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Abstract. The aim of this study is to establish new discrete inequalities for
synchronous functions using fractional order delta and nabla h-sum operators.
We give examples to illustrate our results.

1. Introduction

In 1882, P.L. Chebyshev [12] proved the following inequality:
Let f and g be two integrable functions on [0; 1]: If both functions are simulta-

neously increasing or decreasing for the same values of x 2 [0; 1]; then
1Z
0

f(x)g(x)dx �
1Z
0

f(x)dx

1Z
0

g(x)dx: (1)

If one function is increasing and the other decreasing for the same values of x 2 [0; 1];
then

1Z
0

f(x)g(x)dx �
1Z
0

f(x)dx

1Z
0

g(x)dx:

Since then, generalizations and extensions of such type inequality have appeared in
the literature, see [13,14,17,18,24] and references cited therein.
In 2009, using the fractional order integral, Belarbi and Dahmani [10] proved

that:
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Let f and g be two synchronous functions on [0;1) : Then for all t > 0; � > 0;
we have

J�a (fg)(t) �
�(�+ 1)

t�
J�a f(t)J

�
a g(t):

where J�a is � � 0 order Riemann-Liouville fractional integral operator and de�ned
as

J�f(x) =
1

�(�)

xZ
a

(x� t)��1f(t)dt:

And, the fractional order discrete Chebyshev type inequalities are studied in [3,
11]. Also, there are the fractional analogues of some well-known inequlities in the
literature, see [1,2,4,5,15,21]. For more knowledge and applications about discrete
and continuous fractional calculus, see [8, 19,22].
In this paper, to establish the fractional analogues of Chebyshev inequality, in

discrete case, we will use the delta and nabla h-sum operators de�ned in [9,16,20,23].

2. Preliminaries and basic results

In this section, we give some de�nitions and results that will be used in the
sequel of this paper.

De�nition 1 (Synchronous function). Two functions f and g are called syn-
chronous, respectively asynchronous, on Na if for all � ; s 2 Na; we have (f(�) �
f(s))(g(�)� g(s)) � 0; respectively (f(�)� f(s))(g(�)� g(s)) � 0.
Firstly, we give the result related to the delta calculus.
Let h > 0 and (hN)a := fa; a + h; :::g; a 2 R; and forward jump operator

�(t) = t+ h for t 2 (hN)a:
De�nition 2. Let � 2 R; and h > 0; then the falling h�factorial of t is de�ned
by

t
�
h = h

� �( th + 1)

�( th + 1� �)
:

De�nition 3 (Delta h�sum). The � > 0 order fractional delta h-sum of the func-
tion f : (hN)a ! R is de�ned by

(a�
��
h f)(t) =

h

�(�)

t
h��X
k= a

h

(t� �(kh))��1h f(kh);

where (a�0h')(t) = '(t) and �(kh) = (k + 1)h.

De�nition 4. Let � 2 (n� 1; n] and � = n��; n 2 N: The � > 0 order fractional
delta h-di¤erence of the function f : (hN)a ! R is defned by

(a�
�
hf)(t) = (�

n
h(a�

��
h f))(t) =

h

�(��)

t
h+�X
k= a

h

(t� �(kh))��1h f(kh);
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where �hf(t) =
f(t+h)�f(t)

h ; and �nhf(t) = �
n�1
h (�hf)(t):

Let 0 < h � 1 and (hN)a := fa; a+ h; :::g; a 2 R; and backward jump operator
�(t) = t� h for t 2 (hN)a:

Proposition 5. Let a 2 R; � > 0: Then

a+ph�
��
h (t� a)�h =

�(�+ 1)

�(�+ 1 + �)
(t� a)�+�h :

Proposition 6. Let � 2 (n� 1; n] ; n 2 N and � = (n��)h: Set p 2 Znf0; 1; :::; n�
1g and p� �+ 1 =2 Z: Then

a+ph�
�
h(t� a)

�

h =
�(�+ 1)

�(�+ 1� �) (t� a)
���
h :

Now, we give the preliminaries about the nabla calculus.
Let 0 < h � 1 and backward jump operator �(t) = t� h for t 2 (hN)a:

De�nition 7. Let � 2 R and 0 < h � 1; then the rising h�factorial of t is de�ned
by

t�h = h
��(

t
h + �)

�( th )
:

De�nition 8 (Nabla h�sum). For a function f : (hN)a ! R; the fractional nabla
h�sum of order � > 0 is de�ned by

�
ar��h f

�
(t) =

1

�(�)

tZ
a

(t� �h(s))
��1
h f(s)rhs

=
h

�(�)

t
hX

k= a
h+1

(t� �(kh))��1h f(kh); t 2 (hN)a ;

where rh = f(t)�f(t�h)
h and �(kh) = (k � 1)h:

De�nition 9. The fractional nabla h�di¤erence order 0 < h � 1 (starting from
a) is de�ned by

(ar�hf) (t) =
�
rhar�(1��)h f

�
(t)

=
1

�(1� �)rh
t=hX

k=a=h+1

(t� �(kh))��h f(kh)h; t 2 (hN)a+h :

Proposition 10. Let � > 0; � > �1; h > 0; and t 2 (hN)a : Then

ar��h (t� a)�h =
�(�+ 1)

�(�+ 1 + �)
(t� a)�+�h :
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Remark 11. Taking h = 1 in De�nitions 3 and 8, we obtain

(a�
��
h=1f)(t) =

1

�(�)

t��X
k=a

(t� �(k))��1f(k); (2)

and

(ar�h=1f) (t) =
1

�(1� �)r
tX

k=a+1

(t� �(k))��h f(k): (3)

(2) and (3) are fractional order delta and nabla sum operators de�ned by Atici and
Eloe [6,7].

