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ABSTRACT: Deep Learning algorithms have recently been reported to be successful 
in the analysis of images and voice. These algorithms, specifically Convolutional 
Neural Network (CNN), have also proven themselves to be highly promising on 
images produced by medical imaging technologies, as well. By use of deep learning 
algorithms, researchers have accomplished several tasks in this field including image 
classification, object and lesion detection and segmentation of different tissues in a 
medical image. Researchers mostly focused on medical images of neurons, retina, 
lungs, digital pathology, breast, heart, abdomen and skeleton system to take 
advantage of the Deep Learning approach. This study reviews literature studies of 
recent years that utilized Deep Learning algorithms on medical images in order to 
present a general picture of the relevant literature.  
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INTRODUCTION 
Medical images, produced by highly specific equipment, can also be stored on a 
computer in the digitized form which provides an opportunity to analyze these images 
by use of computer programs. Early systems to process and analyze these images were 
rule-based expert systems that could only work with low-resolution images. These 
expert systems were called GOFAI [1]. 
Introduction of machine learning based intelligent systems to the field was not too late 
and they quickly became widespread. The quality of these systems mainly depended 
on extracting meaningful features from the given image. Extracting good features, 
namely feature engineering, is a vital task in every machine learning process and still 
an important research topic among the machine learning community. Deep Learning 
(DL), actually a subset of machine learning algorithms, has improved learning systems 
that required good features to be manually picked by researchers out of the dataset 
usually by trial-and-error to a more automatic system in which good features are 
extracted from the dataset automatically by the algorithm itself. Convolutional Neural 
Network (CNN) is one of the most popular DL algorithms that is capable of extracting 
features from the given images without user intervention [9]. 
The very first studies that used CNN were published in late 70s [2] while one of the 
first study that applied CNN over medical images was accomplished by Lo et al. [3] 
roughly 2 decades later in 1995. First reported successful DL application was LeNet [4] 
which was designed to recognize handwritten characters. Time elapsed from the first 
introduction of CNN to a successful application was unexpectedly long because DL in 
general required advanced hardware and software systems to function properly. The 
study of Krizhevsky et al. [5], namely ImageNet, published in December, 2012 has been 
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a milestone for both DL algorithms and specifically CNN. In the following years, more 
advancements have been obtained by using deeper learning structures [6].  
 
A more recent CNN architecture called AlexNet has now been considered as the state-
of-art algorithm in the relevant literature to accomplish classification tasks on image 
data. AlexNet has utilized many techniques to be able to extract good features from 
the image automatically. Bengio et al. have reviewed these techniques in their paper 
[7]. Ravi et al. [8] considered AlexNet along with other DL studies for their use in the 
field of health, especially on medical images. A specific research to study DL on 
medical images was conducted by Shen et al. [10]. In their paper, they reviewed a lot 
of articles from the relevant literature but did not mention some of the prominent 
studies in the field such as studies applied DL to analyze retinal images.  
It is very hard to extract features from an MRI image to feed a traditional artificial 
neural network (ANN). Thus, DL is advantageous over classical ANN because it 
provides automatic feature extraction [11, 12]. With CNN, more complex features can 
be extracted in a hierarchical manner. Studies that applied CNN to medical image 
analysis, for instance, to classify lung diseases by using Computer Tomography (CT) 
images [13], to detect tuberculose in X-ray images [14], to classify neurons [15], to 
detect bleeding in the color retinal images [16] and to anatomically classify specific 
organs or body parts in CT images [17].  
This study aims to deliver a view of DL applications in the field of medical imaging 
analysis. To this end, relevant studies in the literature, with a focus on the most recent 
ones, are considered and summarized through the paper. Through this analysis, the 
advantages of and the problem related to the DL approach when used on medical 
images will also be discussed as well. Therefore, the study aims to provide a general 
picture of DL application in the field that covers general trends, advantages, 
disadvantages, problematic aspects of these applications so that researchers who want 
to conduct a study in the field may benefit. 
 
