (R x B))
R/G

(G-R)/B

G-0.39xR-0.61 xB
(G-R)/(G+R)

(G- R/ (G*+R?)

B/G

G/ (Rax B(1-a)); a=0.667
2G-R-B

(G-B)/(G+B)

(G+B)/R

Bendig et al. (2015)
Louhaichi et al. (2001)
Gitelson et al. (2002)
Tucker (1979)
Themistocleou (2019)
Gamon and Surfus. (1999)

Garcia-Fernandez et al. (2021)

Hunt et al. (2013)
Tucker (1979)

Bendig et al. (2015)

Zarco-Tejada et al. (2005)
Hague et al. (2006)
Woebbecke et al. (1995)

Du and Noguchi (2017)

Garcia-Fernandez et al. (2021)

UAV Data and Image Processing

UAV images for the study were captured
for each sample plot using a DJI Inspire-2
drone. Flight plans were then developed to
cover each sample plot, taking into account
the drone's battery capacity (Figure 3).
Sixteen flight plans were created to cover all
the sample plots within the study area. For
each flight plan, the UAV's takeoff point and
corresponding altitude were identified. The
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minimum flight altitude was then calculated
based on these two altitude values. As a result,
the flight altitude was standardized at 120
meters to maintain consistency across all
flight parcels. Additionally, to achieve the
study's objectives, the image overlap ratios for
the front and sides were set at 80% and 70%,
respectively. The camera angle was fixed at
90° (nadir) for all flights, and the flights were
conducted accordingly.
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Figure 3. UAV flight line and photo location, red points represent the sample plot centers where
field measurements were conducted, the black polygon represents the boundary of the flight, and
the white lines represent the path followed by the UAVs during the image capture phase

After the images were taken, orthomosaic,
digital terrain model (DTM), digital surface
model (DSM) and reflectance (red, green,
blue, and grayscale) images of the sample
plots were created. The images of all parcels
included in the study consist of three bands:
red, green, and blue. Additionally, a grayscale
(panchromatic) band was generated as a
fourth band, as described in Equation 2,
resulting in images composed of a total of four
bands.

The production of orthomosaic, DTM, and
DSM maps from UAV images was carried out
in 3 main stages in PIx4D. In the first stage,
the images were aligned and all images were
calibrated for the relevant flight parcel using
camera internal and external orientation
parameters and tie points were created. In the
second stage of the production process, a point

cloud and solid model were created from the
calibrated images. Then, the point cloud data
were classified and DTM was generated. In
addition, the images were grouped together
with the 3D texture solid model. In the last and
third stage, first the DSM filter was applied
and then the DSM raster image was created.
Then orthomosaic and DTM raster images
were created. Finally, reflectance images (red,
green, blue, and grayscale) and the index
image of the study area obtained by
combining these bands were created (Figure
4). In creating orthophotos and reflectance
images of the flights, 15 vegetation indices
were computed from the satellite images using
ArcGIS 10.7™ and 15 vegetation indices
were calculated from the UAV images
(Tablel).

Greyscale = 0.0722 X Blue + 0.7152 X Green + 0.2126 X Red 2)
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Figure 4. Data obtained from UAV images (Sakiz forest planning unit, Flight parcel no. 1)

Modelling

In the modeling stage, data sets were
prepared to model the relationships between
reflectance, vegetation indices, texture
features, backscatter, and digital band values
derived from S1, S2, L8, and UAV images,
and AGC obtained from field measurements.
Total 184 sample plots used in the study, 80%
(150 sample plots) were utilized for model
training, while 20% (34 sample plots) were
reserved for model testing. MLR and ANN
methods were employed for modeling the
datasets, and the process took place in three
phases.

In the first stage, AGC was estimated
through MLR using remote sensing data. In
the second stage, the prediction models,
developed from the training data sets, were
applied to generate predictions for the test
data. In the third stage, a paired t-test was
performed to evaluate whether a significant
difference existed between the predicted
results and the observed data.

