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Article Info Abstract

In this paper, for the first time we defined and studied a new two parameter lifetime model by
Received: 14/08/2017 using the T-X method, called the Log-Gamma Rayleigh distribution. This distribution can be
Accepted: 20/04/2018 considered as a new generalization of the Gamma distribution and the Rayleigh distribution. We

obtain some of its mathematical properties. Some structural properties of the new distribution

are studied. Maximum likelihood estimation method is used for estimating the model
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parameters. An application to real data set is given to show the flexibility and potentiality of the
T-X method new model.
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1. INTRODUCTION

Eugene et al. [6] for the first time introduced the beta-generated family of distributions. They noted that
the probability density function pdf of the beta random variable and the cumulative distribution function
CDF of any distribution are between 0 and 1. The beta-generated random variable X is defined with the
following CDF and pdf

F(x)

G(x)= [ bt)dt €

—~

o

and

(X)—B( ﬂ)f(X)F“(X)[l FOOI™

where b(t) is the pdf of the beta random variable with parameters czand g, F(x) and f(x) are the CDF
and the pdf of any random variable.

Many authors derived and studied many beta-generated distributions in the literature, for example beta-
Gumbel (Nadarajah and Kotz, [12]), beta-Weibull (Famoye et al. [7]), beta-exponential (Nadarajah and
Kotz, [13]), beta-gamma (Kong et al., [8]), beta-Pareto (Akinsete et al., [1]), beta-generalized exponential
(Barreto-Souza et al., [5]), beta-generalized Pareto (Mahmoudi, [10]), and beta-Cauchy (Alshawarbeh, et

al., [2]).
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Alzaatreh et al. [3] presented a new general method for generating new distributions, called T-X family of
distributions. This method depending on replace the beta pdf in (1) with a pdf of any continuous random
variable and applying a function W(F(x)) that satisfies the following conditions:

1- “W(F(x)) € [a, b].”

2- “W(F(x)) is differentiable and monotonically non-decreasing.”

3- “W(F(x)) —» aas x > —ooand W(F(x)) > bas x —»0.”

Let X be a random variable with pdf f (x) and CDF F(x), and let T be a continuous random variable with
pdf r(t) and CDF R(t) defined on [a, b] for —oo < a < b < o0. Alzaatreh et al. [3] defined the CDF and pdf
of a new family of distributions as

W (F(x))

G(X)= | r@)dt =R (FK))} @
and

g(x) =[:—XW (FONT rWv (F(x )]

Recently, Amini et al. [4] introduced two new general families of continuous distributions called log
gamma- generated families(LG-G) of distributions as follows:

For any continuous parent distribution F(x) of a random variable X with corresponding parent pdf f(x),
the two new LG-G families are given with the following two pdfs:

fl(X)=%[—Iog(l—F(x))]p_l(l—F(x))q_lf (x), p,q>0

and

fz(X)Z% —Iog(F(x))]p_l(F(x))q_lf (x), p,q>0

where I'(.) is the complete gamma function.

Note that the log gamma- generated families which introduced by Amini et al. [4] are two special cases
from T-X method defined by Alzaatreh et al. [3]. Take the W(F(x)) = (1 — F(x)) in (2), and let the random
variable T follows the log-gamma distribution with the following CDF and pdf

R(x):F’?;)I(—Iogx)“‘lxﬁ‘l, O<x <1, Ba>0 (3)
() =L (Clogx)x#, 0<x<1 , Ba>0 %
[a)

From (2), (3) and (4) we will define the log-gamma -X family based on T-X method with the following
CDF and pdf
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ﬂa (=F(x))

@ |

G(x)= (~logx)**x??, w<x<-o , B,a>0

(5)
y|a.-plogd-F (x))]

=1 I'(2)

and

900 =L S log-F () [L-Fe0), mex < L paz0 @

where #(.,.) is the lower incomplete gamma function defined by
X

y(a,X) :Ie‘“ u“tdu
0

Merovci and Elbatal [11] defined and studied a generalization of the Rayleigh distribution called the
Weibull Rayleigh distribution (WR). In this paper we present a new generalization of the Gamma
distribution and the Rayleigh distribution called the Log-Gamma Rayleigh distribution.

