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Abstract: ElectroCardioGram (ECG) is a graphical representation of the electrical 
activity that occurred during the heartbeat. It plays a significant role in the diagnosis 
and analysis of heart diseases. ECG signals must be recorded continuously for the 
effective detection and diagnosis of heart diseases. However, such records as it 
produces large amounts of data at a level that makes it difficult storage and 
transmission can also be impaired due to the ambient noise. Thanks to the reasons 
mentioned above, an efficient ECG data compression algorithm is required even in a 
noisy environment. This study proposes ε-insensitive quadratic loss based Support 
Vector Regression (ε-quadratic SVR) technique for the compression of ECG signals. 
There is a well-known relationship between loss functions and noise distributions. 
The proposed ε-insensitive quadratic loss function provides the optimal solution 
against Gaussian noise. Computer simulation results show that the proposed loss 
function is an attractive candidate for ECG data compression in the presence of 
Gaussian noise. 

 

  

ε-duyarsız Kuadratik Kayıp Fonksiyonu ile EKG Verilerinin Sıkıştırılması 
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Modelleme, 
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Özet: ElektroKardiyoGram (EKG), kalbin çalışması esnasında ortaya çıkan 
elektriksel aktivitenin grafiksel bir gösterim şeklidir. Kalp hastalıklarının 
teşhisinde ve analizinde önemli bir rol oynamaktadır. Kalp hastalıklarının önceden 
etkin bir şekilde tespiti ve teşhisi için, EKG sinyalleri sürekli kaydedilmesi gerekir. 
Bununla birlikte, depolama ve aktarımın zorlaştığı bir seviyede büyük miktarda 
veri üreten kayıtlar, ortam gürültüsünden dolayı da bozulabilir. Bu nedenlerden 
dolayı, gürültülü bir ortamda bile etkin sonuçlar verebilecek bir EKG veri 
sıkıştırma algoritmasına ihtiyaç vardır. Bu çalışma EKG sinyallerinin sıkıştırılması 
için ε-duyarsız kuadratik kayıplı Destek Vektör Regresyon (ε-kuadratik DVR) 
tekniğini önermektedir. Kayıp fonksiyonları ile gürültü dağılımları arasında iyi 
bilinen bir ilişki vardır. Önerilen ε-duyarsız kuadratik kayıp fonksiyonu ise Gauss 
gürültüsüne karşı en uygun çözümü sunar. Bilgisayar simülasyon sonuçları, 
önerilen kayıp fonksiyonunun Gauss gürültüsü ile bozulmuş EKG verilerinin 
sıkıştırılması için çekici bir aday olduğunu göstermektedir. 

  

 
1. Introduction 
 
Electrocardiogram (ECG) is a method widely used by 
various healthcare institutions to record the electrical 
activity that occurs in conduction and relaxation 
phases of the atria and ventricles of the heart. It plays 
a very important role in the diagnosis and analysis of 
heart diseases. For the early diagnosis of heart 
diseases, ECG signals are continuously recorded. 
However, long term monitoring generates large 
amount of data that will make storage and 
transmission difficult. Moreover, these records may 
be subject to noise resulting from the recording 
environment. These problems can be overcome by 

compressing the ECG signals containing large 
amounts of data efficiently (preserving important 
information) at appropriate compression rates. Many 
algorithms have recently been suggested for 
compressing, modeling and reconstructing ECG 
signals. Existing algorithms can be divided into three 
categories [1]: I) direct data compression techniques, 
II) the parameterized model-based techniques and 
III) the transform based techniques. All of the 
abovementioned techniques also can be lossy or 
losses. For a detailed review of these methods, see [2-
4]. In this paper, a lossy compression technique 
belonging to the last category is presented and 
evaluated.  

*Corresponding author: karal@ybu.edu.tr 
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Transform based methods are generally preferred 
because they have higher compression ratios and are 
more insensitive to noise. In this article, a new lossy 
compression technique for the transform-based 
compression category is proposed and evaluated. In 
transform-based techniques, the signal is represented 
as a linear weighted sum of basis functions. The 
parameters of these basis functions such as 
coefficients (weights), and variances are 
appropriately coded and transmitted instead of 
original signal. Therefore, the best transformation is a 
transformation that needs a minimum number of 
basis functions to reconstruct the original signal for 
the given error criterion. Among transform-based 
techniques, the Karhunen-Loeve transformation 
(KLT) is the optimal transformation in that it requires 
a minimum number of basis functions to represent a 
random signal according to the mean square error 
criterion [5]. However, even though it gives a high 
compression ratio, the calculation time required to 
compute the KLT basis functions is too long. For this 
reason, suboptimum transform techniques are used 
more often for ECG signal compression. Reddy and 
Murthy [6] used the Fourier transform (FT) 
technique for compressing ECG data and showed that 
FT gives good results even in noisy recordings. 
However, it fails to determine the exact location of 
frequency information over time. Benzid et al. [7] 
obtained a very high compression ratio (CR) with 
discrete cosine transform (DCT). However, Shinde 
and Kanjalkar [8] have shown that Percentage Root 
Mean Square Difference (PRMSD) value is directly 
proportionally to CR, and thus leading to 
deterioration of the signal in DCT technique. 
 

