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1. INTRODUCTION 

 

The approximation of integral equations of first kind containing highly oscillatory Bessel kernels 
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where )(xy  is a function to be determined for values of x  in the domain Ta, . Such type of problems 

received the attention of many researchers in [2, 4, 10, 11]. Here )(xh  is a smooth function and   is a large 

oscillation parameter. The big difficulty of this type of Volterra integral equation (1) is the large oscillation 

parameter . Due to this parameter the kernel function   txJ 0  become highly oscillatory. 

Consequently standard numerical methods cannot be used immediately to approximate these types of integral 

equations. It is shown in the work of (see for example [10], Sec.1.8.1) that for the case when  TaCxh ,)( 1  

the analytic solution of (1) may be given as 
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Although this analytical solution involve Bessel integral with high oscillation parameter and cannot be 

evaluated in the present closed form. We need to use some reliable and robust numerical schemes to get 

approximate solution. For the evaluation of the integral equations of the type 
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robust numerical techniques have been developed by the authors in (see [1, 3, 4, 6] ). However these 

approaches cannot be applied to the integral equations of the type (1), due to the kernel   xJ   contain 

highly oscillatory large parameter . The evaluation of the integral containing  xJ   using standard 

quadrature technique is extremely difficult where the computation cost exponentially increases with increase 

in  (see [5, 7]). In the present work a kernel based numerical scheme is constructed to approximate the 

integral equation of type (1). In other words we constructed a numerical scheme using radial kernels to 

approximate the integral  
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where   is parameter of oscillatory function  xJ  . The usual numerical methods for evaluating such 

integrals face difficulties. Some efficient methods are available in the literature (for example see [7, 9, 16, 17, 

18]) to approximate the given type of integrals very efficiently. In the proposed method the problem of 

integral computation is converted into a system of ODEs without any boundary conditions which satisfies 

some differential conditions. The resultant system of ODEs is approximate with the proposed kernel based 

method. 

 

2. PRELIMINARIES 

 

2.1. Lemma 2.0.1 [12] 
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fill distance in , the kernel-based interpolant   Cs  for the function   Cf  for all points in X . 

Then the error estimate  
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2.2. Lemma 2.0.2 [7] 

 

Given a vector   t

m xuxuxuxu )(),.....,(),()( 21  which satisfies (10) and )(xq be monotonic over  ba, , 

then  )()( xquxW   satisfies the equation 
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With )(xB  is of order mm containing functions which are non-rapid oscillatory. 

 

2.3. Lemma 2.0.3 [7] 

 

Suppose the vectors   t

k xwxwxwW )(),....,(),( 21  and   t

l xzxzxzZ )(),.......(),( 21  satisfies the 

following equations 

,)()()( 1 xWxBxW            (6)
 

And 

,)()()( 2 xZxBxZ            (7) 

respectively, where matrices 1B  and 2B  are matrices of order kk  , and ll   of non-highly oscillatory 

functions. Then the vector  likjzwu ij ,.....,1,,...,1   satisfies the equation 

 

,)()()( xuxAxu            (8)  

with lkm   and )(xA  is matrix of order mm  of non-highly oscillatory functions. 

 

3. LOCALIZED KERNEL BASED METHOD 

 

Consider a more generalized class of rapidly oscillatory integrals like 

 

 

b

a

b

a

t dxxufdxxuxfI ,)(,)()(         (9) 
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i mixfxf   is a vector of non-rapidly oscillatory functions, and  

  ,,....,1,)()( t

i mixuxu   is vector of linearly independent rapidly oscillatory functions. It is shown in the 

work [7] that  m

iiu
1
hold the ODE system 
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and eventually the matrix )(xA  of order mm   becomes a matrix of non-oscillatory functions. The work [7] 

leads to approximate I  in (9) by the derivative of given known function. It is assume to find 
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Thus to approximate the integral I  by  
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Expanding (11) and using (10) we get 
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By the assumption that  m

iiu
1
 are linearly independent which implies that p  must approximate solution of 

the ODEs system 

,fpApLp t            (14)
  

  
 

where the function f  and the matrix A  are non- rapidly oscillatory. It was investigated in the work [8], that 

the system (14) may have a solution which is not oscillatory at all. This non-oscillatory solution of the PDEs 

system can be approximated accurately by collocation methods using some suitable basis functions. In the 

present work we extended the idea [7] to approximate the linear differential operator L  and construct a 

sparse differentiation matrix corresponding to (14). To construct local interpolant (see for example [13, 14]), 

at each center  iix , we define 
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where 
i

jc  are the expansion coefficients, jk xx  , denotes the norm of the difference of centers kx and 

)(, rx j   a radial kernel, with the radial distance 0r , and  i  is a local sub-domain corresponding 

to each center ix  and contains n  nearest centers around the center ix . For each node ix , we get the nn  

linear systems 
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where the matrix 
iB has the elements   ijkjk

i

jk xxxxb  ,,,  . Next to approximate the linear 

differential operator )(xLv , apply L  to (15) we get 
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The expression in (17) may be given by dot product of two vectors, 
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Where the entries of the vector 
iw  are given by 
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eliminating the coefficients 
ic  from (16) and (18) we get  

 

  ,)(
1 iiiii

i

i vDvBwxLv 


                                                                                   (20) 

 

Where, 

 

  ,
1

 iii BwD                                                                                                           (21) 

 



883 Amjad ALI, Zeyad Min ULLAH, Marjan UDDIN / GU J Sci, 31(3): 879-888 (2018) 

 

is row vector of order N1  containing n  non-zero entries and remaining nN   zeros entries. 

