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Differences of Operators of Lupaş Type
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ABSTRACT. In the present article, we study the approximation of difference of operators and find the quantitative
estimates for the difference of Lupaş operators with Lupaş-Szász operators and Lupaş-Kantorovich operators in terms
of modulus of continuity. Also, we find the quantitative estimate for the difference of Lupaş-Kantorovich operators
and Lupaş-Szász operators.
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1. INTRODUCTION

Approximation for linear positive operators to functions in real and complex setting is an
active area of research amongst researchers. Several new operators have been constructed in
last six decades and their approximation behaviours have been studied. Concerning approxi-
mation properties of linear positive operators the convergence is one of the important aspects,
several methods and techniques have been applied to get the direct results in ordinary and
simultaneous approximation, we mention some of the recent work viz. [1–4], [8–10], [12] etc.

Acu-Rasa [5] and Aral et al [7] established some interesting results for the difference of op-
erators in order to generalize the problem posed by A. Lupaş [16] on polynomial differences.
Some of the results on this topic are compiled in the recent book by Gupta et al [14].

Very recently the author in [11], provided a general result for the difference of operators
and applied the result to Szász type operators. We consider here the Lupaş operators and its
variants and find the quantitative estimates for the differences of such operators. A. Lupaş [16]
proposed a discrete operators, which for f ∈ C[0,∞), are defined as

Ln(f, x) :=

∞∑
k=0

ln,k(x)Fn,k(f),(1.1)

where Fn,k : D → R be positive linear functional defined on a subspace D of C[0,∞) and

ln,k(x) = 2−nx
(nx)k
k! 2k

, Fn,k(f) = f

(
k

n

)
It was observed that these operators are linear and positive and preserve linear functions.
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Remark 1.1. For the Lupaş operators, we have Fn,k(f) = f
(
k
n

)
such that Fn,k(e0) = 1, bFn,k :=

Fn,k(e1) If we denote µFn,k
r = Fn,k(e1 − bFn,ke0)

r, r ∈ N, then by simple computation, we have

µ
Fn,k

2 := Fn,k(e1 − bFn,ke0)
2 = 0

µ
Fn,k

4 := Fn,k(e1 − bFn,ke0)
4 = 0

Remark 1.2. The The moments of Lupaş operators with er(t) = tr, r ∈ N ∪ {0} are given by

Ln(e0, x) = 1,

Ln(e1, x) = x,

Ln(e2, x) = x2 +
2x

n
,

Ln(e3, x) = x3 +
6x2

n
+

6x

n2
,

Ln(e4, x) = x4 +
12x3

n
+

36x2

n2
+

26x

n3
,

Ln(e5, x) = x5 +
20x4

n
+

120x3

n2
+

250x2

n3
+

150x

n4
,

Ln(e6, x) = x6 +
30x5

n
+

300x4

n2
+

1230x3

n3
+

2040x2

n4
+

1082x

n5
·

2. DIFFERENCE OF OPERATORS

Let CB [0,∞) be the class of bounded continuous functions defined on the interval [0,∞)
equipped with the norm ||.|| = supx∈[0,∞) |f(x)| < ∞. Let us consider another operator Vn
having the same Lupaş basis ln,k(x) such that

Vn(f, x) =

∞∑
k=0

ln,k(x)Gn,k(f),

where Gn,k : D → R. Following [11], we have the following quantitative general result.

Theorem 2.1. [11] Let f (s) ∈ CB [0,∞), s ∈ {0, 1, 2} and x ∈ [0,∞), then for n ∈ N, we have

|(Ln − Vn)(f, x)| ≤ ||f ′′||α(x) + ω(f ′′, δ1)(1 + α(x)) + 2ω(f, δ2(x)),

where

α(x) =
1

2

∞∑
k=0

ln,k(x)(µ
Fn,k

2 + µ
Gn,k

2 )

and

δ21 =
1

2

∞∑
k=0

ln,k(x)(µ
Fn,k

4 + µ
Gn,k

4 ), δ22 =

∞∑
k=0

ln,k(x)(b
Fn,k − bGn,k)2.

We now establish quantitative estimates for the difference of Lupaş operators with the Lupaş-
Kantorovich operators and Lupaş-Szász operators.
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2.1. Lupaş and Lupaş-Kantorovich operators. In [6] Agratini proposed the Kantorovich vari-
ant of the Lupaş operators as

Kn(f, x) :=

∞∑
k=0

ln,k(x)Gn,k(f) = n

∞∑
k=0

ln,k(x)

k+1
n∫

k
n

f(t) dt,(2.2)

where

Gn,k(f) = n

k+1
n∫

k
n

f(t) dt.

Below, we present the quantitative estimate for difference of Lupaş and Lupaş-Kantorovich
operators.

Theorem 2.2. Let f (s) ∈ CB [0,∞), s ∈ {0, 1, 2} and x ∈ [0,∞), then for n ∈ N, we have

|(Kn − Ln)(f, x)| ≤
1

24n2
||f ′′||+ ω

(
f ′′,

1

4
√
10n2

)(
1 +

1

24n2

)
+ 2ω

(
f,

1

2n

)
.

Proof. Following Theorem 2.1, by simple computation, we have

bGn,k = Gn,k(e1) =
2k + 1

2n

and

µ
Gn,k

2 := Gn,k(e1 − bGn,ke0)
2

= Gn,k(e2) +

(
2k + 1

2n

)2

− 2Gn,k(e1)

(
2k + 1

2n

)
=

3k2 + 3k + 1

3n2
−
(
2k + 1

2n

)2

=
1

12n2
.

Next, using Remark 1.2, we have

α(x) :=
1

2

∞∑
k=0

ln,k(x)(µ
Fn,k

2 + µ
Gn,k

2 ) =
1

24n2
.

