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Abstract: In this paper, we studied an Adaptive Nadaraya Watson kernel estimator to
check the bias effect on both side of the discontinuity in the presence of jump size for
regression discontinuity model. We have proposed the modified Adaptive Nadaraya
Watson kernel estimator and derived its normality and variance. We have also compared
with the asymptotic normality of the Mean Integrated Square Error (MISE) of Adaptive
Nadaraya Watson kernel estimator and Nadaraya Watson kernel estimator. The results
obtained from the simulation study have showed that Adaptive Nadaraya Watson estimator
has better performance than the Nadaraya Watson Kernel estimator.

Sıçrama Büyüklüğünde Süreksizlik Olması Durumunda Uyarlanabilir Nadaraya-Watson
Kernel Tahmin Edicisi

Anahtar Kelimeler
Uyarlanabilir Nadaraya
Watson,
Sıçrama büyüklüğü,
Butunlesik Hata Kareleri
Ortalamasi,
Yakınsama oranı

Özet: Bu çalışmada, süreksiz regresyon modeli için sıçrama büyüklüğünün varlığında
süreksizliğin her iki tarafı üzerine yan etkisini kontrol etmek için Uyarlanabilir Nadaraya
Watson kernel tahmin edicisi çalıştık. Modifiye edilmiş Uyarlanabilir Nadaraya Watson
kernel tahmin edicisi önerdik ve bunun normalliği ve varyansını çıkarsadık. Ayni zamanda,
Uyarlanabilir Nadaraya Watson kernel tahmin edicisi ve Nadaraya Watson kernel tahmin
edicilerinin butunlesik hata kareler ortalaması ile karsılaştırma yaptık. Benzetim çalışması
sonucunda Uyarlamalı Nadaraya Watson tahmin edicisinin, Nadaraya Watson tahmin
edicisinden daha iyi performans gösterdiği görüldü.

1. Introduction

Nonparametrics: For last few years, nonparametric
regression has become important tool for data smooth-
ing. Most commonly used estimates of nonparametric
regression functions including kernel estimates based on
smoothness of the regression functions. In many applica-
tions, the function is to be estimated as discontinuities
or threshold points. Gao, et al.[1], for example, when
studying the impact of advertising, the time at which this
action takes place impact could effectively be modeled
by the location of a jump point and the magnitude of the
effect of this action is measured by the jump size. If we
ignore the jump point we make serious error in order
to draw the inference about the processes under study.
Similarly also see Yin [2] for estimating locations of
discontinuity points of the regression function.

Regression discontinuity design becomes one of the useful
designs when there is threshold point in the treatment or
in the probability assignment. The treatment assignment
under the weak smoothness becomes random near the
threshold point. Regression Discontinuity model is

mostly used only for the information that is very close
to threshold point. In Regression Discontinuity model
lacks of smoothness is not only the problem but the size of
discontinuity is also important. It is useful to estimate the
conditional expectation of the boundary points to check
the difference of results given by boundary estimation (see
Porter [3]).

Demir and Toktamis [4] considered Adaptive Nadaraya
Watson kernel estimator to estimate the regression function.
Our paper is also composed of Adaptive Nadaraya Watson
as a jump size instead of Nadaraya Watson. Because the
main drawback of the Nadaraya Watson estimator used
as jump size in regression discontinuity model has poor
asymptotic bias behavior whereas Adaptive Nadaraya
Watson overcomes this problem.

Variance estimation of regression discontinuity was
constructed by Hardle [5]. Pagan and Ullah [6] also gave
the consistent estimation of variance for the left hand limit
i.e. σ2− and right hand limit i.e. σ2+ of the derivatives.
Similarly Silverman [7] gave density of the discontinuity
of the jump size, f0(ū) which can be estimated consistently
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by kernel density estimation.

In this paper, we have proposed Adaptive Nadaraya
Watson kernel estimator for the estimation of σ2+ , σ2−

for jump size in regression discontinuity model. Further,
we have derived the asymptotic properties of σ2+ ,
σ2−. Marginal and hence optimal rate of convergence is
derived theoretically to estimate the treatment effect in
regression discontinuity by using Stone’s [8] definition.
The properties such as MSE, MISE and bias effect on the
left and right hand side of the discontinuity of regression
discontinuity model are also derived. The performance of
proposed regression discontinuity model is compared with
the existing once numerically.