1. An Overview of Deep Learning 

 
Even though, DL is considered as a subset of machine learning algorithms and shares 
many common aspects with it, it has some differences that diverge it from the 
traditional machine learning approach. The most significant difference is that machine 
learning algorithms require the features to be picked manually to feed the algorithm 
whereas in DL these features are detected automatically by the algorithm. 
Furthermore, DL adopts a hierarchical learning methodology. After high-scale data 
sources and more advanced hardware/software opportunities required for DL have 
been available to public, DL has increasingly been used for medical image analysis, as 
well. In this section, RNN and CNN, mostly used DL architectures for medical image 
analysis, will be explained shortly.  

 
1.1. Convolutional Neural Network (CNN) 

 
CNNs are designed to process data types that inherently consist of multiple 
dimensions such as two dimensional images. Their architecture has some elements 
inspired from the visual cortex of a human in which there is a hierarchy of simple and 
complex cells [18]. Simple cells in the cortex respond to simple patterns in the lower 
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regions of the visual receptors whereas complex ones combines information acquired 
from the simple cells to recognize more complex patterns [19]. 

 
The basic CNN architecture consists of convolution layer, non-linear layers and a 
pooling layer (See Figure 1). 

 

 
Figure 1. Basic building blocks of a CNN [20] 

 
Even though traditional ANN (e.g., Multi-layer perceptron) and CNN have common 
properties, there are two main differences between them. Firstly, CNN, as the name 
suggests, does convolution operation over the given images in a way that features of 
the object in the image can be learned through each convolution transformation. More 
formally, all convolution layers does a transformation via parameters	𝑊 =
	𝑊$,𝑊&, . . . . , 𝑊(  with bias	𝐵 = {𝑏$,… . , 𝑏(}. Then the feature map X is obtained via the 
non-linear transformation function σ (·) [9]: 
 

	
𝑋/0 = 	𝜎(𝑊/

03$ ∗	𝑋03$ + 𝑏/03$)  (1) 
 

The second difference between MLP and CNN is that CNN has special layers called 
pooling layers through which weights are shared across layers. At the end of a CNN 
pipeline, there is generally a fully-connected layer which resembles the classic MLP 
structure (See Figure 2). 
 

 
Figure 2. CNN architecture [8] 
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The model developed by Fukushima in 1980 to mimic human visual system 
(Neocognitron) can be considered as a simple version of CNN [21]. LeNet, a more 
successful CNN model developed by Le Cun et al. [22], was utilized to recognize 
handwritten digits with an architecture made up of 1 input, 3 hidden and 1 output 
layers.  
 

1.2. Recurrent Neural Network 
Recurrent Neural Network (RNN) is a model that was mainly developed for the task 
of analyzing discrete arrays of data. Moreover, it can be considered as a generalization 
of MLPs because both input and output values may be of different lengths [9]. 
Designed to process sequential data, RNNs have a structure of circular connected 
nodes (See Figure 3). Unlike the feed-forward ANNs, RNNs can use the output of the 
network as an input to process sequential data [23]. Past output data is stored on some 
hidden neurons called the state vectors and next output is calculated with the 
consideration of inputs from these neurons [24]. 

 
Figure 3. Basic structure of an RNN with an input unit x, a hidden unit h and an 

output unit y [24] 
 

 
 As past and future input values can be used in various ways to affect the value of the 
output, new recurrent architectures as an improvement to the original RNN are also 
introduced in the literature. Bidirectional Recurrent Neural Network (BRNN) [25] is 
one of the most popular of these new additions and has gained widespread use in the 
relevant literature (See Figure 4). 
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Figure 4. Basic structure of a BRNN [25]. 

 
 

Rather than being sequential, images are generally considered as a kind of data 
containing inner correlations and spatial information about pixels. Therefore studies 
that take biomedical images as non-sequential data more often utilized DNN or CNN 
instead of RNN [19]. By using improved versions of RNN, researchers have recently 
paid increased attention to RNN for the purpose of image based recognition. For 
instance, Multidimensional Recurrent Neural Network (MDRNN) [26] has been 
applied to three dimensional images. Furthermore, Stollenga et al. [27] implemented a 
MDRNN based solution to segment neural structures in MRI and three dimensional 
electron microscope images.  
 