2. THE LOG-GAMMA - RAYLEIGH DISTRIBUTION (LGR)
If the random variable X have the Rayleigh distribution with pdf and CDF given, respectively, by

XZ

X

“f(x)==e 2" , x>0 , >0 ()
(o)
and
F(x)=1-e 2*, x>0 , o>0 ®)

then using (5), (6), (7) and (8) the log-gamma - Rayleigh distribution (LGR) is defined with CDF

ﬂxz)

G(x):l—%, x>0 , af0>0

The corresponding pdf of the LGR is

“g(x)= ?;( o e Y x50 L afos00

The LGR distribution has the following special cases:
1) When =1, the gamma distribution is obtained as
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G(y):yl(f(l’al);), y>0 , a,o>0
with
g( )=—1 “%”, y>0 , a,0>0
y F(a)y Y ) )
XZ
h AN
where y =

2) When o = =1, the Rayleigh distribution in (7) and (8) is obtained.
Hence the log-gamma - Rayleigh distribution can be considered as a generalization of the gamma and
Rayleigh distributions.

Ifweset A= ﬁz then the CDF of the LGR can be written as
o

X2

G(x)=1 3 0 20
X)=1l-—%— X , oG A> 9
()=l-—ps— x>0 . ©

and, the corresponding pdf of the LGR is given by
X X2, %

“gX)=——(—)"e ", x>0 , a,A4>0" 10
96)=F15 %) (10)

“Figures 1 and 2 illustrates some of the possible shapes of the pdf and CDF of LGR for selected values of
the parameters crand A, respectively”

New Log Gamma-Rayligh pdf New ‘LDQ Gar'rma-R'ayIigh pdf '
o(x,1.2,1.2) &.71,1.2)
olx.12,14) 1 ) 1 g(xi‘,‘.72,1.4) T .
g(x,l 2,16) /‘,/' ‘ "1\‘ o(i,.73,1.6)
9(x,1.2,1.8) (/;" \ _g_()_q _,.74,1.8)
-g-(;q it 2,2.0) Pt > o(xi,.75,2.0)
9(5‘"1'2’2'2)0 5 { ' | g(xa‘,‘.76,2.2) 0'5,!;'
o(xi,12,2.4) iy o(xi,.77,2.4)
o(x.1.2,2.9) / g(x;.m,u)
S i
2
% 1 0
X X

Figure 1. Density function g (X;«, A) of the LGR

The graphs in Figure 1 indicate that the LGR is unimodal.
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Figure 2. Cumulative function G (X ; ¢, A) of the LGR

Some remarks of LGR:
1) If a random variable Y follows the log-gamma distribution with parameters ¢ and £, then the random

variable X = f Iog( ) follows the LGR.

2) If a random varlable Z follows the gamma distribution with parameters «rand 3, then the random

variable X = /%Z follows the LGR.

2.1. Survival and Hazard Functions

The survival function of the LGR is

“The hazard rate function and reversed hazard rate function of the LGR will be”

x2

X2 1 5
X (£2)* e
(2)

H () 9 ) 2
OIS
and
(% )a-l :
) -3 - 7
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Figures 3 and 4 illustrates some of the possible shapes of the survival and hazard rate function of LGR for
selected values of the parameters o and A, respectively

Survival of New Log Gamma-Rayligh Survival of New Log Gamma-Rayligh

Figure 3. Survival function S (X ; &, 4) of the LGR

Hazard of New Log Gamma-Rayligh

Hazard of New Log Gamma-Rayligh

1 10
H(x,1.2,1.2) H(%,.71,1.2)
H_xi 12,14) g- | Hx. 72,14) 8 B
ll.'.ll(lx.i.,l.Z,l.G) 7 H(,.73,1.6) P -
H(%.1.2,18) ¢ ] H(x| 74,18) o| s
(u:t T
(1. (..

