

416

Süleyman Demirel University
Journal of Natural and Applied Sciences

Volume 22, Issue 2, 416-428, 2018

Süleyman Demirel Üniversitesi
Fen Bilimleri Enstitüsü Dergisi
Cilt 22, Sayı 2, 416-428, 2018

 DOI: 10.19113/sdufbed.12712

A Navigation Framework with Map Support for Developing Desktop Applications

Özgün YILMAZ*1

1Ege University, Faculty of Engineering, Department of Computer Engineering, 35100, İzmir

(Alınış / Received: 17.12.2017, Kabul / Accepted: 27.03.2018, Online Yayınlanma / Published Online: 11.05.2018)

Keywords
Navigation framework,
Mobile computing,
Location-awareness,
Map support

Abstract: With the widespread use of mobile devices, location-awareness in
software applications has become an increasingly important concept. One
important aspect of location-aware applications is the ability to provide map and
navigation support for the user. Basically, providing maps and navigational
information to the user complements and empowers the notion of location-
awareness. Although map and navigation support are widely used in mobile
applications, there are circumstances, where they are also useful for desktop
applications. There are applications which run without any connection to the
Internet and/or demand high computing power, where a smart phone is not
sufficient. There are many frameworks for providing map and navigation support
in the mobile and web domain. For the desktop domain, map and navigation
support is limited. There are no frameworks which provide map and navigation
support in an integrated manner. In this paper, an easy to use open source
navigation framework for the Java programming language is presented. By using
this specific navigation framework, software developers will be able to add map,
navigation and path finding support to their applications. In order to minimize
network costs for downloading map images over the Internet, a caching strategy is
employed. The software developers will be able to integrate navigation support
and maps easily to their applications. Finally, demonstration applications
implemented using our framework are described to demonstrate the capabilities
of our framework.

Masaüstü Uygulamaları Geliştirilmesi için Harita Desteği Sunan Navigasyon Çerçevesi

Anahtar Kelimeler
Navigasyon çerçevesi,
Mobil bilgi işlem,
Konum farkındalık,
Harita desteği

Özet: Günümüzde mobil cihazların yaygınlaşmasıyla birlikte yazılım
uygulamalarında konum farkındalık gittikçe önem kazanmıştır. Konum farkında
uygulamaların önemli özelliklerinden birisi kullanıcıya harita ve navigasyon
desteği sunmaktır. Temel olarak kullanıcıya harita ve navigasyon bilgisi sağlamak,
konum farkındalık kavramını tamamlar ve güçlendirir. Harita ve navigasyon
desteğinin, mobil uygulamalarda daha yaygın olarak kullanılmasına rağmen,
masaüstü uygulamalarında da kullanılmasını gerektiren durumlar bulunmaktadır.
İnternet’e bağlı olmadan çalışan ve/veya bir akıllı telefonun yeterli olamayacağı
yüksek bilgi işlem gücü gerektiren uygulamalar bulunmaktadır. Mobil ve veb
alanında harita ve navigasyon desteği sunan çok sayıda yazılım çerçevesi
bulunmaktayken, bu destek masaüstü uygulamalar için sınırlıdır. Harita ve
navigasyon desteğini bütünleşik bir şekilde sunan bir yazılım çerçevesi yoktur. Bu
çalışmada, Java programlama dilinde kullanımı kolay açık kaynak kodlu bir
navigasyon çerçevesi geliştirilmesi amaçlanmaktadır. Geliştiriciler bu çerçeveyi
kullanarak; uygulamalarına harita, navigasyon ve yol bulma desteği
ekleyebileceklerdir. Haritaların elde edilmesinde, ağ iletişim maliyetlerini
azaltmak için bir ön bellekleme stratejisi kullanılmaktadır. Bu sayede, geliştiriciler
navigasyon ve harita ile ilgili işlevleri kolayca geliştirdikleri uygulamalarına
entegre edebileceklerdir. Son olarak, geliştirilen çerçevenin yeteneklerini
göstermek için çerçeve kullanılarak geliştirilen örnek uygulamalar anlatılmaktadır.

*Corresponding author: ozgun.yilmaz@ege.edu.tr

Ö. Yılmaz / A Navigation Framework with Map Support for Developing Desktop Applications

417

1. Introduction

With the extensive use of mobile devices, computing
becomes increasingly mobile and ubiquitous
nowadays [1, 2]. Location is an important source of
context in mobile and ubiquitous computing [3]. As a
result, location-awareness and location based
services has gained some importance in the
telecommunications industry [4, 5, 6]. One important
aspect of location-aware applications is the ability to
provide map and navigation support for the user.
Basically, providing maps and navigational
information to the user complements and empowers
the notion of location-awareness.

According to performed literature review, currently
there are no open source software frameworks that
provide navigation and map support for the Java
desktop applications. Such a framework is needed
when there is no internet connection and/or high
computing power is needed. Although map and
navigation support are widely used in mobile
applications, there are circumstances, where they are
also useful for desktop applications. There are
applications which run without any connection to the
Internet and/or demand high computing power
where a smart phone is not sufficient. This might be
the case in an environmental science setting.
Environmental scientists sometimes work in remote
and isolated places without any internet access to
gather or analyze location-aware environmental data
on map. The software used by environmental
scientists might demand high computing power
where a smart phone would be insufficient. There are
many frameworks for providing map and navigation
support in the mobile and web domain. However, for
the desktop domain, map and navigation support is
limited. There are no frameworks which provide map
and navigation support in an integrated manner. In
addition to this, in some situations the level of detail
provided by common map providers might be
insufficient. National mapping agencies such as
Ordnance Survey in Great Britain provide much more
detailed maps. The developers might want to use
these detailed maps. In this case, a proprietary
navigation framework should be used.