The rest of the paper is organized as follows: Section
2 includes Nadaraya Watson kernel estimator as a jump
size in the regression discontinuity model and technical
lemmas are discussed. In section 3, proposed work based
on Adaptive Nadaraya Watson kernel estimator and its
assumptions are discussed. Simulation study is performed
in Section 4. Real life data is used to see performance of
proposed estimator in Section 5. The derivations of the
Section 3 and Section 4 are available in Appendix .

2. Nadaraya Watson Estimator and Technical Lem-
mas

As the previous work is based on Nadaraya Watson kernel
estimator used as a jump size in regression discontinuity
model. The connection between the regression disconti-
nuity model and the treatment effect have been discussed
in Hahn et al.[9]. Trochim [10] distinguished among the
two dissimilar connections between the Regression Dis-
continuous model, that depends upon the treatment assign-
ment connected with the observed variable. The treatment
assignment given by the indicator variables dε(0,1) are
defined as; {

1 i f u > ū
0 i f u < ū.

where u is observed variable with the known threshold
point u. Let y0 and y1 be the potential outcomes parallel to
the two treatment assignments, and as usual Y = dy1+(1−
d)y0 is the observed outcomes. By using the smoothness
assumption that E( yi

u ) is continuous at u for j = 0,1. So
the expected casual effect of the treatment effect can be
identified at the discontinuity point.

α = lim
u↓ū

E(y�u)− lim
u↑ū

E(y�u) (2.1)

α̂(ū)=
1
n ∑

n
i=1 Kh(ū−Ui)yidi

1
n ∑

n
j=1 Kh(ū−U j)d j

−
1
n ∑

n
i=1 Kh(ū−Ui)yi(1−di)

1
n ∑

n
j=1 Kh(ū−U j)(1−d j)

Following Lammas are useful in obtaining the main results
of our paper (see Porter [3]).

Lemma A1. Suppose the kernel k is bounded,
symmetric, zero outside of a bounded set M
and Lipschitz, and f0 is continuous on N1.

If nh
lnn → ∞, then supxεN0− | f̂+(x) − E ˆf+(x)| =

Op(
√

lnn
nh ),supxεN0+| ˆf−(x)−E ˆf−(u)| = Op

√
lnn
nh , and

supxεN0 | f̂ (x)−E f̂ (x)|= Op(
√

lnn
nh )

Lemma A2. Suppose the kernel k is bounded, sym-
metric, zero outside of a bound set M and Lipschitz,
f0 is a continuous on N1,supxεN1E[|y|2+ξ/x] < ∞

for some ξ > 0 and n
ξ

(2+ξ )h /(lnn) → ∞. The

supxεN0 |r̃(x)−Er̃(x)|= Op(
√

lnn
nh ).

Lemma A3 Suppose the kernel k is a bounded, symmet-
ric, zero outside of a bounded set [−M,M]. On N1, f0 is
continuously differentiable for x 6= x̄, xεN1, and m is con-
tinuous at x̄ with finite right and left hand derivatives. Then
supuε[x̄,x̄+Mh]|Er̃(x)− r(x)|= O(h)

3. Proposed Estimator and Assumptions

The main purpose of our study is to minimize the bias
effect on the left and right side of the discontinuity by using
Adaptive Nadaraya Watson Kernel estimator as a jump size.
We also obtained the optimal rate of convergence through
simulation study.
Consider the random-design regression model given by;

Yi = m(ui)+ εi (3.1)

where m is an unknown regression function with compact
interval [0,1] and εi is the observation error which is inde-
pendently identically distributed with mean 0 and variance
σ2. In the discontinuity model we have a cut off point ex-
isted for m function whereas cut off point (ū) is 0 < ū < 1.
Usually regression function is defined as;

y = m(u)+αd + ε

and
0 < u < 1 (3.2)

Here, m(u) represents a continuous function defined on
[0,1]. α=jump size and can be defined as

α(ū) = m2(ū)−m1(ū) (3.3)

where ū= jump size at cut off point
Basically the jump size at the possible cut off point ū is
m1(ū) = limu↓ū m(u) is at the right of the discontinuity
curve and m2(ū) = limu↑ū m(u) is at the left side of the
discontinuity curve.