In recent years, wavelet-based transform (WBT) 
techniques have been widely used in ECG signal 
compression, due to their characteristics such as 
energy compression, time-frequency localization, [2]. 
WBT techniques are mainly divided into two distinct 
categories: the continuous wavelet transform (CWT) 
and the discrete wavelet transform (DWT). These two 
classes were analyzed separately by the Addison in 
2005 [9]. He emphasized that since the DWT yields 
fewer wavelet coefficients, it needs less computation 
time than the CWT. Moreover, he noted that the DWT 
has an interesting mathematics and is based on 
traditional signal filtering and encoding 
methodologies. However, WBT techniques have a 
proportional relationship between block size and 
compression ratio. If the block size increases, then 
the compression ratio also increases for a given error 
criterion; but the calculation time and storage 
requirements of the adaptive wavelet coding schemes 
will also increase in the same way. For these reasons, 
how to decide the block size in ECG data compression 
with wavelet transform is still a fundamental 
problem [2]. 
 

Recently, unlike current transform based 
compression techniques, Karal [10] has proposed a 
new method based on standard support vector 

regression (SVR) to compress ECG data according to 
the given error tolerance in an optimal and rapid 
manner. It has also been shown that the performance 
of the proposed standard SVR-based compression 
technique is higher than that of transform-based 
compression techniques such as FT, DCT, and DWT 
commonly used in the literature. In terms of 
robustness, there is an effective connection between 
error distribution and loss function [11]. This relation 
stems from the Bayesian approach. In other words, if 
the error distribution is known, the optimal loss 
function can be derived using the Bayesian approach. 
Standard SVR technique adopts Vapnik’s ε-insensitive 
loss function which is optimal for Laplacian error 
distribution. However, most of the current regression 
(compression) algorithms consider Gaussian error 
distribution. For this reason, SVR with Vapnik loss 
function (standard SVR) is not suitable for 
applications with Gaussian error distribution.  
 
In order to address the aforementioned problem, in 
this paper, it is proposed that ε-insensitive quadratic 
loss function is included in the standard SVR 
formulation. The proposed ε-insensitive quadratic 
loss function has a significant advantage in that it 
properly takes into account Gaussian noise 
distribution in terms of robustness in SVR based 
compression. It also exploits most of the advantages 
of Vapnik’s loss function such as disregarding small 
noises and sparseness in solution representation.  
 
The main contributions of this study can be listed as 
follows: 
 

(1) SVR with ε-insensitive quadratic loss 
function is derived for the ECG data 
compression. 

(2) Since the proposed ε-insensitive quadratic 
loss function is convex and continuously 
differentiable, it can be solved by a quadratic 
programming. 

(3) The performance of the proposed algorithm 
is better than the standard SVR in the 
presence of Gaussian noise distribution.  

 

The remainder of this study is outlined as follows. 
The concept of support vector regression with ε-
insensitive quadratic loss function is given in Section 
2. In the following part, experimental results are 
displayed. In Section 4, the differences between 
standard SVR and proposed SVR are discussed. The 
main conclusion and feature directions for further 
are summarized in Section 5.  
 

2. Support Vector Regression Method with ε-
insensitive Quadratic Loss Function 
 

Support vector networks, a type of universal feed-
forward networks, were developed by Vapnik and 
Cortes [12] at AT & T Bell laboratories to classify 
data. They are often referred to in the literature as 
support vector machines (SVMs). 
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Figure 1. In the SVR method, the training samples represented by nonlinear regression in the input space are expressed by 
linear regression in the high dimensional feature space using nonlinear basis functions. 

 
The SVM-based model is called SVR for regression 
[13]. When compared with traditional supervised 
learning methods of neural networks, SVR uses not 
only the empirical risk minimization but also the 
structural risk minimization principle, which aims to 
reduce the upper limit of the generalization error at 
the same time. Due to these important properties, 
SVR has been used in many areas such as biomedical 
[14-17], renewable energy [18-21], time series 
forecasting [22-24]. 
 