For sensing location, a location sensing device, such
as a GPS (Global Positioning System) receiver is
needed. There are many GPS receivers on the market
which can be connected to a computer over the
bluetooth or the USB port.

There are products, which provide map support, such
as MapXtreme Java [7], but these products lack
navigation support and also they are not free. Google
Maps [8] and Yahoo Maps [9] provide maps and path
finding through Javascript. These services can be
used in web applications, but cannot be used directly
in desktop applications since third party components
are needed to use Javascript from Java. These third

party components are expensive. They, acting as a
middleware requiring new technologies to be
mastered, complicate the problem. In order to
simplify this problem, an integrated solution, which
provides maps, navigation and path finding in a single
framework, is needed.

By using EgeNav framework proposed in this paper,
this need can be satisfied. EgeNav is an open source
framework where the source codes are available
through Git repository from [10]. In EgeNav, the aim
is to implement a simple navigation framework for
Java software developers. It basically supports many
functionalities in an integrated manner and provides
an abstraction level for the developers. By using
EgeNav, developers will be able to add map,
navigation and path finding support to their
applications. Textual, visual and audial navigation
and direction information and directives can also be
presented to the users. External URL-based map and
direction services are used to get maps together with
directions, making it possible for software developers
to integrate maps, navigation and direction support
to their applications. As a result, EgeNav provides an
abstraction layer for the developers.

In order to get maps and directions using HTTP
requests, an upper class structure is defined. These
classes are thereafter extended to support Google
Maps [11] and Google Directions API [12] directly. By
extending these upper classes, other URL-based map
and direction services can be used. In addition to
getting path finding support from external services,
EgeNav also supports raster image-based path
finding. A modified flood fill algorithm, which is
basically a breadth-first search, is used for this
purpose. Turning points, road junctions and textual
direction instructions are extracted by processing the
image.

Downloading map images over the Internet comes
with a cost and reducing this cost is very important.
EgeNav uses a caching strategy for reducing network
costs. As the user moves, adjacent map tiles are
downloaded. Then custom maps can be obtained
from the pre-cached map tiles.

EgeNav includes GUI (Graphical User Interface)
components. The map panel is one of these
components and it provides functionalities such as
showing maps, presenting audio, visual and textual
directives, recording navigation history, setting map
object, type of the map and zoom level and dragging
map by mouse to explore other regions. Another GUI
component is the navigation information panel which
can be used in tandem with the map panel, which
continuously updates it, as the navigation
information changes.

The subsequent sections of this paper are organized
as follows: In Section 2, related research is surveyed

Ö. Yılmaz / A Navigation Framework with Map Support for Developing Desktop Applications

418

and EgeNav is evaluated according to related work. In
Section 3, EgeNav is described in detail. The system
architecture and map provider, path finding and map
caching components are explained. In Section 4, in
order to show the capabilities of EgeNav, a
demonstration application is described. Finally, in
Section 5, conclusion is discussed.

2. Related Work

As mentioned previously, there isn't any open source
navigation framework which supports both desktop
and web applications for the Java programming
language. MapXtreme Java [7] is a commercial
product which provides online maps for developers.
Google Maps [8], Yahoo Maps [9] and Bing Maps [13]
provide online maps service and direction support in
web applications by using Javascript. To use
Javascript from Java, third party components are
needed. These third party components are expensive.
Also they require new technologies to be mastered
and this complicates the problem.

Another effort worth mentioning is the
OpenStreetMap [14] project. OpenStreetMap is an
open source collaborative project, which aims to
create a map of the world and this information is
collected by volunteers over the world. It is an
alternative to the before mentioned proprietary road
networks in commercial business geomatics
software. OpenStreetMap provides access to spatial
data without any costs or fees [15, 16] and it is
updated on a daily basis [17]. OpenStreetMap is used
for many applications [18], especially in urban
studies [19]. Recent research [15, 20-25] shows that
OpenStreetMap can compete with commercial
products in many countries around the world and it
is continuously getting better. Road information of
OpenStreetMap data shows good accuracy and
completeness as a result of the convergence of
volunteered GPS traces [20, 26].

As mentioned earlier Google Maps, Yahoo Maps and
Bing Maps require Javascript. Third party paid
products are needed to run Javascript from Java. One
of these products is JxBrowser [27] which provides
browser and Javascript support for Java applications.
Today, Java 7 platform supports Javascript through
the JavaFX [28] package, but again this complicates
the problem, because this approach requires web
programming and Javascript knowledge. To simplify
matters, we need a framework which integrates
getting maps, navigation and getting directions in a
single solution. EgeNav framework is intended to
fulfill this role.

There are similar works related to EgeNav. A
comparison of these related work is shown in Table
1. In the table, related work are evaluated according
to following criteria:

• Map support: This feature denotes if the related
work provides showing of maps. It also includes
basic functionalities such as browsing the map,
zooming in and out, changing map type and etc.
All of the related work uses an external map
service.

• Navigation support: This feature denotes
whether the related work has ready-to-use
infrastructure for managing and showing
navigation information. Navigation information
consists of speed, average speed, heading
direction, time elapsed, traveled distance, and etc.

• Path finding: Path finding refers to the assistance
by providing information and instructions for
going from one location to a destination location.
It is used to help the users find their way. It can
include visual, textual and audial assistance.

• Custom server support: The related work, listed
in the table, all use an external map service.
Custom server support denotes whether the
related work supports different map servers.

• Caching of maps: To increase the performance
and minimize the costs, downloaded maps are
stored in a permanent storage. When a map is
requested, cache is searched if it is possible to
construct the map from the cached maps without
downloading.

• Java desktop support: To support developing
visual Java desktop applications, a component
should be compatible with a Java GUI (Graphical
User Interface) widget kit. An example of such a
widget kit is Java Swing.

• Open source: One important aspect of this work
is that it is open source and free of any charge. So
related work are also evaluated according to this
criterion.