Multiple linear regression analysis
MLR was employed to model the

relationship between AGC and remote sensing

data, with the model structure outlined in

Equation 3.

AGC = Bo+B1. X1 + Bo- X + - + B Xp + £

3)
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The AGC was selected as the dependent
variable in the model, while the independent
variables (Xi, Xo, ..., Xn) consisted of remote
sensing data derived from S1, S2, L8, and
UAV imagery. These data included texture
features, vegetation indices, reflectance,
digital band, brightness and backscattering
values. The coefficients Po, Bi, B2, ..., Pn
represent the model parameters, and € denotes
the additive bias.

Bayesian artificial neural networks
Another modeling approach employed in

the study to estimate AGC is ANN. In this
technique, the independent variables were
derived from remote sensing data such as
brightness, backscatter, vegetation indices,
reflectance, texture features and digital band
values that were found to be significant for
AGC estimation in the MLR method.
MATLAB codes with various ANN model
configurations were utilized in the study
(Bolat, 2021). Although the network designed
in ANN models yields good results for
training datasets, it may perform poorly on the
test dataset, or vice versa. This phenomenon is
known as overfitting or misfit, and it
represents one of the major drawbacks of
ANN. Overfitting is particularly inevitable for
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ANN models with small training datasets. between 0.1 and 0.9. Finally, model

Various approaches have been proposed to
address the overfitting issue in ANN models.
One such approach involves selecting an
appropriate regularization training function,
such as Levenberg-Marquardt or Bayesian
methods (Van Havre et al., 2015; Okut, 2016;
Bolat, 2021; Skudnik & Jevsenak, 2022; Seki,
2023). Since Bayesian network structures
have early stopping capability and are more
compatible with the regularization parameter,
Bayesian network structure is used in ANN
modeling in this study. In ANN models,
independent variables can be normalized
using various techniques to enhance network
complexity and improve robustness against
outliers (Akilli & Hiilya, 2020). In this study,
the independent variables were normalized
using the min-max technique, transforming
the data into values ranging from -1 to +1
(Foresee & Hagan, 1997). Normalizing the
variable data within this range enhances the
generalization capability of the Bayesian
network structure. The hyperbolic tangent
transfer function was used in this study, as the
data were organized within the [-1, 1] range.
Another
performance

factor  influencing  network

the
momentum values. The momentum value is

is learning rate and
typically chosen between 0 and 1. The
learning rate is a critical parameter in the
network's training process; a small learning
rate can lead to overfitting, while a large
learning rate may result in underfitting and
large 1997).

Therefore, selecting appropriate learning rate

errors (Lawrence et al.,
and momentum values simultaneously is
crucial for optimizing network performance
(Bolat, 2021). In this study, based on the
learning rate and momentum values, 17
models were developed for AGC. These
included 9 models where the learning rate was
fixed at 0.1 and momentum varied between
0.1 and 0.9, and 8 models where momentum

was fixed at 0.1 and the learning rate varied
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performance criteria were evaluated and the
most successful model among the 17 models
was selected. Each model obtained is
numbered from 1 to 17 as AGCl, ...., AGC17.
Here AGCI refers to the first model obtained
in the ANN modeling technique.