Considering N pairs of training samples

) }{( 1,,s sD s Ny  x , where 
n

s Rx  is the sth 

input vector, and sy R  is the desired output for the 

input sx . The goal in SVR is to find a function that has 

at most ε deviation from the desired outputs for all 
training data, and at the same time keep the 
relationship between sx  and sy  as flat as possible. 

Based on the SVR theory, training samples are 
transformed into high dimensional kernel feature 

space using nonlinear basis functions ( ) : n mφ R R 

and then a linear model is carried out (see Figure 1).  
 

(( )) Tf b x xw  (1) 

 

where, mRw is the model parameter (weight) 

vector and b is a threshold to be determined in the 
function. Flatness in (1) means small w. This can be 

ensured minimizing the Euclidean norm of w i.e. 
2

2
w

. Approximating all pairs with ε precision in (1) 
means reducing the error between the predicted and 
desired outputs. This corresponds to minimize the ε-
insensitive error function i.e. ε( ) ( ))(s s sL e L y f  x . 

Therefore, the SVR optimization problem can be 
expressed as follows. 
 

2

ε

1
2

1
( , ) ( ))

2
(

N

s s

s

J b C L y f



   xw w  (2) 

 

where,  C R is a user defined parameter that 

determines the tradeoff between the flatness and 
empirical error.  

Standard SVR theory adopts ε-insensitive Laplace 
(Vapnik) loss function (3), which ignores the errors 
lower than the predetermined ε value (see Figure 2). 

Otherwise, they are penalized by 
ε

( )s sy f x  In 

other words, small noisy training samples falling into 
the ε-insensitive area are not included in the solution 
presentation. Hereby, Vapnik loss based SVR yields a 
sparse (compressed) model in the obtained solution. 
The definition of Vapnik loss function is given as 
follows. 

 

ε

0 ( )
( )

( )  

s s

s s

s s
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y

for f
y f
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 
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x
x

x




 (3) 

 

 
Figure 2. illustrative example of ε-insensitive Laplace 
(Vapnik) loss function. 

 
From a statistical point of view, Vapnik’s loss function 
is optimal for Laplacian noise distribution. However, 
many current regression (compression) algorithms 
consider Gaussian (normal) error distribution which 
corresponds to a quadratic loss function. In order to 
deal with Gaussian error distributions, the ε-
insensitive quadratic loss function can be written as 
follows [11]: 
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Figure 3. ε insensitive quadratic loss function 
2( )se e  

 

One can see that the 2( )se e  is a convex and continuous 

differentiable function. By including (4) into (2), the 
formulation of SVR with ε-insensitive quadratic loss 
function can be stated as follows. 
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where,  s and 
'
s are slack variables used to deal with 

positive and negative deviations outside the ε-
insensitive region, respectively (see Figure 3). 

 
In order to solve the primal objective function 
problem in (5), the linear constraints (6) are 
multiplied by means of nonnegative Lagrange 
multipliers for each sample and included in (5). 
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(7) 

 

where the variables 
',  s s   and 

',  s s   are Lagrange 

multipliers (dual variables). For optimal solution to 
the Lagrangian problem (7), primal variables 

'( ), , ,s sb  w must vanish. Therefore, the partial 

derivative of Lagrangian function 

' ' '( , , , , , , , )s s s s s sJ b      w  is taken with respect to the 

input variables and the result is equal to zero. 

'

1

( ) 0

N

s s

s

J

b
 




  

   (8) 

 

'

1

0( )( )s s

N

s

s

J  



     xw w  (9) 

 

(2 ) 0s s s
s

J
C   




   


 (10) 
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If the equations (8) through (11) are substituted in 
the (7), the dual optimization problem is obtained. 
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(12) 
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0
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s

N

 


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where, K represents the kernel matrix. The entries of 
kernel matrix are the kernel functions K ,s r(x x )  that 

are defined as the inner product of two samples 
( )s x  and ( )r x . 
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The optimization problem in (12) constitutes a 
quadratic programming problem whose solution 
gives a unique minimum. After computation of 

Lagrange multipliers (support vectors) s and 
'
s , the 

optimal model parameter w (9) can be written as 
follow.  
 

' )( ()

s D

s

V

s s
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x
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(15) 

 

The decision function (1) for the test sample x can be 
written as 
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f b 
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x

x x x  
(16) 

 

where, SV are the training samples corresponding to
' 0s s    (called a support vector). Note that when 

evaluating ( ),f x  w does not need to be computed 

explicitly. From (16), the operations required for the 
SVR can be performed directly in the input space with 
the kernel function, without performing the process 
of moving the training samples from the input space 
to the high-dimensional space by means of non-linear 
functions. This is called the "kernel trick" in the 
literature [13] and reduces the computation time 
required to solve the optimization problem. 
 