MapPanel [29] is a free visual map viewer component
intended to be used in user interfaces. It uses
OpenStreetMap as the map server. By using
MapPanel, developers can integrate mapping into
their applications. Basic mapping functionalities such
as browsing the map, zooming in and out are
supported, but this component provides only
mapping support [30]. It lacks navigation, path
finding and directions support. There is also no
custom server support. It is open source and can be
used in developing Java desktop applications since it
supports Java Swing.

The other one of the related works is JXMapViewer2
[31]. Developed by Swing Labs, it is a visual map
viewer component similar to MapPanel. It can use its
own map server or OpenStreetMap server. Similar to
MapPanel, browsing the map, zooming in and out is
supported whereas navigation, path nding and
directions services are not supported. It is open
source and supports developing Java desktop
applications.

Ö. Yılmaz / A Navigation Framework with Map Support for Developing Desktop Applications

419

Table 1. Comparison of EgeNav with other related work

Map

Support
Navigation

Support
Path

Finding

Custom
Server

Support

Caching
of Maps

Java
Desktop
Support

Open
Source

MapPanel Yes No No No Yes Yes Yes
JXMapViewer2 Yes No No Yes Yes Yes Yes

osmdroid Yes No No Yes Yes No Yes
skobbler Yes Yes Yes No Yes No No
EgeNav Yes Yes Yes Yes Yes Yes Yes

Osmdroid [32] is an open source replacement for
Android's MapView class. Basically, it is a view which
displays a map. It supports basic operations such as
browsing the map, zooming in and out, etc. It is
designed for use in Android applications and does not
support Java desktop applications. As a map provider
it uses OpenStreetMap, but can be extended to
support another map server. Osmdroid lacks
navigation, path finding and directions support.

Skobbler [33] provides a SDK (Software Development
Kit) for developing software with map and navigation
capabilities based on OpenStreetMap. Skobbler
supports showing maps, navigation, path finding and
directions support features. It only supports
OpenStreetMap and does not support other map
servers. It is aimed at developing Android and web
applications, but it does not support Java desktop
applications. It is a commercial product and is not
open source.

In EgeNav, getting maps, navigation support, finding
paths and getting direction support are integrated in
a single framework. Google Static Maps [11] is used
for providing maps and Google Directions API [11] is
used for path finding. Custom map and direction
servers are supported by inheritance. Downloaded
map images are optionally cached for later use
similar to the all of the other related work. EgeNav
also supports different map servers. It is an open
source project and its usage is free of any charge or
fee. As a result, EgeNav is novel in terms of these
mentioned features over the previous related work.

3. EgeNav

At the present time, a navigation framework should
be able to provide map and navigation support to its
users. The user should be able to zoom in and out,
change map type and drag map to explore new
regions. By navigation support, navigation
information such as speed, average speed, heading
direction, time elapsed, traveled distance, and etc. is
implied. It is best these information are calculated
and displayed to the user visually over a map as the
user moves. This can enhance the comprehension of
the current situation as the user's location changes
continuously.

One of the alternatives for sensing location is Global
Positioning System (GPS). It is a very accurate and
successful outdoor positioning system. GPS includes

24 satellites plus three redundant backups orbiting
around the earth. Inexpensive GPS receivers can
calculate its position utilizing these satellites with an
accuracy of 10 meters for approximately 95 percent
of measurements. More expensive units can reach an
accuracy of 1 to 3 meters 99 percent of the time. GPS
can be used anywhere in the world without any fees
for free [34, 35].

Path finding services, for providing assistance going
from one location to a destination location, should
also be included in a navigation framework. There are
many GPS navigation devices in the commercial
market. Today, most of the smart phones come with a
built-in GPS receiver [36]. These devices are used
widely and they provide path finding and routing
services. They also provide turn-by-turn navigation
directions to a human in charge of a vehicle via text
or speech. Therefore, nowadays a navigation
framework cannot be thought without path finding.

In a navigation framework, if the maps are to be
downloaded over a network, then a caching strategy
should be employed to minimize the communication
costs. This strategy reduces costs by constructing
new maps from the previously downloaded maps.
This will reduce the network costs when the user
passes from the same locations a second time. For
example, a person, who goes to work from home
every day and vice versa, would benefit from this.

EgeNav framework is developed with these
previously mentioned requirements in mind and it
conforms fully to these requirements. After
implementation, the EgeNav framework is tested
using JUnit and discovered errors, faults and bugs are
corrected. In this section, EgeNav framework is
described in detail. Subsequent subsections of this
section will describe the system architecture, map
provider, path finding and map caching components
in detail.

3.1. System architecture

The infrastructure of EgeNav is depicted in Figure 1.
EgeNav consists of map provider, path finding, map
caching, navigation, visual (GUI), and text-to-speech
components. Each component consists of many
classes. Map provider component provides maps by
downloading map images from external URL-based
map servers. The map caching component is used by
map provider component and it caches downloaded

Ö. Yılmaz / A Navigation Framework with Map Support for Developing Desktop Applications

420

maps for later use to minimize network costs. The
use of map caching component is optional.
Constructing new maps by partially combining
previously cached maps are supported.

EgeNav

External map

service

External

direction

service

Map caching

component

Map provider

component

Navigation

component

Visual

components

Text-to-

Speech

component

Path finding components

External

path

finding

Image-

based path

finding

Audio

instructions

maps

Low level

navigation

data

Path

finding

mapsmaps

Map

parameters

Map

images Direction

parameters

Directions

in JSON

format

High level

navigation

information

Figure 1. System architecture of EgeNav.

The path finding component provides information
and instructions for going from one location to a
destination location. It consists of external path
finding and image-based path finding sub-
components. Similar to the map provider component,
external path finding subcomponent gets directions
from URL-based external direction services. Image-
based path finding subcomponent provides direction
assistance by applying a modified flood fill algorithm
on the map images. Turning points, road junctions
and textual direction instructions are extracted.
Navigation component is responsible for storing
navigation history (traveled waypoints) and
computing navigational information such as speed,
average speed, heading direction, time elapsed, and
traveled distance.