Model performance criteria
The predictive power of the models was

assessed using several evaluation metrics,
including the coefficient of determination
(R%.4, Eq. 4), root mean squared error (RMSE,
Eq. 5), mean absolute error (MAE, Eq. 6), bias
(Bias, Eq. 7), Akaike's information criterion
(AIC, Eq. 8), and Bayesian information
criterion (BIC, Eq. 9), all of which were
calculated as described in Table 2. It is
important to note that a model that performs
well according to one criterion may not
necessarily perform well according to another.
To address this, the Relative Ranking Method
proposed by Poudel and Cao (2013) was
employed, which takes all criteria into
account when selecting the most successful
model (Rj, Eq. 10). In this approach, all
success criteria are considered and ranked
relatively based on their proximity and
distance values. The Rj values calculated for
each performance criterion are then summed,
and the model with the smallest total Ri value
is considered the most successful for the
relevant criterion (Sakici & Ozdemir, 2018;
Ercanli et al., 2018). Explanations of the
formulas are provided in Table 2, where n
represents the number of observations, p is the
number of parameters, y; are the measured
AGC values, ¥, are the predicted AGC values,
and y, is the mean of the measured AGC
values. R; is the relative rank of method i (i =
1, 2, 3, ..., m), k denotes the number of
coefficients, Si refers to the goodness of fit
statistics generated from the methods, Smin is
the minimum value of Si, and Smax is the
maximum value of Si.
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Table 2. Formulas for model performes criteria
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The study's methodology can be generally
outlined in three key stages. The first step
involves calculating the AGC using data
obtained from field measurements. In the
second step, images from S1, S2, L8, and
UAV are processed to generate data sets. In
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the third and final step, AGC is estimated
using MLR and ANN modeling techniques
with the generated data sets, followed by the
evaluation of model performance. The overall
workflow of the methodology is illustrated in
Figure 5.
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Figure 5. Flowchart of the methodology of the study
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Result
Multiple Linear Regression Analysis

Table 3 presents the success criteria values
and total relative ranks for the relationships
between AGC and remote sensing data,
utilizing the MLR technique. A review of
Table 3 reveals that the models corresponding
to the dataset with the lowest total relative
ranks are identified as the most successful.
The highest success with reflectance data was
recorded for the L8 (R%q = 0.41), while the
lowest success was observed for the UAV
(R?4 = 0.24). For vegetation indices, the S2
showed the highest success (R%q = 0.64),
whereas the UAV data yielded the lowest
success (R%g = 0.34). When analyzing the

model results for texture features from L8 and
S2, the highest success was achieved with the
15x15 window size of the S2 (R?%q = 0.86),
while the lowest success was recorded with
the 3x3 window size of the L8 (R2%q4j= 0.71).
In terms of texture feature orientation, the L8
dataset showed the highest success at 0° (R?y;
=0.86), while the S2 had the lowest success at
135° (R?%4; = 0.59). This study did not develop
any analytical model using UAV digital band
datasets. Models derived from the backscatter
and digital band data of the S1 demonstrated
relatively low success. Figure 6 depicts the
variation of the models based on the
coefficient of determination and total relative
rank.

0.00 20.00 40.00 60.00 80.00 100.00 120.00
Sentinel 2 907 8374 97.62
Sentinel 2 9x9 e — = TR — e DLBG
Sentinel 2 7x7 3847~ S—— 0.83
Sentinel 2 %5 5783 0.81
inel 2 45¢ SF0EGw—- 0.68
Sentine] 2 3x3 470 0.83
Sentinel 2 15%15 3749 0.86
Sentinel 2 135° 636w 0.59
Sentinel 2 13x13 5452 0.86
Sentinel 2 11x11 +43.79 0.84
Sentinel 2 0° L6214 0.86
Sentinel 2 Refleclance 8:4152.39
Sentinel 2 Vegetation Indices 0.64
inel 1 dB 0.04 4 57.89
Sentinel 1 D. Number 0:03 4 57.26
Landsat 90” 0.77
Landsat 9x9 L5887 0.78
Landsal 7x7 “53 0.74
Landsat 5x35 DB 0.68
Landsat 45° 63.05 0.79
Landsat 33 0.71
Landsat 15%15 0.88
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Landsat 13x13 - 49.07 0.86
Landsat 11x11 LA, 0.84
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Landsat Reflectance 24452.13
Landsat Vegetation Indices 4 B34
UAV Reflect 0.24 4 46.09
UAYV Vegetation Indices 9:34—— 50.02
UAV D. Number 0.0 4 69.38
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 1.0
MR? ®Total Rank

Figure 6. The variation of models obtained from remote sensing data according to the coefficient
of determination and total relative rank numbers