α = E[y1− y0/u]

= E[y/ū]−E[y0/ū]

= lim
u↓ū

E[y1/ū]− lim
u↑ū

E[y0/ū]

lim
u↓ū

E[y/ū]− lim
u↑ū

E[y/ū]

where

α̂(ū)=
1
n ∑

n
i=1 Khλ ∗i

(ū−Ui)yidi
1
n ∑

n
j=1 Khλ ∗j

(ū−U j)d j
−

1
n ∑

n
i=1 Khλ ∗i

(ū−Ui)yi(1−di)

1
n ∑

n
j=1 Khλ ∗j

(ū−U j)(1−d j)
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λ
∗
i = [

f̂ (u)
ū

]−0.5

and d = 1(ui ≥ ū), I(A) is an indicator for event A. ui
represents a random variable and d is an indicator whereas
hλ ∗i shows adaptive bandwidth that is used to control the
size of local neighborhood on average. First term in the
α̂(ū) is a weighted average depends on the distance from
the discontinuity (ū−Ui) whereas α is the jump size of
the discontinuity model.
The cut-off point ū provides a chance to observe the aver-
age difference in the potential outcomes from the points
on either side of the discontinuity. The main point of our
estimation is that in all cases, the casual effect is found out
from any of the expression that is only involve in the size
of the discontinuity in the conditional expectation.
Necessary assumptions required to derive the limiting
distribution for the estimator are:

Assumption 1. Choice for the kernel estimator:
a) Kernel estimator is symmetrically bounded, Lipchitz

function and bounded .∫ +∞

−∞

k(v)dv = 1

b) For any positive integer,
∫

k(v)v jdv= 0 1< j < r−1
and r ≥ 3
Let’s suppose qo be the any marginal density function of y
and m(y) denotes the conditional expectation of z given y
minus discontinuity. So, m(y) = E(z/y)−α1[y≥ ȳ].

Assumption 2.
a) Smoothness on any side of the discontinuity for com-

pact interval M of ȳ is with M ⊂ (ȳ), but it allows for
unequal left and right side derivatives of m. Let’s qo is lq
times continuously differentiable and it is bounded away
from zero, m(y) is lm times continuously differentiable for
ȳ ∈M/ȳ.

b) Results of the limiting distribution have no effect
on the Adaptive Nadaraya Watson estimator, but play
an important role in the asymptotic biasness of the
subsequent estimator. Whereas left and right hand side
of the discontinuity of m to order lq are equal at cut off
point(ȳ).

Assumption 3.
a)

E(ε/(y,d)) = 0

b) σ2(y) = E(ε2/y) is continuous for y 6= (ȳ) and left
and right hand side of the limits exist at ȳ.
c) For some ξ > 0,E(|ε|2+ξ y) is uniformly bounded in a

compact interval M.
d) The marginal density f (y) of y is continues on the

compact interval M.
To estimate the Adaptive Nadaraya Watson kernel estima-
tor, we use the estimators f̂r(u) and f̂r(u,y) of the density
function to estimate the regression function. We obtain the
adaptive Nadaraya Watson kernel estimator with varying

bandwidths as follows

m̂ANW (u) =
∫ y f̂r(u,y)

f̂r(u)
dy

=
∑

n
i=1

Yi
λ ∗i

K( u−Ui
λ ∗i

)

∑
n
i=1

1
λ ∗i

K( u−Ui
hλ ∗i

)

λ
∗
i = [

f̂ (Ui)

ū
]−α

and
α = 0.5

This idea is formalized in the following theorem, which is
based on the limiting distribution of the adaptive Nadaraya
Watson estimator at a boundary point.