Figure 4. Hazard function H (X ; &, A) of the LGR

2.2. Quantile Function, Median, and Simulation

The quantile function for the LGR distribution is given as

Q)| 2 (@ a-pIr@) |

where 7/‘1(.,.) is the inverse incomplete gamma function implemented in most used

mathematical software's (see Pinho et al. [14]).
Proof: By inverting (9)
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1-60) =52,

7@ 20 =T@l-G X))

7 (e T(@)[1-G (x )])J%,

2y (@h@M-6 X)) =x2

E 7 (@, T(@)1-G (x )])T _x

Let G(x) = p where 0< p <1 . Then the quantile function is

1

Q)| 27 (a1 p)ria) |

Consequently, the median of LGR will be

aoa-{3r(o2)]

“Let U be a uniform variate on the unit interval (0,1). Thus by means of the inverse transformation
method, we consider the random variable X given by”:

1
2

X E (e, (1-U )F(a))} (1)

This follows the LGR.
3. MOMENTS AND MOMENT GEENERATING FUNCTION

In this section, the non-central moments, the central moments, incomplete moments, and moment
generating function of the LGR are computed.

Theorem 3.1: If X is a random variable distributed as a LGR, then the non-central moment is given by
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{273

A I'(a)
Proof:
E () =[x 2 (2 Yere
o T(a) 2
1
AX? (2)2 =
u= — X=|—|Uu?
2 A
1
du=Axdx — dx=—du
AX
X:0—>w , u:0—>ow
Therefore
:_1 J( ) U Axu“le L dy
() 5 AX
B
I e a+£—1 _
=~"2_Iu 2 e*du
@)
. r
A ['(e)
1
If 1 E(X 1"(06+§) 2 %
r=1, — <
At
f r=2. E(X 2):21“(a+1):2_a
AT (a) A
Therefore, the variance of LGR is given by
2
2 INa+)
Var(X )==1a
A ')

Using the relations, the skewness and kurtosis can be calculated as
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E(X*)-3E(X)EX)+AEX)F,
Var (X )I?

“skewness =

and
E (X *)—4E (X )E (X *)+6E (X *)[E(X ) +IJE(X)T* .,
Var (X)I*

Table 1. First four non-central moments, skewness and kurtosis of the LGR distribution for various
values of parameters

“Kkurtosis =

!

! [ !
a | 1 M 27 M Hy Skewness | Kurtosis

0.00025 | 7.507 | 66.689 | 663.642 | 7084

0.5 10.0005 | 10.617 | 133.379 | 1877 28330 | 0.237 1.66
0.00075 | 13.003 | 200.068 | 3448 63750
0.001 15.014 | 266.758 | 5309 113300

0.00025 | 7.766 | 71.754 | 747.467 | 8394
0.6 | 0-0005 | 10.983]143.508 | 2114 33570 | 0.321 1.734
0.00075 ] 13.451 | 215.262 | 3884 75540

0.001 15.532 | 287.016 | 5980 134300

0.00025] 7.993 | 78.294 | 882.021 | 10830
0.0005 | 11.303 | 156.588 | 2495 43310 | 0.472 1.898
0.00075 ] 13.844 | 234.882 | 4583 97440

0.001 15.985 | 313.175 | 7056 173200

0.7

0.00025 ] 8.011 | 84.139 | 1058 14780
0.8 | 0.0005 ]11.33 |168.278 | 2993 59130 | 0.722 2.289
0.00075 ] 13.876 | 252.417 | 5499 133100
0.001 16.023 | 336.556 | 8466 236500

0.00025] 7.386 | 84.025 | 1251 21460
0.9 | 0.0005 | 10.445 | 168.049 | 3537 85830 | 1.215 3.542

0.00075] 12.793 | 252.074 | 6499 193100
0.001 14.772 | 336.099 | 10010 | 343300

Table 1 reveals that the skewness and kurtosis depend on the shape parameter «¢ .

Theorem 3.2: The moment about the mean of the LGR is as follows:

r

F(a+—) 1 r —k
Ly | 22 N 1 k
EXX —p) = @ (/J ;(kj( D (@) (F(a+2)j INCES 2)

Proof:
Using the binomial expansion for (X — )", the central moments E (X — )" for any random variable
X can be written as
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r

E(X — ) =Z[Lj(—1)f-k HHE(X)

k=0

Therefore, the central moments for the LGR random variable X can be simplified to

.
1

F(CX-F*) r —k
P 2’(2) )y 1 1 k
E(X —p) = @ (Zj kZ:(k j( D)™ (M) (F(a+2)) [(a+3)

Theorem 3.3: If X is a random variable distributed as a LGR with parameters ¢rand A, the
incomplete moment of X is given by:

y(aﬂj 5
M (2)= 2" 2 (2)2

(@) 2

Proof:

Let

This implies

r

th
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where y is the lower incomplete gamma function.