When analyzing the success criteria of the
MLR model applied to AGC, the highest
success in remote sensing datasets was
achieved with texture datasets (Table 3).
Specifically, the variation in the dataset
through different window sizes and
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orientation sizes greatly enhanced the model
outcomes. The highest coefficient of
determination for AGC using different filters
was obtained in the 15x15 window size for
texture features obtained from the S2 (Table
4).
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Table 3. Values for the success criteria and total relative ranks in the MLR
Training Training Relative Rank

Dataset RZ RMSE MAE BIC AIC R RMSE MAE BIC AIC Total
UAV DN - - - - - - - - - - -

UAV VIs 0.34 88.43 7479 5.18 8.48 19.62 17.50 1.04 9.12 2.74 50.02
UAV RV 0.24 95.56 76.72 4.56 6.56 23.24 19.81 1.04 1.00 1.00 46.09
L8 VIs 043 8245 66.70 5.51 1041 16.62 15.55 1.03 13.54 4.49 51.24
L8 RV 041 83.19 65.86 5.52 1042 17.14 15.80 1.03 13.66 4.50 52.13
L8 Orientation (0°) 0.86 38.89 30.85 649 37.66 1.79 141 1.00 26.51 29.20 5991

L8 Window Size (11x11) 0.84 4224  31.77 631 29.74 248 249 1.00  24.06 22.02 52.06
L8 Window Size (13x13) 0.86 39.03  30.71 6.23 29.66 1.66 1.45 1.00  23.02 2195 49.07
L8 Orientation (135°) 0.81 45.07 3499 645 31.81 3.31 3.41 1.00  25.89 2389 57.51
L8 Window Size (15x15) 0.88 37.64 2933 6.27 31.63 1.00 1.00 1.00 2352 2373  50.25
L8 Window Size (3%3) 0.71 5747 45.03 645 26.05 7.03 744 1.01 2592 18.67 60.08

L8 Orientation (45°) 0.79 48.06 3831 6.58 33.87 424 438 1.01 27.65 25.76  63.05
L8 Window Size (5%5) 0.68 60.53  36.15 6.05 18.10 7.90 8.44 1.01 20.64 1147 4945
L8 Window Size (7x7) 0.74 54.15 4343 629 2399 590 636 1.01 23.88 16.80  53.95
L8 Window Size (9%9) 0.78 4943  38.14 639 27.90 448 483 1.01 25.08 20.35 55.74
L8 Orientation (90°) 0.77 5035 38.08 640 2792 479 513 1.01 2532 2036 56.61
S1DN 0.03 104.03 86.55 4.64 6.64 3045 2257 1.04 212 1.08 57.26
S1dB 0.04 106.78 87.48 4.67 6.67 29.83  23.46 1.04 246 1.10 57.89
S2 Vis 0.64 78.59 5055 6.44 2036 9.28 14.30 1.02 2585 13.52 63.96
S2 RV 041 8345 6798 552 1042 17.28 15.88 1.03 13.70  4.50 52.39
S2 Orientation (0°) 0.86 3851 31.02 6.54 39.65 1.72 1.28 1.00  27.13 31.00 62.14
S2 Window Size (11x11)  0.84 43.10  32.66 6.07 23.76 2.55 2.77 1.00  20.87 16.60 43.79
S2 Window Size (13x13) 0.86 38.88  30.51 6.37 33.66 1.69 1.40 1.00 2486 2557 54.52
S2 Orientation (135°) 0.59 68.04 5193 642 2222 11.03  10.88 1.02 2550 1520 63.63
S2 Window Size (15x15)  0.86 39.74  31.17 588 21.68 1.69 1.68 1.00 1841 14.71 3749
S2 Window Size (3%3) 0.83 5466 32773 6.83 38.00 266  6.53 1.00  31.00 29.50 70.69
S2 Orientation (45°) 0.68 5935 4529 6.72 32.08 8.03 8.05 1.01 29.52  24.14 70.76
S2 Window Size (5%5) 0.81 45.63 2940 646 31.82 328  3.59 1.00  26.06 2390 57.83
S2 Window Size (7%7) 0.83 44.19 3357 5.87 19.79 279 313 1.00 18.25 12,99 38.17
S2 Window Size (9%9) 0.86 38.79 2858 6.22 29.66 1.59 1.37 1.00 2294 2194 70.87
S2 Orientation (90°) 0.77 50.07 3891 6.69 3591 4.93 5.04 1.04  29.04 27.61 97.62