Theorem 1. By using assumption 1(a), 2(a) and assump-
tion 3 holds lq with any positive integer and lr with any
negative integer. If hλ ∗i → 0,nhλ ∗i →∞ and hλ ∗i

√
nh→ p

where 0≤ p≤ ∞

√
nhλ ∗i (α̂−α)

d−→ (p2k1(0)(m
′+(ū)+m

′−(ū)),4δ0
σ2+(ū)+σ2−(ū)

f0(ū)
)

Remarks.
Observations used in the first and second terms of the
difference defining the α̂ are independent. For Adaptive
Nadaraya Watson estimator at its interior point shows that
its asymptotic bias is written in a form that underscores
its dependence on the rate with adaptive bandwidth ap-
proaches to zero. When p = 0 we are "under smoothness"
and the asymptotic bias is zero. When hλ ∗i ∼ (n−4/5) and,
α̂ achieves its fastest rate of convergence at (n−4/5) than
the asymptotic bias term is considered. From this, we see
that the bias of α̂ is of order o(hλ ∗i ). Whereas, from the
theorem we find that higher-order bias-reducing kernels
do not affect the order of asymptotic bias. Also, left and
right hand derivates of the cut-point are equal or not equal
do not affect the order of the asymptotic bias.

Theorem 2. Suppose Assumption 1(a), 2(a), and 3 with lq

and lm are positive integers and ξ ≥ 2. If
√

nhλ ∗i
lnn → ∞and

α̂ →p α , then δ̂ 2+(ȳ)→p δ 2+(ȳ)and δ̂ 2−(ȳ)→p δ 2−(ȳ).

4. Simulation Study

We have performed practical strategy for Adaptive
Nadaraya Watson and Nadaraya Watson kernel estimator
to provide simulation evidence for finite sample perfor-
mance. Hence our objective is to estimate the discontinuity
at particular point, for that we use unbiased cross valida-
tion which was proposed by Hall and Schucany [11] for the
density estimation. Simulation study is used to compare
the performance of the Nadaraya Watson kernel estimator
and Adaptive Nadaraya Watson kernel estimators. For the
simulation study we consider the regression discontinuity
function;

y = m(u)+αd + ε
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m(u) = 1−ui + exp(−200∗(ui−0.5)2)

α̂(ū)=
1
n ∑

n
i=1 Khλ ∗i

(ū−ui)yidi
1
n ∑

n
j=1 Khλ ∗j

(ū−u j)d j
−

1
n ∑

n
i=1 Khλ ∗i

(ū−ui)yi(1−di)

1
n ∑

n
j=1 Khλ ∗j

(ū−u j)(1−d j)

where, ui is uniformly distributed with interval [0,1]. Har-
dle [5] had given that error term εi is normally distributed
with mean 0 and variance (0.1). We have generated sample
of size 50,100,250,500,1000 for the fixed bandwidth and
adaptive bandwidth. We have used the Epanechnikov and
Gussain kernel density function for the simulation. For
each group of simulation, we have calculated mean square
error (MSE), mean integrated square error(MISE), band-
width and jump size of the proposed model which we have
considered. The number of the replication is 1000 and for
the varying sample sizes.
In the Table 2 Adaptive Bandwidth, Jump Size, MSE
and MISE are minimized as compare to Table 1 as we
increase the sample size and we can also see that the rate
of convergence of Adaptive Nadaraya Watson is faster than
Nadaraya Watson estimator.

5. Real Life Data

Data is taken from Gross Domestic Product, Current Prices.
Values are based upon GDP in national currency converted
to U.S. dollars using market exchange rates (yearly aver-
age). Exchanges rate projections are provided by country
econometrics for the group of other emerging market and
developing countries. Exchanges rates of advanced eco-
nomics are established in the WEO assumptions for each
WEO exercise. The data is summarized in Table3. (Source
of Data:International Monetary Fund, World Economic
Outlook Database, April 2015)

6. Conclusion

In this study, we concluded that the results obtained from
the Adaptive Nadaraya Watson Kernel estimator gives bet-
ter result than the Nadaraya Watson estimator used in dis-
continuity model. We showed it by finding Mean Square
Error and Rate of convergence. From Table 4 and 5 we
can see that the MSE of proposed estimator is less than the
MSE of existing estimator. We can also check the rate of
convergence of proposed Adaptive Nadaraya Watson esti-
mator is faster than existing Nadaraya Watson estimator.
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Appendix