Consequently for all centers Nixi ,....,1,  , the differential operator L  can be approximated by a sparse 

differentiation matrix D  of order NN   given by 

 

.vDvL                                                                                                                     (22) 

 

4. GLOBAL KERNEL BASED METHOD 

 

For the given points Nxx ,.....,1 . The function )(xp  may be approximated as linear combination of 

radial kernels )(r , [19] 
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let L  be the linear operator then from eq (23), we get 
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To approximate the system of ODEs (14) we compute (24) for the evaluation points    Nxxx ,........,1  

and get 

 

,fDc                                                                                                                       (25) 

 

where c  is 1N vector of expansion coefficients and D  is NN   matrix with entries   ,
1,

N

jiji xxL


  

and f  is 1N  vector. The solution of  (14) using the global kernel based method is given by 

 

,Hcp                                                                                                                        (26) 

 

where H  is NM   evaluation matrix with the entries   NjMixx ji ,....,1,,....,1,   and the value 

of  c  can be obtained from (25). 

 

 

5. APPLICATION OF THE PROPOSED METHOD 

 

This section is devoted to demonstrate the validity and applicability of the present kernel based method to 

highly oscillatory integral equations containing the kernel like )( xJ  . We consider the integral equation 

(1) whose solution can be converted in the form containing two highly oscillatory Bessel integrals. 

 

Lemma 5.0.4 ([11]) 

 

The exact solution of (1) can be transformed into the following form 
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With .)()(,)()( txhtGtxhtF   

Thus the numerical solution of  (1) can be converted into the computation of two highly oscillatory Bessel 

integrals.  To evaluate the integral 
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For the present method to approximate the integral the bases are the Bessel functions and can be obtained 

from the recurrence relations of Bessel function 
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Consequently the vector      xJxJxu   ,)( 1  satisfy the differential condition (4) with 

corresponding matrix 

 

 

 

 

                                                                                              (30) 

So that kernel based method is applied to approximate the integrals of the form 
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The local kernel based approximate scheme of the ODE system (15), corresponding to the integral (25) 
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For 1 , the above system can be given by 
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where the block matrices are given by .
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The NN   matrices xD  and rbfA  when IL   can be obtained from (24). The functions

)()(,)(,)( 121 xfxfxpxp  , and 0)(2 xf  are 1N  vectors. Hence the approximation to the integral 

(24) is given by the following numerical scheme 
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5.1.  VOLTERRA INTEGRAL EQUATION 

 

The results of the present method corresponding to the integral equation 
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by the kernel based method using Lemma (5.0.4) the solution is given by 
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To compute the integral 
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set Ff 1  and 02 f  while for computing the integral 

 

  ,)( 1 dxxJxG
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we used 01 f  and Gf 2  in the numerical scheme (33) respectively. The results are shown in Table (1). 

The results show very fast convergence rate even for small number of collocation points and a very large 

oscillation parameter. The present numerical scheme is well equipped to approximate the integral equations 

for large oscillation parameters. We used the compactly supported radial kernels 

    318351)(
26

  rrrr  to approximate the solution with GK- method. In order to get sparse 

differential matrix with a compact support, we used  2.0 . Similarly we used the LK-method and the 

results are shown in Table (1). We used different number of nodes n  in local domain i  and N  in 

global domain  . The advantage of the local method over the global method is that the resultant 

differentiation matrix is sparse while that obtained with the global method is dense. The NN   sparse matrix 

is assembled by solving small size matrices of order nn  in each local sub-domain Nii ......,,2,1,  , 

where Nn . The LK-method can be used for large number of collocations points, while the GK-method 

cannot be used for a large number of points due to dense differentiation matrix. 

The LK-method   GK-method when .Nn   
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Approximate value of the integral equation using the global kernel based method (GK-method) and local 

kernel based method (LK-method) for different values of oscillation parameters   and various number of 

collocations nodes N  with 2,1  xa . 

 

Table 1. Methods 

 

 (GK-Method) 

  3N  5N  9N  

5 1.6000e-003 2.9824e-005 5.1503e-006 

10 2.7828e-005 1.5892e-005   1.2086e-006 

50 2.7471e-006 9.7379e-007 2.4281e-007 

100 2.8806e-008 5.9128e-009 5.2042e-009 

 

(LK-Method) 

  )3,3(),( Nn  )5,3(),( Nn  )9,3(),( Nn  

5 9.6794e-004 3.1499e-004 8.3331e-004 

10 3.5693e-004 3.1307e-005 9.0688e-005 

50 7.1936e-007 2.5468e-007 2.6829e-007 

100 3.1063e-007 9.5544e-009 1.8529e-008 

 

 
Figure 1. Error versus oscillation parameter  , corresponding to integral equation (1) 

 

6. CONCLUSION 

 

In the present work a kernel based numerical method which is proposed is the extension of [7] in the context 

of radial kernel functions. The use of radial kernels is very much suitable for computing these types of 

integral equation. Because in the present collocation method the differentiation matrix to be solved with great 

accuracy. The real benefit of the kernel based method is that we can extend it to compute such types integral 

equations of highly oscillatory kernels for large oscillation parameters. 
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