Table 4. Above ground carbon model generated using the 15x15 window size texture data from
the S2

Independent variables Coefficients of Independent variables t statistics p-value
Constant -3500.740 -8.807 0.000
COR_S2 15 90° 192.946 6.298 0.000
SM_S5_15 135° -2010.659 -4.265 0.000
CON_S6_15 0° -91.207 -3.802 0.000
COR_S5 15 90° -300.979 -6.092 0.000
SM_S7_15 0° -512.740 -9.566 0.000
OM_S4 15 135° 3599.181 9.218 0.000
M_S7_15 135° 98.795 4.633 0.000
DIS_S4 15 135° 1148.961 7.969 0.000
CON_S6_15_45° 52.021 10.808 0.000
VAR_S2_15 (° -131.609 -1.932 0.055
SM_S5 15 0° 3034.135 6.547 0.000
DIS_S4_15 0° 632.743 4.802 0.000
SM_S3 15 90° 236.889 8.673 0.000
CON_S7 15 0° -197.697 -3.841 0.000

S: Sentinel-2, S12: Band 12 of Sentinel-2, HOM: homogeneity, CONT: contrast, COR: correlation, DIS: dissimilarity, M: mean, VAR:
variance, ENT: entropy and SM: second moment
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Figure 7. Graph of observation, prediction, and error distribution based on the MLR

Results of Multiple Linear Regression
Analysis

AGC was modeled using the ANN
technique, employing the independent

variables from the model that achieved the
highest predictive success with the MLR
technique (Table 4). The results of the
prediction models are presented in Table 5. In
the ANN technique, 17 different models for
AGC were developed by applying various
learning rates and momentum values. The
results of these ANN models are presented in
Table 5. Upon reviewing Table 5, the most
appropriate coefficient of determination and
the lowest total relative rank were achieved in
the AGC16 model (Model R? = 0.89, Test R?
=0.77, learning rate = 0.8, momentum = 0.1,
Rj = 13.44). Although the model specification
coefficients of AGC2, AGC6, AGC10, and
AGCI11 are identical to those of AGC16, the
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overall relative ranks of these models are
higher, making AGC16 the most successful
model. The graph illustrating the model and
test coefficients of determination for AGC is
shown in Figure 8. Furthermore, the graph
depicting the changes in the coefficient of
determination and total relative rank for the 17
ANN models obtained for AGC is presented
in Figure 9. The prediction and observation
graphs of AGC, as predicted by the ANN
method for the model-test data sets, are shown
in Figure 10.
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Table 5. Values for the success criteria and total relative ranks in the artificial neural networks

(ANNs)

Parameters Training Validation
Model Total Total
No Lr. Mo. Input Output HI. Neuron R> RMSE MAE BIC AIC Relative R2 RMSE MAE BIC AIC Relative