3. Delta Chebyshev�s inequality

In this chapter, we give fractional order discrete analogues of (1), using the delta
h�sum operator.

Theorem 12. Let v > 0 and f and g are two synchronous functions on (hN)a:
Then, we have �

a�
�v
h fg

�
(t) � �(1 + v)

(t� a)vh

�
a�

�v
h f

�
(t)
�
a�

�v
h g

�
(t); (4)

for all t 2 (hN)a:

Proof. Since the functions f and g are synchronous on (hN)a; we can write

(f(�)� f(s)) (g (�)� g (s)) � 0; (5)

for all � ; s 2 (hN)a: From (5) ; we have

f(�)g (�) + f(s)g (s) � f(�)g (s) + f(s)g (�) : (6)

Taking v order delta h�sum of (6) respect to variable � , gives us�
a�

�v
h fg

�
(t) + f(s)g (s)

�
a�

�v
h (1)

�
� g (s)

�
a�

�v
h f

�
(t) + f(s)

�
a�

�v
h g

�
(t) (7)

And again, taking v order delta h�sum of (7) respect to variable s, we get�
a�

�v
h fg

�
(t)
�
a�

�v
h (1)

�
+
�
a�

�v
h fg

�
(t)
�
a�

�v
h (1)

�
�
�
a�

�v
h g

�
(t)
�
a�

�v
h f

�
(t) +

�
a�

�v
h f

�
(t)
�
a�

�v
h g

�
(t) ;

and so �
a�

�v
h (1)

� �
a�

�v
h fg

�
(t) �

�
a�

�v
h g

�
(t)
�
a�

�v
h f

�
(t):

As the last step, we calculate the a�
�v
h (1): From Proposition 5, for p = 0; we have

a�
�v
h (t� a)0h = a�

�v
h (1)

=
1

�(1 + v)
(t� a)vh:



CHEBYSHEV TYPE INEQUALITIES 361

Finally, using this result, we have�
a�

�v
h fg

�
(t) � �(1 + v)

(t� a)vh

�
a�

�v
h g

�
(t)
�
a�

�v
h f

�
(t);

and this is the desired inequality. �

Theorem 13. Let v; � > 0 and f and g are two synchronous functions on (hN)a:
Then, we have

(t� a)�h
�(1 + �)

�
a�

�v
h fg

�
(t) +

(t� a)vh
�(1 + v)

�
a�

��
h fg

�
(t)

�
�
a�

��
h g

�
(t)
�
a�

�v
h f

�
(t) +

�
a�

��
h f

�
(t)
�
a�

�v
h g

�
(t) ; (8)

for all t 2 (hN)a:

Proof. Proceeding as in the proof of Theorem 12, we obtain�
a�

�v
h fg

�
(t) + f(s)g (s)

�
a�

�v
h (1)

�
� g (s)

�
a�

�v
h f

�
(t) + f(s)

�
a�

�v
h g

�
(t) : (9)

By taking � order delta h�sum of (9) respect to variable s, we have�
a�

�v
h fg

�
(t)
�
a�

��
h (1)

�
+
�
a�

��
h fg

�
(t)
�
a�

�v
h (1)

�
�
�
a�

��
h g

�
(t)
�
a�

�v
h f

�
(t) +

�
a�

��
h f

�
(t)
�
a�

�v
h g

�
(t) : (10)

And using Proposition 5, from (10) we get

(t� a)�h
�(1 + �)

�
a�

�v
h fg

�
(t) +

(t� a)vh
�(1 + v)

�
a�

��
h fg

�
(t)

�
�
a�

��
h g

�
(t)
�
a�

�v
h f

�
(t) +

�
a�

��
h f

�
(t)
�
a�

�v
h g

�
(t) ;

so this completes the proof. �

Remark 14. If we take v = � in (8) ; then we obtain (4) :

Example 15. Take f(t) = (t� a)�h and g(t) = (t� a)
�

h ; t 2 (hN)ba = fa; a+ h; :::; bg :
Since f(t) and g(t) are increasing for t 2 (hN)ba; one can conclude that these func-
tions are synchronous. Hence, using Theorem 13, we obtain

(t� a)�h
�(1 + �)

�
a�

��
h fg

�
(t) +

(t� a)�h
�(1 + �)

�
a�

��
h fg

�
(t)

�
�
a�

��
h g

�
(t)
�
a�

��
h f

�
(t) +

�
a�

��
h f

�
(t)
�
a�

��
h g

�
(t)

=
�(� + 1)

�(� + 1 + �)
(t� a)�+�h

�(�+ 1)

�(�+ 1 + �)
(t� a)�+�h

+
�(�+ 1)

�(�+ 1 + �)
(t� a)�+�h

�(� + 1)

�(� + 1 + �)
(t� a)�+�h
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Taking � = �, we get the inequality

(t� a)�h
�(1 + �)

�
a�

��
h fg

�
(t) � �(� + 1)

�(� + 1 + �)
(t� a)�+�h

�(�+ 1)

�(�+ 1 + �)
(t� a)�+�h :

Finally, we give a generalization of Theorem 12.