Theorem 3.4: “Let X have a LGR. The moment generating function of X denoted by M, (t) isgiven
by”

0= )( j a+y)

Proof:
By definition

ML 0=E €)= fer 2 (B oye T

Using Taylor series

M, (t) = T( +tx X2+...+tnxn+...jg(x)dx

: 2! n!
:it'E.(X )

4. MODE AND MEAN DEVIATIONS

The mode of the LGR is obtained by finding the first derivate of log g(x) with respect to x and equating it
to zero

“log(g (x))=log(4) +log(x ) —log(I(x)) + (ar— 1)(|Og(/1)+2|og(x)—|og(2))—% »
d (06 )] 201 .
d—log(g(x)) x —AX = x — X

When i|Og(g (X)):O therefore 20(—1:1)(0
dx Xo

oe(252)

The mean deviation about the mean and the median are useful measures of variation for a population. Let
u = E(X) and M be the mean and median of the LGR, respectively. The mean deviation about the mean is

Then
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EQX - =[x — 9 (x)ox

O >

(u=x)g ()0 + [ (¢ - )g (X
=2] (1) (X0
=246 (1)-2] xg (x)ex

B 2‘U 221u2 _ 2 g% 1 /12/12
“Ta) 2 F(a)(l) 7(‘”2’ 2 j

In a similar way, the mean deviation from the median is given by

E{X -M |}:T|x —M g (x)dx

o=

(M —x)g (x)dx +T(x —M)g (x)dx

2

(M —x)g(x)dx +T(x ~M)g (x)dx

21 (M =x)g(x)dx +E(X)—M

ot T o=

M
=2MG (M) +u—~M -2 xg (x)x
0

M
:y—Zng(x)dx
0

_ _L(zf .
T\2) "

5. DISTRIBUTION OF THE ORDER STATISTICS

A2M 2}

1
2" 2

In this section, we derive closed form expressions for the pdf of the r" order statistic of the LGR. Let
X X,,.., X, be a simple random sample from LGR distribution with CDF and pdf given by (9) and

(10), respectively. Let X ), X 5,..., X ) denote the order statistics obtained from this sample. The pdf
of the r™ order statistic of the LGR is
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i AX? AX?
nix (/1X2) L= 1 7(047) 7(05,7)
13 X — a*e _ bR
0, () r-D'(n-nNir(a) " 2 I'(c) I'(a)
The pdf of the largest order statistic X ™) is therefore
ﬂ,X 2 n-1
Oy, (X)=——~ nAx ‘1eL2 _—7/(05, 2)
07 Na ) I(a)
and the pdf of the smallest order statistic X 18 given by
n-1
nAX P qC 7)
Ox,, (X) = (—) R
® INea) 2 F(a)

6. PARAMETERS ESTIMATION

Let X,,X,,..., X, be a random sample from a LGR with parameters rand A, then the log-likelihood
function from (10) is given by

logL(, 2) = £ = Y log (g (x,)) =nllog 2~ log T(@)]+ 3 log(x, )+ 2~ Y. log(x,
+n(a-1)logA—-n(a-1) IogZ—%ixi2

~nalog A+ (2a-1 log(x,)-n IogF(a)—n(a—l)IogZ—%ixf
i=1 i=1
(12)

The first partial derivatives of (12) are

§—£=n Iog/1+zilog(xi)—nw(a)—n log2
a i=1

and
= X!
oL A1 24"

“The MLE of the parameters oand A, say @and A are obtained by solving the equations
ol ol

oo OA
Therefore”
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& = l//l(log 2—Iog/i—§ilog(xi )j
i=1

and

i=1
The second derivatives with respect to «rand A will be:

oY ,
Py —ny'(a)

& _n

0oL A

& __na
OA? e

“Now we can derive the elements of the Fisher information matrix as follows”
2 2 2
- (ﬂj | L, —E (ﬂ} | =1, = E (ﬂ}
: da , o ' ' Oa 04

then the Fisher information matrix is

The variance-covariance matrix of (&, A)is obtained by inverting the Fisher information matrix as

follows:
@2 = (Var(o?) ACOV (@, %)J
Cov (a,A) Var(A)

7.NUMERICAL ILLUSTRATION

In this section, random numbers are generated using the CDF of the LGR distribution, and then the
maximum likelihood estimates are obtained.