Rank Rank
0.83 45.24 34.29 6.45 31.81 73.77 0.74 56.78 46.61 6.68 32.04 64.62
0.89 36.19 26.43 6.23 31.59 1881 0.71 59.52 43.76 6.73 32.09 69.76
0.86 40.67 31.81 6.34 31.71 4298 0.69 61.79 50.25 6.76 32.12 79.72
0.88 37.23 27.52 6.26 31.62 14.96 0.71 59.62 45.88 6.73 32.09 71.31
0.88 37.35 28.02 6.26 31.62 16.67 0.68 63.21 47.79 6.79 32.15 81.66
0.89 359 26.54 6.22 3158 52 0.74 57.11 4558 6.68 32.04 64.79
0.89 37.1 26.72 6.25 31.61 12.68 0.77 53.94 40.88 6.63 31.99 53.62
0.87 39.89 29.55 6.33 31.69 34.34 0.76 54.61 44.67 6.64 32 57.75
0.82 46.99 35.07 6.49 31.85 85 0.68 63.42 52.12 6.79 32.15 85
0.89 37.04 26.456.25 31.61 119 0.71 59.74 47.28 6.73 32.09 72.6
0.89 36.82 28 6.25 31.61 1331 0.7 61.23 4797 6.75 32.11 76.78
0.88 37.85 28.74 6.27 31.63 20.92 0.72 59 47.64 6.72 32.08 70.97
0.88 37.31 26.99 6.26 31.62 14.33 0.77 53.56 41.38 6.62 31.98 52.92
0.88 37.66 28.356.27 31.63 19.13 0.74 56.99 45.92 6.68 32.04 64.71
0.88 36.8 29.68 6.24 31.61 17.14 0.87 38.99 27.59 6.3 31.66 55
0.89 36.93 27.69 6.25 31.61 13.44 0.77 53.79 41.58 6.62 31.99 53.65
0.88 37.64 28.05 6.27 31.63 18.47 0.73 57.72 44.98 6.69 32.06  65.89
: Hidden Layer, AGC1: Aboveground biomass 1st model

AGCl1 0.1 01 14
AGC2 0.1 02 14
AGC3 0.1 03 14
AGC4 0.1 04 14
AGC5 0.1 05 14
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AGC100.2 0.1 14
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AGC12 04 0.1 14
AGC1305 0.1 14
AGC14 0.6 0.1 14
AGC150.7 0.1 14
AGC16 0.8 0.1 14
AGC17 0.9 0.1 14
Lr: Learning Rate, Mo: Momentum, H
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Figure 8. Graph of the coefficient of determination for aboveground carbon obtained using the
ANNs model
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Additionally, a paired t-test was conducted to
assess the compatibility of the test predictions
with the observed data. The test results
indicated that the models were applicable to
the stands in the study area at a significance

level of 0.05. The performance measures (R?,
MAE, AIC, BIC, BIAS, RMSE) and paired t-
test results for the most successful AGC
model predictions obtained through the
modeling techniques are presented in Table 6.

Table 6. Performance metrics of the model obtained using the 15x15 texture data from the S2 for

AGC
Method R? RMSE MAE BIC AIC BIAS Paired
Training MLR 0.86 39.74 31.17 5.88  21.68 -7.38x10'* t-test
ANN 0.89 36.93 27.69 6.25 31.61 -7.38x10 t p value
vValidation MLR 0.82 46.75 38.24 6.48 31.84 7.13x107* -2.054  0.726
ANN 0.77 53.79 41.58 6.62 3199 -2.79x10 -1.365 0.119
Discussion predict AGC is better than MLR (ANN R? =

In this study, AGC was modeled, and
predictions were obtained using data sets from
S1, S2, L8 and UAV. Two different
techniques, MLR and ANN, were used in
modeling. Upon examining the results of
AGC modeling, the highest performance
across all datasets used in the study was
achieved with the texture values from the
15x15 window size derived from the S2
(Table 3). High model specification
coefficients were obtained in both MLR and
ANN methods (MLR R*=0.86, ANN
R?=0.89). Similarly, the test coefficients of
determination of both methods were also high
(MLR R?=0.82, ANN R?*=0.77). When the
paired t-test results of the test data for AGC in
MLR and ANN methods are analyzed, the p-
values are calculated as 0.726 and 0.119 for
MLR and ANN, respectively (Table 6).
Considering both the model and test
specification coefficients and the p-value for
the paired t-test for AGC, MLR was found to
be the most applicable modeling technique. In
both methods, the p-value for the paired t-test
is greater than 0.05, indicating that the model
network is feasible. Giinlii and Ercanli (2020),
in their study to estimate AGC in pure beech
stands using Alos Palsar L-band imagery,
calculated the AGC of 153 sample plots by
ground measurements, and for each sample
plot, different window sizes (3x3, 5x5, 7x7,
9x9 and 11x11) and eight texture attributes
(correlation, second moment, dissimilarity,
entropy, contrast, variance, homogeneity and
mean) with MLR and ANN modeling
techniques. When the results obtained are
analyzed, it is seen that the ability of ANN to
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0.52, MLR R?=0.38). When compared to the
AGC model results obtained using the S1 used
in our study, it is seen that a very high success
is achieved (Table 3).