Biomedical signals are inherently sequential data and hence RNNs, an appropriate DL 
structure to process sequential data, are expected to produce promising results with 
biomedical signal data. In this sense, brain code deciphering [28] and anomaly 
classification studies [29, 30] have been conducted. Additionally, Petrosian et al. [29] 
performed feature extraction from raw EEG signals by using wavelet decomposition 
method and fed a RNN with this input data to detect sudden disease seizures. 

 
2. Types of Medical Images 
There are various imaging modalities in the medical field and use of these technologies 
have been increasing continuously. Henceforth the amount of data produced by these 
equipment has also been on the rise, as well. Thus processing medical images by using 
DL, as an approach requiring great amount of data to operate more successfully, has 
been gaining more attention as the amount of data increases continuously.  
Smith-Bindman et al. [31] has investigated the use of medical imaging technologies 
over the data of top six health systems in the USA that contained 30,9 million medical 
images collected and viewed between 1996 and 2010. According to their report, CT, 
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MRI and PET use has been increased in the mentioned period of time by 7.8%, 10 and 
57 respectively.  
Digital medical imaging modalities include but not limited to ultrasound (US), X-ray, 
computerized tomography (CT) scans, magnetic resonance imaging (MRI), positron 
emission tomography (PET) scans, retina photography, histology slides and 
dermoscopic images. Figure 5 presents some of the images taken by these technologies 
[32]. 
 

 
Figure 5. Images from some medical imaging modalities [32]. 

 
Some modalities are used to capture a specific organ (e.g., retina and dermoscopic 
photography) while some others can analyze multiple organs at once (e.g. CT and 
MRI). Expectedly, the amount of data produced by each imaging technology differs 
significantly, e.g., a histology slide is an image up to a few megabytes in size whereas 
an MRI file may occupy a few hundreds of megabytes of disk space. 
 
3. Deep Learning Applications on Medical Images 

 
CNNs are in general used for the tasks of classification, localization, detection, 
segmentation and registration over medical images. 

 
3.1. Classification 

 
The classification task is also known as Computer Aided Detection (CAD). Lo et al. 
[33] used CNN to detect lung nodules in breast X-ray photographs. In order to detect 
whether there is a lung nodule in a region or not, they used a CNN with two hidden 
layers that was trained by using 55 X-ray photographs. As a result, they reported that 
DL helped to achieve improved classification rate for this task.  
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Rajkomar et al. [34], classified 1850 breast X-ray photographs by a CNN trained with 
150.000 training samples. The direction of the image was predicted with a nearly 
perfect accuracy by a modified version of GoogleNet CNN [35].  
 
Pneumonia or breast infection, is a globally widespread health problem. Rajpurkar et 
al. [36], has successfully classified 14 different diseases in breast X-ray photographs. 
They trained the network with 112.000 samples taken from the ChestXRay [37] dataset. 
Their network, namely CheXNet, contained 121 convolutional layers and was actually 
a modified version of DenseNet [38].  
 
Hosseini-Asl et al. [39], detected the patients with Alzheimer's disease at an accuracy 
of %99. They used several of 3D CNNs connected in an autoencoder architecture 
predefined in the CADDementia dataset to map the general structure of the brain. 
 
Korolev et al. [40], proposed two different neural network architectures to evaluate 
their performance on Alzheimer’s disease data. The first method, VoxCNN, shared a 
similar architecture with VggNet [41] while the second one, VoxResNet, a ResNet 
architecture, was a Residual Neural Network. Samples from Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) database were used to classify diseased and normal 
MRI scans. Even though the reported performance was lower than that of some 
literature methods, such as study of Hosseini-Asl, Korolev algorithm had advantages 
like being simple to apply and not requiring manual fine-tuning of parameters. 
 
Diabetic retinopathy (DR) is another disease that could be successfully diagnosed by 
use of CNNs. In the study of Pratt et al. [43], a CNN consisting of 10 convolutional and 
3 fully-connected layers, was trained using nearly 90.000 digital eye fundus 
photographs to detect the eye problem. In addition to that study, Abramoff et al. [44] 
evaluated the commercial device IDx-DR version X2.1 to detect DR. With this device, 
they have been inspired by AlexNet and VggNet to analyze 1.2 millions DR images. 
As a result, they reported an accuracy of 98%. 
 