Visual components consist of the map panel and the
navigation information panel. These panels are Java
Swing components which are compatible with other
Java Swing visual components. The map panel class
provides functionalities such as showing maps, path
finding, presenting audio, visual and textual
instructions for path finding, storing navigation
history, showing navigation information, and
dragging map by mouse to explore other regions. To
provide these functionalities, the map panel uses map
provider, navigation, path finding, map caching and
text-to-speech components. The navigation
information panel can be used for showing navigation
information such as speed, average speed, heading
direction, time elapsed and total traveled distance.
The navigation information panel is updated
continuously by the map panel as the navigation
information changes.

In order to convert text to speech, FreeTTS [37]
library is utilized in the text-to-speech component.

This component is used for speaking textual path
finding instructions by a robotic voice.

3.2. Map provider component

In EgeNav, the map provider component supports the
construction of map URLs and the downloading of
map images. Once downloaded, maps can be shown
to the user in map panel which is also part of the
framework. Maps can be browsed by dragging the
mouse, changing zoom level, and map type. Maps are
obtained from map servers as image files through
HTTP requests. EgeNav directly supports Google
Static Maps (GSM) as the map service, and it can be
extended to support any map server through
inheritance, because it is object oriented. The
developers construct URLs by just calling related
methods of the MapURL class, and they don't need to
worry about the URL string and syntax rules. If
Google Static Maps is used, then there will be no need
to build a map server. In Figure 2, an example GSM
map URL composed of several parts is shown.

http://maps.googleapis.com/maps/api/staticmap?

center=40.0,30.0&zoom=7&size=500x500&format=png&maptype=hybrid

Middle URL

center

coordinates

zoom

level

image

size

image

format

map type

Figure 2. A map URL.

3.3. Path finding component

The path finding component is used to assist users
with direction information for going from one
location to a destination location. The user can be
assisted either visually by marking the path on the
map or by providing turn-by-turn navigation
directions via text or speech.

For path finding and getting directions support, two
different approaches are used in EgeNav. These
approaches are compatible by inheritance, and they
share the same super class. One of these approaches
is getting path finding service from an external
directions server, and it is similar to getting maps
from map servers. By default, Google Directions
service is used for getting external directions
support, but EgeNav can be extended to support
other path finding services. When Google Directions
service is used, the results are retrieved in JSON
(JavaScript Object Notation) [38] format, and in order
to process the results, an open source Java library,
Gson API [39] is used.

The other approach to path finding is using image
processing techniques. For this approach, the term
“image-based path finding” is used throughout the
text. The map image is processed to find a route
between two given points on a map image, and no

Ö. Yılmaz / A Navigation Framework with Map Support for Developing Desktop Applications

421

external service is used for this purpose. One
restriction is that the paths on the map image must
be visible and without text labels.

A modified flood fill algorithm, which is basically a
breadth-first search, is used for image-based path
finding. Flood fill algorithm is mainly used for
painting an entire bounded area with a color. Flood
fill is used in implementation of the bucket paint tool
in some graphical editing software. Flood fill
algorithm starts with a pixel, and paints it to the
target color. Then painted pixel's adjacent pixels
(north, west, south and east directions) are visited,

and if necessary they are painted. This operation
continues recursively until all of the pixels in the area
are painted to the target color.

The main idea behind our modified flood fill
algorithm used in EgeNav is recording the
coordinates of the visited points. When the history is
recorded in a flood fill algorithm, we get a path
finding algorithm. Pseudocode for this path finding
algorithm is shown in Figure 3.

Flood fill algorithm can be implemented using
recursion as well as using a stack. Since recursion

Figure 3. Pseudocode for the modified flood fill algorithm.

Input: image to be processed (img), initial location (init), destination location (dest), and map color model (mcm)
Output: A path consisting of points for going from initial location to destination location

FUNCTION findPath(img, init, dest, mcm)

x = dest.x;

y = dest.y;

target_color=img.getRGB(x , y)

IF (!mcm.isOnTrack(target_color)) THEN //destination is not on a path

return null;

END IF

pencil=mcm.getABorderColor() //get a non-track (border) color

path.add(init)

paths.add(path)

WHILE (NOT paths.isEmpty())

temp=paths.firstElement()

x2 = temp.getLastX()

y2 = temp.getLastY()

img.setRGB(x2, y2, pencil);

IF ((x2 == x) AND (y2 == y)) THEN

return temp //A path is found

ELSE

IF (x2 > 0 AND mcm.isOnTrack(img.getRGB(x2 - 1, y2))) THEN

img.setRGB(x2 - 1, y2, pencil)

Path p = temp.clone()

p.add(new Point(x2 - 1, y2))

paths.add(p)

END IF

IF (y2 > 0 AND mcm.isOnTrack(img.getRGB(x2, y2 - 1))) THEN

img.setRGB(x2, y2 - 1, pencil)

Path p = temp.clone()

p.add(new Point(x2, y2 - 1))

paths.add(p)

END IF

IF (x2 < img.getWidth() - 1 AND mcm.isOnTrack(img.getRGB(x2 + 1, y2))) THEN

img.setRGB(x2 + 1, y2, pencil)

Path p = temp.clone()

p.add(new Point(x2 + 1, y2))

paths.add(p)

END IF

IF (y2 < img.getHeight() - 1 AND mcm.isOnTrack(img.getRGB(x2, y2 + 1))) THEN

img.setRGB(x2, y2 + 1, pencil)

Path p = temp.clone()

p.add(new Point(x2, y2 + 1))

paths.add(p)

END IF

END IF

paths.remove(0)

END WHILE

return null //Path not found

END FUNCTION

Ö. Yılmaz / A Navigation Framework with Map Support for Developing Desktop Applications

422

might cause stack overflow error in large areas,
instead of recursion, a queue data structure is used in
this implementation to overcome possible stack
overflow errors. If there is any, the path that will be
returned by this algorithm is a shortest path, because
the algorithm starts from a point (center) and orderly
visits adjacent points in the west, east, north and
south directions, thus expands from center to
outwards in a rhombic pattern.