We will generate 1000 samples of each of sizes 10, 15,...,30 from the LGR distribution for different
values of the parameters « and A, using the CDF of LGR, and then the maximum likelihood estimates
for each sample will be obtained, along with the mean, root of the mean square error, bias and standard
error of those estimates. The steps of this procedure will be as the following:

1. Set initial values for the parameters wand A.

2. Generate 1000 samples of each of sizes 10, 15,..., 30, using (11).
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3. Obtain the maximum likelihood estimates for ¢cand A for the different sample sizes.

4. Obtain the mean, biases, root of the mean square error and standard errors for the MLE estimates for
the different sample sizes.

5. Repeat steps 1:4 for different values of «rand A (Results are listed in Table (2)).

Table 2. Means, Biases, Root of the Mean Square Errors and Standard Errors for the MLEs of LGR
distribution for different values of parameters

n a=05 | 41=025 | ¢=0.75| 1=05 | =085 | 1=0.75
Mean 0.474 0.381 1.221 1.027 1.916 154.342

10 Biase -0.026 0.131 0.471 0.527 1.066 79.342
R.MSE 2.146 0.402 3.237 1.174 3.823 174.71
S.E 0.215 0.038 0.32 0.105 0.367 15.573
Mean 0.791 0.311 1.319 0.761 2.015 132.179

15 Biase 0.291 0.061 0.569 0.261 1.165 57.179
R.MSE 0.8 0.263 1.439 0.704 2.37 129.533
S.E 0.05 0.017 0.088 0.044 0.138 7.753
Mean 0.466 0.276 0.724 0.632 1.371 106.606

20 Biase -0.034 0.026 -0.026 0.132 0.521 31.606
R.MSE 1.075 0.199 1.67 0.49 1.893 86.92
S.E 0.054 0.009891 | 0.084 0.024 0.091 4.051
Mean 0.629 0.251 0.999 0.593 1.452 98

o5 Biase 0.129 0.001491 | 0.249 0.093 0.602 23
R.MSE 0.497 0.176 0.856 0.449 1.291 73.624
S.E 0.019 0.007031 | 0.033 0.018 0.046 2.799
Mean 0.385 0.233 0.683 0.547 1.253 92.286

30 Biase -0.115 -0.017 -0.067 0.047 0.403 17.286
R.MSE 0.864 0.142 1.252 0.388 1.315 65.814
S.E 0.029 0.004708 | 0.042 0.013 0.042 2.118

8. APPLICATION

This section presents application of LGR using real data set. In this application, we obtain the maximum
likelihood estimates of the parameters of the fitted distributions. LGR is compared with other
distributions (Weibull Rayleigh distribution (WR), Expontiated Weibull distributions (EW) and
Expontiated Rayleigh (ER)) based on the maximized log-likelihood, the Kolmogorov-Smirnov (K-S) test
along with the corresponding p-value, Akaike Information Criterion (AIC), Bayesian Information Criteria
(BIC), Anderson-Darling statistic (AD), and Cramer von Mises statistic (CM).The data set was taken
from Crowder [6], which gives the breaking strengths of single carbon fibers of different lengths:

2.247, 2.64, 2.842, 2.908, 3.099, 3.126, 3.245, 3.328, 3.355, 3.383, 3.572, 3.581, 3.681, 3.726, 3.727,
3.728, 3.783, 3.785, 3.786, 3.898, 3.912, 3.964, 4.05, 4.063, 4.082, 4.111, 4.118, 4.141, 4.216, 4.251,
4.262, 4.326, 4.402, 4.457, 4.466, 4.519, 4.542, 4.555, 4.614, 4.632, 4.634, 4.636, 4.678, 4.698, 4.738,
4.832,4.924,5.043, 5.099, 5.134, 5.359, 5.473, 5.571, 5.684, 5.721, 5.998, 6.06
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Table 3. Summarized results of fitting different distributions to the data set