Proof. To estimate the Adaptive Nadaraya Watson estima-
tor we express m(ū) in term of probability density function
pd f f (u,y). As we have

f (x) =
1

nhλ ∗i
K(

u−Ui

hλ ∗i
) (5.1)

whereas;

λ
∗
i = [

f̂ (u)
x̄

]−0.5

Where α is sensitivity parameter which varies between
(0,1) or we can write it as 0<α < 1.Here we take α = 0.5
As, we have

m(ū) = E[Y/U=u] =
∫ +∞

−∞

y f (y/u)dy =
∫ +∞

−∞
y f (u,y)dy∫ +∞

−∞
f (u)du

m̂(ū) =
∫ +∞

−∞
y f̂ (u,y)dy∫ +∞

−∞
f̂ (u)du

=
1

f̂ (u)

∫ +∞

−∞

y f̂ (u,y)dy

=
1

f̂ (u)

∫ +∞

−∞

y
1
n

n

∑
i=1

n

∑
i=1

1
hλ ∗i hλ ∗j

K(
u−Ui

hλ ∗i
)K(

y−Yi

hλ ∗i
)dy

=
1

f̂ (u)

n

∑
i=1

1
nhλ ∗i

k(
u−Ui

hλ ∗i
)
∫ +∞

−∞

y
nhλ ∗i

(
y−Yi

hλ ∗i
)dy

By using the transformation t = (y−Yi)
hλ ∗i

which is given as;

m̂(ū) =
1

f̂ (x)

n

∑
i=1

Yi

nhλ ∗i
k(

u−Ui

hλ ∗i
)
∫
[hλ
∗
i t +uYi]K(t)dt
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Table 1. Nadaraya Watson Estimator with Epanechikov as Density Function
sample size Bandwidth Jump Size MSE MISE Rate Convergence

50 0.144348 0.3080614 0.5195428 0.2859086 0.007906131
100 0.06178708 0.2717062 0.4974971 0.2674444 0.003249796
250 0.01923375 0.2200431 0.4241645 0.2305969 0.00249796
500 0.00564366 0.1728534 0.40447052 0.1905969 0.001243869

1000 0.00307073 0.1471928 0.2975396 0.1605706 0.0003568771

Table 2. Adaptive Nadaraya Watson Estimator with Epanechikov as Density Function
sample size Bandwidth Adaptive (h) Jump Size α̂(ū) MSE MISE Rate Convergence

50 0.09860128 0.01394433 0.2432769 0.4313248 0.2088481 0.01577945
100 0.05908542 0.00373689 0.2408345 0.4048373 0.1945296 0.003941348
250 0.04201298 0.00273689 0.1728505 0.4047029 0.1554121 0.002047676
500 0.0018066 0.0018066 0.1540415 0.3187659 0.12592683 0.001769833

1000 0.02674475 0.0008457432 0.0994501 0.2296714 0.0183539 0.0003615997

By using the property of kernel that is;∫ +∞

−∞

k(v)dv = 1,
∫ +∞

−∞

vk(v)dv = 0

Hence

m̂(ū) =
1

nhλ ∗i

n

∑
i=1

k(
u−Ui

hλ ∗i
)[hλ

∗
i +Yi]

After simplification we have;

=
1

f̂ (u)

n

∑
i=1

1
n

k(
u−Ui

hλ ∗i
)Yi (5.2)

f̂ (x) =
1
n

n

∑
i=1

1
nhλ ∗i

k(
u−Ui

hλ ∗i
)

By replacing in equation (5.1) we have;

λ
∗
i = [

f̂ (u)
x̄

]−0.5

m̂(ū) =
∑

n
i=1

Yi
nhλ ∗i

k( u−Ui
hλ ∗i

)

∑
n
i=1

1
nhλ ∗i

k( u−Ui
hλ ∗i

)