The application of the path finding algorithm given in
Figure 3 to a map image, is shown in Figure 4, where
a route between two selected points is found and
painted in red.

Figure 4. The application of the path finding algorithm to a
map image.

In addition to path finding, to make a detailed
description of the situation, road junctions and
turning points are also extracted by processing map
images. Then textual instructions such as “after 200
m. turn right” are generated from this data. The steps
to extract junctions and turning points are illustrated
in Figure 5. The first step is finding a path between
two points with the modified flood fill algorithm. This
path consists of a set of adjacent points. In
normalization step, this path is converted to a path
consisting of lines. In this conversion, the idea is to
remove unnecessary points by checking whether it is
possible to travel to a reference point from that point.
The points between these two points are unnecessary
and are removed. Now we have converted our path to
a line path. Then the line path is centered using
vertical and horizontal threshold values. These
threshold values are in pixels and can be detected
automatically by EgeNav framework.

After the centering process, junctions are extracted
by walking on the line path pixel by pixel and
applying half circle search. In half circle search, while

looking at the heading direction, 180 degrees of field
of view is examined to see if there is any obstacle
closer than a predetermined threshold value. If there
is no obstacle between two angles' values, then
average of these two angles denote a possible
direction. If a point has only one possible direction,
then this point is not a junction. To be marked as a
junction, a point should have at least two possible
directions.

Path finding with

the modified flood

fill algorithm

Normalization

Finding path

junctions by half

circle search

Centering

Finding turning

points by calculating

path angles

2D map

image

Road

junctions

Turning

points

Figure 5. Process for extraction of road junctions and
turning points.

In this approach, while walking on the line pixel by
pixel for a junction point, several consequent points
might be marked as junction points, because of the
width of the road. In this case, middle one of the
repeating points is stored, and the others are
eliminated to get only one junction point.

Turning points are extracted by examining lines in
the path and computing angles between the lines.
Turning points are also used for generating basic text
direction instructions such as “turn right after 200
meters” for the user.

The application of path finding, normalization, and
centering steps of the extraction process shown in
Figure 5 to a map image is shown in Figure 6. The
path is shown in red color. The map image is the
same image as the image in Figure 4, but its
unnecessary parts are cropped.

To demonstrate EgeNav's image-based path finding
capabilities, a demonstration application is
implemented using EgeNav framework. This
demonstration application is available as an
executable jar file (Ege-Nav_Demo2.zip) from
https://drive.google.com/drive/folders/0B0jxyO3H3
yKHX19GTTJQVEdkbm8. A screen capture of this
demonstration application is shown in Figure 7. The
right panel shows the map image. The image file can
be changed from the combo box above the image. All
of the image files in the application directory are
listed in the combo box. The application finds a path
between origin and destination points as well as

https://drive.google.com/drive/folders/0B0jxyO3H3yKHX19GTTJQVEdkbm8
https://drive.google.com/drive/folders/0B0jxyO3H3yKHX19GTTJQVEdkbm8

Ö. Yılmaz / A Navigation Framework with Map Support for Developing Desktop Applications

423

(a)

(b)

(c)

Figure 6. Path a) after path finding step b) after
normalization step c) after centering step.

junction points and turning points on this path. The
origin and destination points are selected by clicking
on the white area of the map. The left panel shows
information about the found path. Origin, destination,

and auto-detected horizontal and vertical threshold
values are shown to the user. Also the road junctions
and turning points on the path are computed and
listed on separate tables. The junctions and turning
points can be viewed on the map by just clicking on a
row of the table. The junction and turning points are
indicated by transparent circles painted in blue and
green respectively. The first junction and the first
turning point are selected and shown in this figure.

3.4. Map caching

EgeNav provides caching support for map images as
mentioned earlier. The aim is to store downloaded
maps in a permanent storage and to retrieve, as
needed, from permanent memory without
downloading it over the Internet again. By doing this,
network costs are reduced, especially if the user
passes from same locations (for example going to
work from home and vice versa) often.

When map caching is used, map cache object is asked
for maps. If the requested map is found in the cache,
it is acquired from local storage and returned without
downloading it over the Internet. If the map is not
found, then entire map image or missing parts are
downloaded and stored in the cache. A later request
to the same map is replied by reading the local image
file(s).

When map caching is used in EgeNav, maps are
downloaded as tiles to form a whole, and as a result,
they improve performance. Also, new maps can be
obtained by combining cached maps. For example: if
a request comes for a map that is partly contained in
the cache, then only the adjacent missing tiles are to
be downloaded. Then the requested map is
constructed by composing all of the necessary tiles.
To illustrate this feature, suppose the situation in
Figure 8. The user is at point P1, so map tile 1 is
downloaded and is currently being shown to the user.
The user moves to P2, and we need to get the map
denoted by the red dotted lines in the figure. In this
situation, tiles adjacent to tile 1, namely 2, 3, and 4
are downloaded. New map is constructed by using
tiles 1 - 4. From now on, any map spanning these four
tiles can be composed without downloading anything.

Caching is performed according to a strategy. If the
downloaded maps are never deleted, then as the time
passes, size of the stored data will continuously
increase. In EgeNav, limits for map cache can be
specified. This limit might be a number limit, a time
limit, or both. By setting a number limit, the number
of stored maps can be limited. The time limit is
intended to limit the maximum storage time of an
image file, which is required by some map servers.
For example, GSM time limit is 30 days [40]. If a map
is downloaded and stored; after 30 days it should be
deleted.