Keles et al., (2021) modeled AGC using
SVM and MLR modeling techniques with
backscatter values, band and vegetation index
values at different polarizations from S1 and
S2. They obtained the best result with the
SVM modeling technique (R? = 0.88). In the
MLR method, they calculated the R? as 0.75.
When the results are compared with our study,
it is seen that similar results are obtained.
Poorazimy et al., (2020) estimated the AGC
stock by using MLR and nonparametric k-
NN, SVR and RF algorithms, using data from
Airborne Lidar (ALS), Alos-2 L-band and
UltraCam images alone and in combination.
The results showed a low success rate of R? =
0.34 with ALS data and R* = 0.41 with the
combination of data. They found similar
results with the model performance values
obtained from the UAV data sets of our study.
Zhang et al, (2023) investigated the
estimation and temporal variation of AGC
using MLR and DL methods with Landsat
satellite images. The results showed that the
DL method (R? = 0.64) was more successful
than the MLR method (R*? = 0.34). In
comparison to our results, it is evident that the
texture dataset derived from Landsat images
is highly effective in modeling AGC and
contributes significantly to achieving high
levels of success. This study also involves
modeling the relationships between AGC and
variables such as digital band, reflectance, and
vegetation index obtained from UAV imagery.
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This study also encompasses the modeling of
the relationships between AGC, and variables
such as digital band, reflectance, and
vegetation index obtained from UAV imagery.
When the modeling results were evaluated, in
contrast to the relationships obtained with
satellite data sources, very low model
successes were obtained in modeling AGC
with UAV data. The coefficients of
determination ranged between R?=0.24 for
band reflectance and R?>=0.34 for vegetation
indices. Lower model successes were
obtained compared to the model successes
created with the datasets obtained from
satellite imagery (Table 3). A significant
model for AGC could not be developed using
the digital band values from the UAV imagery
dataset. The main reason for this can be
explained by the number of pixels
representing the sample areas. In satellite
imagery, a sample area may be represented by
just a few pixels, whereas in UAV imagery, the
same area is represented by a greater number
of pixels, resulting in changes to the
homogeneity of the sample area data. When
extracting reflectance values from 2.5 cm
resolution UAV images for the sample areas,
the average reflectance values capture not
only reflections from treetops but also from
gaps, substrates, and the forest floor.
Including reflections from objects in the forest
understory and floor layers introduces more
variation in the average reflectance values
within the sample area, thereby expanding the
dataset's range. All this explains the
discrepancy between the results of the UAV
and satellite 1imagery and shows the
proportional  relationship  between the
resolution and the diversity of reflectance
values.