Theorem 16. Let v > 0 and fk; 1 � k � n; n 2 N; are functions such that
l�1Q
k=1

fk

and fl are synchronous for l 2 f2; :::; ng; and fk � 0 for 3 � k � n: Then, we have 
a�

�v
h

nY
k=1

fk

!
(t) �

�
�(1 + v)

(t� a)vh

�n�1 nY
k=1

�
a�

�v
h fk

�
(t); (11)

for all t 2 (hN)a:

Proof. The proof can be obtained by applying the (4) consecutively. �

Remark 17. If we take f1 = f and f2 = g in (11) for n = 2; then we obtain (4) :

4. Nabla Chebysev�s inequality

In this chapter, we give the nabla analogues of Theorems 12, 13 and 16.

Theorem 18. Let v > 0 and f and g are two synchronous functions on (hN)a:
Then, we have �

ar�vh fg
�
(t) � �(1 + v)

(t� a)vh

�
ar�vh f

�
(t)
�
ar�vh g

�
(t); (12)

for all t 2 (hN)a:

Proof. Taking v order nabla h�sum of (6) respect to variable � , gives us��v
a rhfg

�
(t) + f(s)g (s)

�
ar�vh (1)

�
� g (s)

�
ar�vh f

�
(t) + f(s)

�
ar�vh g

�
(t) (13)

And, taking v order nabla h�sum of (13) respect to variable s, we get�
ar�vh fg

�
(t)
�
ar�vh (1)

�
+
�
ar�vh fg

�
(t)
�
ar�vh (1)

�
�
�
ar�vh g

�
(t)
�
ar�vh f

�
(t) +

�
ar�vh f

�
(t)
�
ar�vh g

�
(t) :

Using the Proposition 10, we get (12). Therefore proof is completed. �

Example 19. Take f(t) = t�h and g(t) = t�h; t 2 (hN)b0 = f0; h; 2h; :::; bg : From
[23], we know that f(t) and g(t) are increasing for t 2 (hN)b0; so f(t) and g(t) are
synchronous functions. Therefore, we can use Theorem 18. Then, we have�

0r�vh fg
�
(t) � �(1 + v)

tvh

�
0r�vh f

�
(t)
�
0r�vh g

�
(t);
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and using Proposition 10

0r�vh
�
t�h :t

�
h

�
�
�(1 + v)�

�
t
h

�
�
�
t
h + �

� �
�(�+ 1)

�(�+ 1 + �)
t�+�h

��
�(� + 1)

�(� + 1 + �)
t�+�h

�
:

Theorem 20. Let v; � > 0 and f and g are two synchronous functions on (hN)a:
Then, we have

(t� a)�h
�(1 + �)

�
ar�vh fg

�
(t) +

(t� a)vh
�(1 + v)

�
ar��h fg

�
(t)

�
�
ar��h g

�
(t)
�
ar�vh f

�
(t) +

�
ar��h f

�
(t)
�
ar�vh g

�
(t) ; (14)

for all t 2 (hN)a:
Proof. Taking � order nabla h�sum of (13) respect to variable s, we get�

ar�vh fg
�
(t)
�
ar��h (1)

�
+
�
ar��h fg

�
(t)
�
ar�vh (1)

�
�
�
ar��h g

�
(t)
�
ar�vh f

�
(t) +

�
ar��h f

�
(t)
�
ar�vh g

�
(t) :

From Proposition 10, we get (14) ; so proof is completed. �
Remark 21. If we take v = � in (14) ; then we obtain (13) :

Finally, we give a generalization of Theorem 18 without proof.

Theorem 22. Let v > 0 and fk; 1 � k � n; n 2 N; are functions such that
l�1Q
k=1

fk

and fl are synchronous for l 2 f2; :::; ng; and fk � 0 for 3 � k � n: Then, we have 
ar�vh

nY
k=1

fk

!
(t) �

�
�(1 + v)

(t� a)vh

�n�1 nY
k=1

�
ar�vh fk

�
(t); (15)

for all t 2 (hN)a:
Remark 23. If we take f1 = f and f2 = g in (15) ; then we obtain (12) :

5. Conclusions

In this study, we obtained Chebyshev type inequalities using fractional order
delta h-sum and nabla h-sum operators. Our results are more general than results
those published before. To see that,
(i) Taking h = 1 in Theorems 12, 13 and 16, we obtain the inequalities given by

Bohner and Ferreira [11],
(ii) Taking h = 1 in Theorems 18, 20 and 22, we get the inequalities introduced

in [3].
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