Model |MLEs 2log L |AIC BIC KS |Pvalue |AD |CM
a |6.60549

LGR = 140.266 |144.266 |148.353 |0.056 |0.994 0.155 |0.023
7 [0.70943
¢ [0.0514

WR 7 1193513  |144.45 [150.45 |156.579 |0.109 |0.508 0684 |0.114
6 |2.13298
a |280.997

EW o 0517 148.962 |154.962 |161.091 |4.419 [0 0776 |0.124
K |0.867

ER 5 |0.97416
& 179066  |141.973 145973 [150.059 (0.068 |0.953 0261 |0.042

Because the LGR has the lowest -2logL, AIC, BIC, KS, AD and CM statistics and the largest P value in
Table 3, it can be concluded that the LGR is a strong competitor to other distributions used here for fitting
data set.

The variance covariance matrix of the MLEs under the LGR for the data set is computed as

(0026
2.747x10°

2.747x10°°
3.184x10™

03 04 05
1

Density

0.2
1

0.1

0.0
L

Histogram

Fnix)

Empirical Distribution

Figure 5. The fitted densities of distributions for the data set
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9. CONCLUSIONS

This article defined a new generalization of Gamma distribution and Rayleigh distribution using the T-X
method, called the log-gamma - Rayleigh distribution (LGR). Various properties of the distribution were
studied. The moments, deviations from the mean and median, mode, survival function, hazard function
and the maximum likelihood estimates of the parameters, have been investigated. The application of the
new distribution has also been demonstrated with real life data. The results, compared with other known
distributions, revealed that the LGR provides a better fit for modeling real life data.

CONFLICTS OF INTEREST

No conflict of interest was declared by the authors.

REFERENCES

[1] Akinsete, A., Famoye, F., Lee, C., “The beta-Pareto distribution”, Statistics, 42(6): 547-563, (2008).

[2] Alshawarbeh, E., Lee, C., Famoye, F., “The beta-Cauchy distribution”, Journal  of Probability and
Statistical Science, 10(1): 41-58, (2012).

[3] Alzaatreh, A., Lee, C., Famoye, F., “A new method for generating families of continuous
distributions”, Metron, 71(1): 63-79, (2013).

[4] Amini, M, MirMostafaee, S. M. T. K. and Ahmadi, J., “Log-gamma-generated families of
distributions”, A journal of Theoretical and Applied Statistics, 48 (4): 913-932, (2014).

[5] Barreto-Souza, W., Santos, A.H.S., Cordeiro, G.M., “The beta generalized exponential distribution”,
Journal of Statistical Computation and Simulation, 80(2): 159-172, (2010).

[6] Crowder, M. J., “Classical Competing Risks”, Chapman and Hall/CRC, Boca Raton, (2001).

[7] Eugene, N., Lee, C., Famoye, F., “Beta-normal distribution and its applications”, Communications in
Statistics-Theory and Methods, 31(4): 497-512, (2002).

[8] Famoye, F., Lee, C., Olumolade, O., “The beta-Weibull distribution”, Journal of Statistical Theory
and Applications, 4(2): 121-136, (2005).

[9] Kong, L., Lee, C., Sepanski, J.H., “On the properties of beta-gamma distribution”, Journal of
Modern Applied Statistical Methods, 6(1): 187-211, (2007).

[10] Mahmoudi, E., “The beta generalized Pareto distribution with application to lifetime data”,
Mathematics and Computers in Simulation, 81(11): 2414-2430, (2011).

[11] Merovci,F., Elbatal, 1., “Weibull Rayleigh Distribution: Theory and Applications” , Applied
Mathematics & Information Sciences, 9(5): 1-11, (2015).

[12] Nadarajah, S., Kotz, S., “The beta Gumbel distribution”, Mathematical Problems in Engineering, 4:
323-332, (2004).

[13] Nadarajah, S., Kotz, S., “The beta exponential distribution”, Reliability Engineering and System
Safety, 91: 689-697, (2006).

[14] Pinho, L. G. B., Cordeiro, G. M., Nobre, J. S., “The gamma- exponentiated Weibull distribution”,
Journal of Statistical Theory and Applications, 11 (4): 379- 395, (2012).