Further,

µ
Gn,k

4 := Gn,k(e1 − bGn,ke0)
4

= Gn,k(e4)− 4Gn,k(e3)

(
2k + 1

2n

)
+ 6Gn,k(e2)

(
2k + 1

2n

)2

− 4Gn,k(e1)

(
2k + 1

2n

)3

+Gn,k(e0)

(
2k + 1

2n

)4

=
5k4 + 10k3 + 10k2 + 5k + 1

5n4
− 4

4k3 + 6k2 + 4k + 1

4n3

(
2k + 1

2n

)
+ 6

3k2 + 3k + 1

3n2

(
2k + 1

2n

)2

− 3

(
2k + 1

2n

)4

=
1

80n4
.



12 V. Gupta

Then using Remark 1.1 and above equality, we get

δ21(x) =
1

2

∞∑
k=0

ln,k(x)(µ
Fn,k

4 + µ
Gn,k

4 ) =
1

160n4
.

and by using Remark 1.2, we have

δ22(x) =

∞∑
k=0

ln,k(x)(b
Fn,k − bGn,k)2

=

∞∑
k=0

ln,k(x)

[
k

n
− 2k + 1

2n

]2
=

1

4n2
.

This completes the proof of the theorem. �

2.2. Lupaş and Lupaş-Szász operators. The Lupaş-Szász operators are defined as

Sn(f ;x) = n

∞∑
k=1

ln,k(x)

∫ ∞
0

sn,k−1(t)f(t)dt+ ln,0(x)f(0),(2.3)

where the Szász basis function is defined as sn,k(t) =
e−nt(nt)k

k! .
If we denote

Hn,k(f) = n

∫ ∞
0

sn,k−1(t)f(t)dt, 0 ≤ k <∞, Hn,0(f) = f(0)

then the operators (2.3) take the following form:

Sn(f, x) =

∞∑
k=0

ln,k(x)Hn,k(f).

We present below the quantitative estimate for difference of Lupaş and Lupaş-Szász opera-
tors.

Theorem 2.3. Let f (s) ∈ CB [0,∞), s ∈ {0, 1, 2} and x ∈ [0,∞), then for n ∈ N, we have

|(Sn − Ln)(f, x)| = ||f ′′|| x
2n

+ ω

(
f ′′,

√
3x2

2n2
+

6x

n3

)(
1 +

x

2n

)
.

Proof. By simple computation, we have

bHn,k = Hn,k(e1) =
k

n
.

Also, we have

µ
Hn,k

2 := Hn,k(e1 − bHn,ke0)
2

= Hn,k(e2) +

(
k

n

)2

− 2Hn,k(e1)

(
k

n

)
=

k(k + 1)

n2
− k2

n2
=

k

n2
.
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Next, using Remark 1.1, we have

α(x) :=
1

2

∞∑
k=0

ln,k(x)(µ
Fn,k

2 + µ
Hn,k

2 ) =
x

2n
.

and

µ
Hn,k

4 := Hn,k(e1 − bHn,ke0)
4

= Hn,k(e4)− 4Hn,k(e3)

(
k

n

)
+ 6Hn,k(e2)

(
k

n

)2

− 4Hn,k(e1)

(
k

n

)3

+Hn,k(e0)

(
k

n

)4

=
3k2 + 6k

n4
.

Then by Remark 1.1, we have

δ21(x) =
1

2

∞∑
k=0

ln,k(x)(µ
Fn,k

4 + µ
Hn,k

4 )

=

∞∑
k=0

ln,k(x)
3k2 + 6k

2n4

=
3x2

2n2
+

6x

n3
.

and by using above identities, we have

δ22(x) =

∞∑
k=0

ln,k(x)(b
Fn,k − bHn,k)2 = 0.

This completes the proof of the theorem. �

2.3. Lupaş-Kantorovich and Lupaş-Szász operators.

Theorem 2.4. Let f (s) ∈ CB [0,∞), s ∈ {0, 1, 2} and x ∈ [0,∞), then for n ∈ N, we have

|(Sn −Kn)(f, x)| = ||f ′′||
(

1

24n2
+

x

2n

)
+ 2ω

(
f,

1

2n

)
+ ω

(
f ′′,

√
1

160n4
+

3x2

2n2
+

6x

n3

)(
1 +

1

24n2
+

x

2n

)
.

Proof. By previous subsections, we have

bGn,k = Gn,k(e1) =
2k + 1

2n
, bHn,k = Hn,k(e1) =

k

n
.

µ
Gn,k

2 =
1

12n2
, µ

Hn,k

2 =
k

n2

and

µ
Gn,k

4 =
1

80n4
, µ

Hn,k

2 =
3k2 + 6k

n4
.
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Thus, we have

α(x) :=
1

2

∞∑
k=0

ln,k(x)(µ
Gn,k

2 + µ
Hn,k

2 ) =
1

24n2
+

x

2n

δ21(x) =
1

2

∞∑
k=0

ln,k(x)(µ
Gn,k

4 + µ
Hn,k

4 )

=

∞∑
k=0

ln,k(x)

[
1

160n4
+

3k2 + 6k

2n4

]
=

1

160n4
+

3x2

2n2
+

6x

n3
.

and by using above identities, we have

δ22(x) =

∞∑
k=0

ln,k(x)(b
Gn,k − bHn,k)2 =

1

4n2
.

The result follows by combining above estimates as in Theorem 2.1. �

Remark 2.3. In [13] Gupta et al and [15] Gupta-Yadav also considered Lupaş-Beta type operators, the
difference estimates can be obtained analogously, the analysis is different we can discuss them elsewhere.
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