This directly affects the performance of the
model. To address this issue, it is anticipated
that using tree-specific reflectance values
derived from UAV imagery can help
standardize reflectance values and enhance
model performance by reducing the number of
pixels representing the entire sample area. The
following single-tree-based studies provide
support for this conclusion. In their study
aimed at estimating carbon stock using UAV,
Abdullah et al. (2021) achieved a coefficient
of determination of R? = 0.66.
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In our study, the highest coefficient of
determination was obtained with vegetation
index values obtained from UAV images
(R?>=0.38). It can be said that the higher
success of the aforementioned study can be
attributed to the fact that, unlike our study,
estimation was made using single tree-based
data. Muhsoni et al., (2021) aimed to model
the carbon of a mangrove tree using UAV
images, and the results show that they
obtained successful results in modeling with
MLR technique (R*=0.75). It is thought that
the reason for their higher success compared
to our study is again due to single tree-based
modeling. Qin et al. (2021) evaluated the
potential of combining UAV LIDAR data with
hyperspectral imagery to estimate carbon in
individual trees. Their results indicated that
using LIDAR and hyperspectral data
separately yielded carbon estimates with R?
values of 0.74 and 0.75, respectively. They
discovered that merging both LIDAR and
hyperspectral data improved the accuracy of
tree-level carbon stock estimation, with an R?
value of 0.89. Upon reviewing the existing
literature on UAVs, it becomes evident that
there are limited studies focusing on AGC
estimation using variables derived from UAV
imagery, particularly in natural forests. The
literature review on UAVs reveals that there
are limited studies on AGC estimation using
variables derived from UAV imagery,
particularly in natural forests. As highlighted
earlier, most studies primarily focus on
estimating AGC for individual trees by
integrating UAV imagery with satellite data
such as S1, S2, L8, and LIDAR. Moreover, the
literature on UAV data usage primarily
concentrates on estimating AGC using single-
tree characteristics such as diameter and
height derived from UAV imagery (RGB and
NIR bands) or LIDAR data integrated with
UAV imagery (Ye etal., 2019; Liu et al., 2022;
Lin et al., 2022; Basyuni et al., 2023). Bulut et
al. (2024) attempted to model tree height and
tree volume using drone imagery datasets.
They found coefficients of determination of
0.96 for tree height and 0.72 for tree volume.
These high coefficients of determination in
their study can be attributed to the creation of
datasets based on individual tree reflectance
values, in contrast to our approach. As
mentioned above, the successful model
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predictions with UAV imagery show that
modeling with datasets obtained from
individual tree data will yield higher results.
In this study, the datasets for UAV imagery
were calculated over sample plots rather than
individual trees. Therefore, high resolution
UAYV images (2.5 cm - 3.5 cm) provide a lot of
detail and different reflectance values are
obtained from these details. This causes a lot
of variability in the sample plot image values.
Therefore, this situation negatively affects
modeling success. The reason why the
datasets in this study are created on a sample
plot basis is that it should be the same as the
logic of creating a satellite image dataset.
Because the study investigated whether UAV
images can be an alternative data source to
satellite images in modeling. The results show
that UAV datasets created in a similar process
to satellite image processing and dataset
creation processes show lower model success
and therefore cannot be an alternative to
satellite imagery in this approach.

Conclusions

In this study, MLR and ANN modeling
techniques were used to estimate AGC in pure
yellow pine stands in northern Turkey using
data from L8, S2, S1 and UAV images. The
results showed that the texture values obtained
from the S2 were able to predict AGC better
with the MLR method compared to other
images and variables and ANN analysis. The
analysis of performance criteria across all
datasets related to MLR revealed that the most
successful model was achieved by using the
texture values from the S2 15x15 window size
as the independent variables. The lowest
model successes were found in the models
developed with the backscatter and band
brightness values generated from the Sl1.
When the digital band values obtained from
UAV images were analyzed in relation to
AGC, no significant model was found,
indicating the limited success of using UAVs
in predicting AGC. Model successes for
modeling AGC with vegetation indices values
were 0.34,0.43, and 0.64 for UAV, L8 and S2,
respectively. As a result, the texture variables
obtained from S2 images with MLR showed
superior performance in AGC estimation
compared to other satellite images and
variables derived from them. The results
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obtained from this study can potentially
provide valuable information for application
in comparable forest ecosystems. In future
research, combining variables from both
active and passive satellite imagery,
integrating topographic data, and
investigating various modeling techniques
such as XGBoost, RF, SVM, ensemble
methods, and MARS could significantly
improve the model's success in predicting
AGC.
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