3. Experimental Results  
 

This section presents various experimental results 
for the ε-insensitive quadratic loss function proposed 
in the SVR framework. Moreover, the performance of 
the proposed SVR model is compared with the 
standard SVR model. To provide same conditions for 
both models, all experiments were performed in 
Matlab 2016a environment installed on a personal 
computer with Intel Core I5 processor 3.1 GHz, 10 GB 
RAM and 64 bit Windows 10 operating system. Gauss 

function 
2 2

2
K( , ) exp( 2 )s s   x x x x  which is 

widely used in literature was chosen as kernel 
function.  
 

The user-defined optimal parameters
* *( , )C   of the 

SVR technique were determined from the sets {0.1, 
0.5, 1, 2, 4, 8, 16, 24, 48} and {0.001, 0.0011, 0.0012, 

0.0013, 0.0014} respectively. In order to assess 
performance, the following accuracy evaluation 
parameters [2-4] are used in this study. 
 
Compression ratio (CR): 
 


#

#SVCS

TSOS
CR  (17) 

 
where, #TSOS denotes the number of training 
samples required for the original signal and #SVCS 
specifies the number of support vectors needed for 
the compressed signal. 
 

Percent Root Mean Square Difference (PRD): 
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Root Mean Square Error (RMSE): 
 

2

1

1
( ( ))

N

s s

s

RMSE y f
N



  x  (19) 

 

ECG records (360Hz with 11 bits/sample resolution) 
have been obtained from the MIT-BIH database [25]. 
A normal sinus rhythm (1 period ECG signal) was 
extracted from the ECG recordings for visualization 
and compression was performed on this signal (see 
Figure 4). 

 

 
Figure 4. Original ECG (dark blue) signal, the Gaussian noise (magenta spots) added ECG signal and the P, QRS and T wave 
forms (dark violet rectangles) that make up the original ECG signal 
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Figure 5. ECG (dark blue) signal compressed by ε-insensitive quadratic loss based SVR. The areas separated by the red 
dashed line below and above the compressed ECG signal show the ε-insensitive area. The '+' signs in the black color represent 
the training samples, and the '+' signs in the green ring represent the support vectors (the samples that yield the compressed 
ECG signal). 
 
Table 1. Experimental results on ECG data compressed by ε insensitive quadratic loss based SVR. 

Model Parameters #TS #SV w RMSE PRD CR 

ε=0.010 

C=30 
σ=0.012 

268 

107 0,97 0,014 11,69 2,50 

ε=0.012 83 0,96 0,016 12,77 3,22 

ε=0.015 52 0,95 0,019 15,42 5,15 

ε=0.020 29 0,93 0,024 19,68 9,24 

ε=0.030 22 0,87 0,036 29,05 12,18 

ε=0.040 17 0,78 0,048 39,29 15,76 

ε=0.050 12 0,76 0,059 48,15 22,33 

 

In order to show that the proposed method is robust 
against Gaussian distribution, the original ECG signal 
is polluted by Gaussian noise 

( ) 2 21 2 ( ( ) 2 )exp x  - - with the mean μ=0 and 

the variance τ=0.01 (Figure 4 magenta spots).  
 
Figure 5 demonstrates the plot of the ECG signal with 
Gaussian noise (magenta) and its reconstructed 
version (dark blue) using ε-insensitive quadratic loss 
function (with the parameters ε=0.02, C = 30, and σ = 
0.012). As can be seen from Figure 5 that the training 
examples (185 black ‘+’ signs) in the ε-insensitive 
region are not included in the solution representation 
of the SVR optimization algorithm. Since training 
samples (83 support vectors, black '+' signs in green 
circles) outside the ε-insensitive region are only 
included in the solution representation, the ECG 
signal reconstructed by the ε-insensitive quadratic 
loss function contains fewer training samples than 
the original signal. Therefore, SVR with ε-insensitive 
quadratic loss function gives a sparse (compressed) 

solution. The parameter ε allows us to control the 
selection of the support vectors which may be 
directly related to the sparseness. For different ε 
values, the numerical analysis in terms of the number 
of training samples (#TS), the number of support 
vectors (#SV), the flatness (w) estimated by (15), 
root mean square error (RMSE) estimated by (19), 
percent root mean square difference (PRD) 
calculated by (18), and compression ratio (CR) 
calculated by (17) are provided in Table 1.  
 
As the value of the sparsity (compression) parameter 
ε is increases, the CR value shown in Table 1 also 
increases. However, this increase also causes the PRD 
and RMSE values to increase, which leads to 
distortions in the compressed signal. 
 