Ö. Yılmaz / A Navigation Framework with Map Support for Developing Desktop Applications

424

Figure 7. Screen capture of the demonstration application showing EgeNav’s image-based path finding capabilities.

Every map is assigned a usage count which is
incremented when that map is requested. If there is a
number limit and this limit is exceeded, then map
with the least usage count is deleted. If there is more
than one map with same usage counts, then the
oldest map is deleted. Time limit is also checked and
if the time limit is exceeded, then one or more map
images are deleted to obey the time limits.

Two types of approaches used for storing cache
information are memory stored map cache and
database stored map cache. By default, these two
approaches are supported by EgeNav, allowing
developer to decide which approach to use according
to his/her needs.

1 2

34

P1

P2

Figure 8. Map caching in EgeNav.

In memory stored cache, cache information is read
from a file in the hard disk and transferred to main
memory when the program starts. In main memory,
information is stored in a dynamic list. During
program execution, this dynamic list is used and
manipulated. When the program ends, it is saved
back to the file in the hard disk.

In database stored cache, cache information is stored
in a database file. Modifications are reflected on the
fly to the database file. For the database engine,
SQLite [41] library is used, because it is serverless,
file-based, and lightweight.

4. Demonstration Application

In this section, another demonstration application is
introduced to show most of the features of EgeNav.
The demonstration application is available as an
executable jar file (EgeNav_Demo1.zip) from
https://drive.google.com/drive/folders/0B0jxyO3H3
yKHX19GTTJQVEdkbm8. A screen capture of this
application is shown in Figure 9. The demonstration
application provides changing map type and zoom
level, moving from one location to another location,
getting navigation support (path finding) for going
from one location to another location and simulating
a journey passing by several locations. Google Maps
and Google Directions services are used through
EgeNav framework in this application.

The user can change map type and zoom level from
the map properties panel which is located in the
upper left corner. The user can move the map to view
other parts of the map by dragging the map image.

https://drive.google.com/drive/folders/0B0jxyO3H3yKHX19GTTJQVEdkbm8
https://drive.google.com/drive/folders/0B0jxyO3H3yKHX19GTTJQVEdkbm8

Ö. Yılmaz / A Navigation Framework with Map Support for Developing Desktop Applications

425

Right to the map properties panel is the navigate
panel where the user can enter latitude and longitude
values of a location in decimal format. When the user
presses the Go button, the user's current location is
updated, and this new location is added to navigated
points list as well as the computed navigation
information being shown to the user on the
navigation information panel. The map is also
updated to reflect the new location, such as the
navigated path is shown in blue and the heading
direction is shown by a blue arrow, as can be seen in
Figure 9. If the user presses the Reset button, then
the navigation history is cleared.

The user can get direction support from his/her
current location to a destination location by using the
navigation support panel at the upper right corner of
the frame. In order to get direction support, the user
should enter destination location coordinates or an
address and then press Get support button. Note that
the precondition necessary here is that there should
be at least one added navigation point by using the
navigate panel. If a path is found, then this path is
shown in red color on the map to the user as shown
in Figure 9. If the user is following the red path as in
Figure 9, then textual direction instructions are
shown in navigation information panel and are also
read out loud by a robotic voice.

The demonstration application also enables making
simulations, and the goal is to simulate getting
location coordinates from a GPS receiver. Latitude
and longitude values of the passed waypoints and
time difference in milliseconds between this point
and the previous point are defined in a text file as
comma separated values. To start a simulation, the
name of the simulation file should be entered, and
then the Start simulation button should be pressed.
The demonstration application comes with a ready to
use simulation file, and also when the application
starts, the coordinates pre-entered into the Navigate
and the Navigation support panels are compatible
with this simulation file to demonstrate full
capabilities of the demonstration application. To see
this full demonstration with the pre-entered data, the
user first moves to the specific location by pressing
the Go button in the navigate panel. Next the user
gets direction support by pressing the Get support
button in the navigation support panel and finally
presses the Start simulation button to start the
simulation. The result of these actions is shown in
Figure 9. The red line on the map shows the path that
should be followed to arrive at the destination
location. The blue line shows the followed path by the
user, and it is formed by connecting the navigation
points defined in the simulation file. The blue arrow
shows the heading direction.

Figure 9. Screen capture of the demonstration navigation application.

Ö. Yılmaz / A Navigation Framework with Map Support for Developing Desktop Applications

426

Figure 9 shows the data for the moment 15.6 seconds
after the simulation is started. Navigation
information is shown on the navigation information
panel located on the left side of the map panel.
Latitude, longitude, heading direction, speed, total
distance, elapsed time, average speed, and
instructions for path finding are shown to the user in
the navigation information panel. Instructions for
path finding are also read out loud by a robotic voice.

Simulation can be a real time simulation or a non-real
time simulation, depending upon checking or
unchecking the Real time simulation check box. In
real time simulation, time differences between
location points are taken into consideration, while in
non-real time simulation, these differences are
ignored. Non-real time simulation is useful if the
journey is too long, because the user does not have to
wait for a long time. Feeding location data to
EgeNav's navigation component is accomplished by a
thread which reads the data from the simulation file
and forwards latitude and longitude values to the
EgeNav's navigation component. If the simulation is
real time, then the thread considers the time
difference and waits for the time difference before
feeding the location data.

5. Discussion and Conclusion

Location-awareness in software applications has
become an important matter with the widespread
use of mobile devices. The ability to provide map and
navigation support is an important aspect of location-
awareness. Providing maps and navigational
information to the user can enrich the notion of
location-awareness.

In this paper, EgeNav, which is an easy to use
navigation framework, is presented. Until now, there
have been no open source software frameworks that
have provided navigation and map support for the
Java programming language in an integrated manner.
By EgeNav, this shortfall can be overcome. By using
EgeNav, software developers will be able to add map,
direction, and navigation support to their software
applications.