The methods mentioned so far are all supervised learning methods. Another major 
machine learning approach, unsupervised learning, is also an active research topic in 
the context of medical image analysis by use of DL. For instance, Plis et al. [45], 
employed Deep Belief Networks (DBN) to extract useful features from MRI images of 
patients having Huntington disease and schizophrenia. Likewise, Suk et al. [46] used 
Restricted Boltzmann Machines (RBM) to reveal relationships among different parts 
of the brain in fMRI images so that patients with Mild Cognitive Impairment (MCI) 
could be detected. 
 
Lastly, Kumar et al. [47], evaluated performances of state-of-art CNN architectures, 
AlexNet and VggNet, by using Bag of Visual Words (BOVV) and Local Binary Patterns 
(LBP). The BOVV technique was observed to be the best in classifying histopathologic 
images into 20 different tissue types.  
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3.2. Detection 
 

Accurately detecting a lesion in a scan (e.g., MRI scan) is utterly important both for the 
patient and the clinician. In the relevant literature, studies aiming at detecting this kind 
of anomaly are sometimes called as Computer Aided Detection (CADE) methods. The 
well-known Kaggle Data Science competition in 2017 [48] called for competitors to 
detect malignant lung nodules in CT scan images. All competing algorithms was run 
against a dataset including nearly 2000 CT scans and eventually Liao et al. [49] won 
the prize. In order to detect the nodules, they adopted an approach of primarily 
isolating local regions by use of a 3D CNN, which was inspired by the architecture of 
U-NET [50].  
 
Shin et al. [51], evaluated five well-known CNN architectures for the task of detecting 
lymph nodes and cancerous lung tissues in scan images. Detecting abnormal lymph 
nodes is important because they may be sign of infection or a cancer. They emphasized 
the benefits of transfer learning and concluded that high number of layers may 
improve accuracy which appears to be in contrast with the norm of preferring lower 
number of layers in medical image analysis. 
 
Overfeat [52] is the CNN architecture that won the ILSVRC 2013 localization 
competition. Ciompi et al. [53] utilized Overfeat to estimate the presence of nodules in 
two dimensional CT scans of lung fissures. Additionally, Esteva et al. [54], utilized 
another proven CNN, namely GoogleNet Inception V3, on 130.000 dermatologic and 
dermoscopic photographs in order to detect skin diseases. 
 
There are also numerous studies on the use of CNN with histopathologic images. 
Ciresan et al. [55], employed a CNN of 11 to 13 layers in order to recognize mitotic 
figures in a collection of 50 breast histology images taken from the MITOS dataset. 
Moreover, Yang et al. [56], utilized a CNN consisting of 5-7 layers to classify whether 
histopathologic images contain a tumor or not, and achieved an accuracy of 97% at this 
task. Sirinukunwattana et al. [57], used CNN to determine the cell nucleus in a total of 
100 colorectal adenocarcinoma histology images. Similarly, Xu et al. [58], implement a 
method based on Stacked Sparse Auto-Encoders (SSAE) to detect the nucleus in breast 
cancer histologic slides. In this context, some researchers like Albarquoni et al. [59] 
discussed lack of insufficient labeling of medical images. 

 
3.3. Localization 

 
Yan et al. [60], considered widthwise CT scan slices and implemented a two-phase 
CNN architecture that in the first phase defines the local parts and determines several 
body organs in the second phase. The proposed CNN architecture was reported to 
outperform standard CNN structures. Rath et al.[61] utilized almost 4000 widthwise 
CT scans to distinguish 5 categories of body parts (neck, lung, liver, pelvis and legs) 
from each other by use of a CNN that consists of 5 conventional layers. Shin et al. [62], 
has successfully found localization of liver, heart, kidney and spleen from 78 high-
contrast MRI images by use of Stacked Auto Encoders (SAE). They reported that the 
proposed scheme learned spatial and temporal features automatically and resulted in 
an accuracy ranging between 62% and 70% depending on the organ. 