It is obviously seen from Table 2 that the proposed 
SVR (ε-Quadratic loss) and standard SVR models with 
the same parameter (ε=0.02 and σ=0.012) values 
show different behaviors in various C parameters. 
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Table 2. Comparing the performance of the standard SVR (Vapnik loss) and the proposed SVR (ε-Quadratic loss) in 
compressing ECG data 

Model parameters #TS Loss function #SV w RMSE PRD CR 

C=0.5 

ε=0.02 
σ=0.012 268 

ε-Quadratic 155 0,47 0,039 31,95 1,72 

Vapnik  82 0,95 0,024 19,59 3,26 

C=1 
ε-Quadratic 116 0,60 0,032 26,48 2,31 

Vapnik  71 0,97 0,024 19,46 3,77 

C=5 
ε-Quadratic 64 0,79 0,026 20,80 4,18 

Vapnik  58 0,98 0,024 19,59 4,62 

C=10 
ε-Quadratic 50 0,82 0,025 20,28 5,36 

Vapnik  53 0,98 0,024 19,41 5,05 

C=20 
ε-Quadratic 39 0,89 0,024 19,56 6,87 

Vapnik  46 0,99 0,024 19,53 5,82 

C=30 
ε-Quadratic 28 0,91 0,024 19,38 9,57 

Vapnik  33 1,02 0,024 19,28 8,12 

C=50 
ε-Quadratic 18 0,93 0,024 19,49 14,88 

Vapnik  25 1,03 0,024 19,78 10,72 

 
When compared, the proposed SVR model performs 
better than the standard SVR model as the value of C 
increases. In other words, in the same RMSE and PRD, 
when the C value is 10 and above, the proposed SVR 
model provides a better CR than the standard SVR 
model, while at the same time it produces a smoother 
function (small w). For example, the proposed SVR 
model yields SV=18, CR=9.57, and w=0.93 while the 
standard SVR model yields SV=25, CR=8.12, and 
w=1.03 for the same values of parameters (ε=0.02, 
σ=0.012, C=30, PRD=19,38, and RMSE=0,024). On the 
other hand, standard SVR performs better at small C 
values. This is due to the emphasis on the 
smoothness of the model rather than the empirical 
error in the optimization problem.  
 
It can be concluded from these results that the 
proposed SVR model is more efficient than the 
standard SVR model if the data is contaminated with 
Gaussian noises, since the quadratic loss function is 
optimal for Gaussian noise. 
 
4. Discussion  
 
Long-term ECG recordings produce large amounts of 
data at a level that makes storage and transmission 
difficult. Many algorithms have recently been 
suggested for compressing, modeling and 
reconstructing ECG signals. Recently, support vector 
algorithm has received great interest in regression 
(compression) problems because of the attractive 
properties such as better generalization ability 
independent of dimensionality of problems and 
ensured global minimum solution. But, the 
performance of SVR usually depends on the selected 
loss function. As Table 2 shows, the proposed SVR 
model (CR=14,88) provides a better compression 
ratio than the standard SVR model (CR=10,72) for the 
same values of parameter (ε=0.02, σ=0.012, C=50, 
and RMSE=0,024). Most of the compression 
(regression) algorithms consider Gaussian error 
distribution which corresponds to a typical quadratic 
loss function. For this reason, standard SVR is not 

suitable for applications with Gaussian error 
distribution. 
 
5. Conclusion and Future Work 
 
In this study, the ε-insensitive quadratic loss based 
SVR technique is proposed to cope with Gaussian 
error distribution in ECG signals. The ε-insensitive 
quadratic loss function ignores the small noise and 
provides sparseness (compression) in solution 
representation. 
 
For various epsilon (ε) values, computer simulations 
show that the proposed ε insensitive quadratic loss 
based SVR technique optimally yields good 
compression ratio.  
 
Computational comparisons between the proposed 
SVR model and standard SVR model demonstrate the 
effectiveness of the proposed model especially large C 
values. For the same RMSE (0,024), PRD (19,38), C 
(30) ε (0.02), σ (0.012) values, the proposed SVR 
model provides SV=18, CR=9.57, and w=0.93 while 
the standard SVR model yields SV=25, CR=8.12, and 
w=1.03. 
 
As a future work, from a theoretical point of view, the 
proposed technique can be effectively applied to 
larger ECG data with sequential minimal optimization 
algorithm. Moreover, since it does not need any 
additional algorithm (pre-processing of the ECG 
signal), it can be applied to other biomedical signals 
such as Elektroensefalografi (EEG), Elektromiyografi 
(EMG). 
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