In the scope of this study, a generic map provider
infrastructure to download maps, as image files from
map servers according to some given properties such
as location, size, zoom level, map type, etc., is
developed. Then, to enable the use of Google maps,
this generic component is extended to support
Google Static Maps.

To minimize network costs for downloading map
images over the Internet, a caching strategy is used.
This strategy is implemented in the map caching
component of EgeNav. Composition of new maps by
combining previously downloaded maps are also

possible. Maps are downloaded as adjacent tiles in
order not to download maps with overlapping parts
over and over again and to increase efficiency. If a
map is needed which spans multiple tiles, it can be
composed from related tiles without downloading
anything.

For path finding and getting direction support, a
generic path finding infrastructure is implemented.
This generic infrastructure is extended to support
two types of path finding. One of them is URL-based
path finding, which uses an external path finding
service. The other type is image-based path finding
where the map image is processed to find a route
between two points. URL-based path finding
component is further extended to support Google
Directions service. Path finding components are
integrated with the map provider component, and by
using EgeNav's path finding capabilities, it is possible
to find a route between two points, show this route
on map and provide textual and audio descriptive
instructions.

EgeNav also provides navigation services. Navigation
history can be recorded, and waypoints can be shown
on maps. Speed, average speed, heading direction,
elapsed time, and traveled distance are computed.
EgeNav framework also includes ready to use GUI
components for the Java programming language.
These components are derived from Java Swing
components and are fully compatible with the Swing
components. These components include map panel
and navigation information panel. Map panel works
in collaboration with the map provider, navigation,
path finding and map caching components and shows
map images. Navigation information such as passed
waypoints, heading direction and direction support
can be shown on the maps. Navigation information
panel shows navigation information composed of
speed, average speed, headed direction, elapsed time
and traveled distance. Navigation information panel
is updated automatically by the map panel, as the
navigation information changes.

To demonstrate the capabilities of EgeNav
framework, two demonstration applications are
implemented by using EgeNav framework and these
applications are described in detail. The first
application described in Section 3.3 shows raster
image-based path finding capabilities of EgeNav. By
scanning the map image, a valid route is found and
road junction points, turning points and textual
instructions for path finding are extracted from the
map image. Second application shows getting maps
and direction support from external services while it
facilitates simulating a journey passing from several
waypoints.

As a future work, it is planned to prepare detailed
documentation of EgeNav for software developers.

Ö. Yılmaz / A Navigation Framework with Map Support for Developing Desktop Applications

427

Acknowledgment

This project was partially supported by Ege
University’s Scientific Research Project program
under grant number 12-MUH-001.

References

[1] Chen, G., Kotz, D. 2000. A Survey of Context-
Aware Mobile Computing Research (Report No.
TR2000-381). Dartmouth College, USA.

[2] Dearman, D., Inkpen, K., Truong, K. 2010. Mobile
Map Interactions during a Rendezvous:
Exploring the Implications of Automation.
Personal and Ubiquitous Computing, 14(1), 1-
13.

[3] Becker, C., Dürr, F. 2005. On Location Models for
Ubiquitous Computing. Personal and Ubiquitous
Computing, 9(1), 20-31.

[4] Rao, B., Minakakis, L. 2003. Evolution of Mobile
Location-Based Services. Communications of the
ACM, 46(12), 61-65.

[5] Ficco, M., Pietrantuono, R., Russo, S. 2010.
Supporting Ubiquitous Location Information in
Interworking 3G and Wireless Networks.
Communications of the ACM, 53(11), 116-123.

[6] Ficco, M., Palmieri, F., Castiglione, A. 2014.
Hybrid Indoor and Outdoor Location Services
for New Generation Mobile Terminals. Personal
and Ubiquitous Computing, 18(2), 271-285.

[7] Pitney Bowes Software. MapInfo MapXtreme
Java Edition Datasheet.
http://www.pbinsight.com/files/resource-
library/resource-files/mapxtremejava-data-
sheet.pdf (Date Accessed: 15.02.2018).

[8] Google Inc. Google Maps JavaScript API v3.
http://developers.google.com/maps/document
ation/javascript (Date Accessed: 15.02.2018).

[9] Yahoo Inc. Yahoo! Maps Web Services.
http://developer.yahoo.com/maps/ (Date
Accessed: 15.02.2018).

[10] Yılmaz O. EgeNav - A Simple Navigation
Framework.
https://github.com/ozgunyilmaz/EgeNav (Date
Accessed: 15.02.2018).

[11] Google Inc. Google Static Maps API V2 Developer
Guide.
https://developers.google.com/maps/document
ation/staticmaps/ (Date Accessed: 15.02.2018).

[12] Google Inc. Google Maps Directions API.
https://developers.google.com/maps/document
ation/directions/ (Date Accessed: 15.02.2018).

[13] Microsoft Corporation. Bing Maps Developer
Resources. http://www.microsoft.com/maps/
(Date Accessed: 15.02.2018).

[14] OpenStreetMap Foundation. OpenStreetMap.
http://www.openstreetmap.org/ (Date
Accessed: 15.02.2018).

[15] Zielstra, D., Zipf, A. 2010. A Comparative Study of
Proprietary Geodata and Volunteered
Geographic Information for Germany”. 13th
AGILE International Conference on Geographic
Information Science, Guimarães, Portugal.

[16] Haklay, M., Weber, P. 2008. OpenStreetMap:
User-Generated Street Maps. IEEE Pervasive
Computing, 7(4), 12-18.

[17] Zhou, Q. 2018. Exploring the relationship
between density and completeness of urban
building data in OpenStreetMap for quality
estimation. International Journal of
Geographical Information Science, 32(2), 257-
281.