 9 The International Journal of Energy & Engineering Sciences IJEES-V3-I2, 2018 

 
3.4. Segmentation 

 
Even though segmentation oriented studies considered several organs such as liver 
and prostat, the relevant literature generally focused on performing brain 
segmentation. Automatic segmentation is a vital task because determining borders of 
a segment in the image, such as boundaries of a tumor, is crucial in planning the 
surgery and preventing surgical resection. Akkus et al. [63] evaluated several CNN 
architectures and performance metrics for the task of segmenting brain in MRI images. 
Moeskops et al. [64], utilized 3 CNNs, each of which has different two dimensional 
input patches, in order to classify and segment different tissues such as white matter, 
gray matter and cerebrospinal fluid in the MRI images of 22 premature babies and 35 
adults. 
  
Preira et al. [65], focused on deeper CNN architectures with 11 layers. In order to 
prevent common problems with deepers networks such as overfitting, they used small 
filters of 3x3 size. Havaei et al. [66], considered gliomas and evaluated performances 
of two-dimensional CNN architectures over BRATS 2013 dataset. Chen et al. [67] 
proposed to use up-sampling filters, atrous spatial pyramid pooling and conditional 
random fields (CRFs) in order to enhance the performance of CNN for medical image 
analysis. Casamitjana et al. [68], compared several three dimensional CNN 
architectures. Brosh et al. [69], utilized a multi-scale architecture to segment brain 
lesions in the MRI images.  

 
3.5. Registration 

 
Image registration is the task of aligning multiple medical images of a patient from 
different times or of different patients or of a patient from different modalities. 
Aligning different medical images serves as a tool to ease the clinical decision making. 
El-Gamal et al. [70] evaluated current available methods in image registration and 
discussed their effectiveness and use in appropriate clinical environments. In the 
relevant literature, image registration task is generally considered as an optimization 
problem where the task is to minimize a cost function which depends on a metric that 
measures the similarity of images to be aligned. Use of DL or even ANNs is relatively 
new to this field. Yang et al. [71] utilized a SAE with convolutional layers to predict 
the final configuration of an input pixel in the alignment. They proposed to use the 
Large deformation diffeomorphic metric mapping technique in order to reduce the 
computational burden and speed-up the process. Moreover, Miao et al. [72], stored 3D 
models of some equipment such as knee and hand implants onto 2D X-ray images, 
and attempted to predict the final position of the equipment by use of a 5-layered 
CNN. 
 
CONCLUSION 
 
This study aims to provide a general view of DL applications in the field of medical 
image analysis. Up to recently, traditional machine learning methods have suffered 
from the lack of large amount of labeled data to properly train and test learning 
algorithms. Sun et al. [73], utilized a dataset of 300 million images obtained from 
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Google and observed that more data improves the performance of the algorithms. In 
the field of medical image analysis, there is in general a deficiency of public and 
carefully labeled data. Cho et al. [77], focused on the matter and discussed how much 
data may suffice to properly train an algorithm for the purpose of medical image 
analysis. Some generative models such as Variational Autoencoders (VAEs) and 
Generative Adversarial Networks (GANs) attempt to generate artificial medical data 
in order to overcome the problem. Guibas and Virdi [78] utilized the artificial data 
population methods and implemented a two-phase segmentation method that was 
reported to be successful in generating retinal fundus images. Likewise, Costa et al. 
[79], utilized GANs to generate artificial retinal fundus images. In addition to 
generating artificial data, GANs are used by Moeskops et al. [80], Kamnitsas et al. [81] 
and Alex et al. [82] for other purposes such as MRI segmentation.  
As a result, if recent studies are considered, the performance of machine learning 
methods specifically DL is observed to be satisfactorily good and sometimes even 
superior to human performance in image analysis tasks. And medical image analysis, 
as a sub-field, also benefits from this advantage, as well. 
In the future, research in the medical image analysis field is expected to continue with 
tasks of prediction [84], content-based image acquisition [85, 86], image reports or 
subtitle generation [87, 88], manipulation of physical objects [89, 90] and surgical 
robots [91, 92].  
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