[18] Rickles, P., Ellul, C., Haklay, M. 2017. A suggested
framework and guidelines for learning GIS in
interdisciplinary research. Geo: Geography and
Environment, 4(2), e00046.

[19] Mobasheri, A. 2017. A rule-based spatial
reasoning approach for OpenStreetMap data
quality enrichment; case study of routing and
navigation. Sensors,17(11), 2498.

[20] Haklay, M. 2010. How Good Is Volunteered
Geographical Information? A Comparative Study
of OpenStreetMap and Ordnance Survey
Datasets. Environment and Planning B: Planning
and Design, 37(4), 682-703.

[21] Ludwig, I., Voss, A., Krause-Traudes, M. A.
Comparison of the Street Networks of Navteq
and OSM in Germany. Pp. 65-84. Geertman, S.,
Reinhardt, W., Toppen, F., ed. 2011. Advancing
Geoinformation Science for a Changing World,
Springer, Berlin, Heidelberg.

[22] Neis, P., Zielstra, D., Zipf, A. 2011. The Street
Network Evolution of Crowdsourced Maps:
OpenStreetMap in Germany 2007-2011. Future
Internet, 4(1), 1-21.

[23] Hayakawa, T., Imi, Y., Ito, T. 2012. Analysis of
Quality of Data in OpenStreetMap. 2012 IEEE
14th International Conference on Commerce
and Enterprise Computing. September 9-11,
Hangzhou, China.

[24] Wang, M., Li, Q., Hu, Q., Zhou, M. 2013. Quality
Analysis of Open Street Map Data. 8th
International Symposium on Spatial Data
Quality, May 30 - June 1, Hong Kong.

[25] Sehra, S. S., Singh, J., Rai, H. S. 2014. A Systematic
Study of OpenStreetMap Data Quality
Assessment. 2014 11th International Conference
on Information Technology: New Generations,
April 7-9, Las Vegas, USA.

http://www.pbinsight.com/files/resource-library/resource-files/mapxtremejava-data-sheet.pdf
http://www.pbinsight.com/files/resource-library/resource-files/mapxtremejava-data-sheet.pdf
http://www.pbinsight.com/files/resource-library/resource-files/mapxtremejava-data-sheet.pdf
http://developers.google.com/maps/documentation/javascript
http://developers.google.com/maps/documentation/javascript
http://developer.yahoo.com/maps/
https://github.com/ozgunyilmaz/EgeNav
https://developers.google.com/maps/documentation/staticmaps/
https://developers.google.com/maps/documentation/staticmaps/
https://developers.google.com/maps/documentation/directions/
https://developers.google.com/maps/documentation/directions/
http://www.microsoft.com/maps/
http://www.openstreetmap.org/

Ö. Yılmaz / A Navigation Framework with Map Support for Developing Desktop Applications

428

[26] Wan, T., Lu, H., Lu, Q., Luo, N. 2017. Classification
of High-Resolution Remote-Sensing Image Using
OpenStreetMap Information. IEEE Geoscience
and Remote Sensing Letters, 14(12), 2305-2309.

[27] TeamDev.JxBrowser.http://www.teamdev.com/
jxbrowser (Date Accessed: 15.02.2018).

[28] Oracle. JavaFX - The Rich Client Platform.
http://www.oracle.com/technetwork/java/java
se/overview/javafx-overview-2158620.html
(Date Accessed: 15.02.2018).

[29] Rutz S. Java Swing MapViewer. http://mappanel
.sourceforge.net/(Date Accessed: 15.02.2018).

[30] OpenStreetMap Foundation. OpenStreetMap
About. http://www.openstreetmap.org/about
(Date Accessed: 15.02.2018).

[31] Steiger M. JXMapViewer2. https://github.com
/msteiger/jxmapviewer2 (Date Accessed:
15.02.2018).

[32] Osmdroid. OpenStreetMap-Tools for Android.
https://github.com/osmdroid/osmdroid (Date
Accessed: 15.02.2018).

[33] Skobbler. Smart mobile technology based on
OpenStreetMap.http://developer.skobbler.com/
(Date Accessed: 15.02.2018).

[34] Hightower, J., Borriello, G. 2001. Location

Systems for Ubiquitous Computing. Computer,
34(8), 57-66.

[35] Hardegger, M., Roggen, D., Tröster, G. 2015. 3D
ActionSLAM: Wearable Person Tracking in
Multi-Floor Environments. Personal and
Ubiquitous Computing, 19(1), 123-141.

[36] Barkhuus, L., Polichar, V. 2011. Empowerment
through Seamfulness: Smart Phones in Everyday
Life. Personal and Ubiquitous Computing, 15(6),
629-639.

[37] FreeTTS. FreeTTS 1.2.3 - A speech synthesizer
written entirely in the Java programming
language. http://freetts.sourceforge.net/ (Date
Accessed: 15.02.2018).

[38] JSON. Introducing JSON. http://www.json.org/
(Date Accessed: 15.02.2018).

[39] Google. A Java serialization/deserialization
library to convert Java Objects into JSON and
back. https://github.com/google/gson (Date
Accessed: 15.02.2018).

[40] Google. Google Maps/Google Earth APIs Terms
of Service. https://developers.google.com
/maps/terms (Date Accessed: 15.02.2018).

[41] SQLite. About SQLite. http://www.sqlite.org
/about.html (Date Accessed: 15.02.2018).

http://www.teamdev.com/jxbrowser
http://www.teamdev.com/jxbrowser
http://www.oracle.com/technetwork/java/javase/overview/javafx-overview-2158620.html
http://www.oracle.com/technetwork/java/javase/overview/javafx-overview-2158620.html
http://www.openstreetmap.org/about
https://github.com/osmdroid/osmdroid
http://developer.skobbler.com/
http://freetts.sourceforge.net/
http://www.json.org/
https://github.com/google/gson