Hence, we obtain the Adaptive Nadaraya Watson kernel
regression estimator as: By simplify we have;

m̂(x̄) =
∑

n
i=1

Yi
nhλ ∗i

k( u−Ui
hλ ∗i

)

∑
n
i=1

1
nλ ∗i

k( u−Ui
hλ ∗i

)
(5.3)

Replacing it in equation (5.3) we have estimated jump size
is

α̂(ū) =
1

nhλ ∗i
∑

n
i=1 Khλ ∗i

(ū−ui)yidi

1
nhλ ∗j

∑
n
j=1 Khλ ∗j

(ū−u j)d j

−
1

nhλ ∗i
∑

n
i=1 Khλ ∗i

(ū−ui)yi(1−di)

1
nhλ ∗j

∑
n
j=1 Khλ ∗j

(ū−u j)(1−d j)

Proof of Theorem 1.
Let q denote a positive generic constant and as we know
M is a compact interval. Let suppose M0 also be compact

interval such that ūε int(M0) and M0⊂ int(M)and by using
assumption 1(a), suppose we support of the kernel k is
[-M,M]. Hence the observation just to the right of the
discontinuity are more likely to be greater than the intercept
m(ū)+α giving upward biassed. similarly, an average of
observations just to the left of the discontinuity would
provide a downward biassed estimate m(ū).
We have

α̂(ū) = (m(ū)+α)

1
n ∑

n
i=1

1
hλ ∗i

khλ ∗i
(ū−ui)diyi

1
n ∑

n
j=1

1
hλ ∗j

khλ ∗j
(ū−u j)d j

−(m(ū))
1
n ∑

n
i=1

1
hλ ∗i

khλ ∗i
(ū−ui)(1−di)yi

1
n ∑

n
j=1

1
hλ ∗j

khλ ∗j
(ū−u j)(1−d j)

By replacing
yi = m(ui)+ εi

And rearranging the above equation, we have

α̂−α =

1
n ∑

n
i=1

1
hλ ∗i

k( ū−ui
hλ ∗i

)di[m(ui)−m(ū)+ εi]

1
n ∑

n
j=1

1
hλ ∗j

k( ū−u j
hλ ∗j

)d j

−
1
n ∑

n
i=1

1
hλ ∗i

k( ū−ui
hλ ∗i

)(1−di)[m(ui)−m(ū)+ εi]

1
n ∑

n
j=1 k 1

hλ ∗j
(

ū−u j
hλ ∗j

)(1−d j)

Multiple both sides with
√

nhλ ∗i , we have
√

nhλ ∗i (α̂−α);

√
nhλ ∗i (α̂−α)=

√
nhλ ∗i
n ∑

n
i=1

1
hλ ∗i

k( ū−ui
hλ ∗i

)di[m(ui)−m(ū)+ εi]

1
n ∑

n
j=1

1
hλ ∗j

k( ū−u j
hλ ∗j

)d j

−

√
nhλ ∗i
n ∑

n
i=1

1
hλ ∗i

k( ū−ui
hλ ∗i

)(1−di)[m(ui)−m(ū)+ εi]

1
n ∑

n
j=1

1
hλ ∗j

k( ū−u j
hλ ∗j

)(1−d j)

By simplification we have

√
nhλ ∗i (α̂−α)=

1√
n ∑

n
i=1

1√
hλ ∗i

k( ū−ui
hλ ∗i

)di[m(ui)−m(ū)+ εi]

1
n ∑

n
j=1

1
hλ ∗j

k( ū−u j
hλ ∗j

)d j
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Table 3. Real Data: Year and Gross Domestic Product Current Prices
year prices year prices year prices
1980 2.016 1981 2.309 1982 2.378
1983 2.403 1984 2.372 1985 2.423
1986 2.68 1987 2.659 1988 2.621
1989 2.879 1990 2.301 1991 1.381
1992 0.874 1993 1.513 1994 2.446
1995 2.986 1996 3.315 1997 2.36
1998 2.708 1999 3.411 2000 3.64
2001 4.065 2002 4.435 2003 5.747
2004 7.315 2005 8.158 2006 9.001
2007 10.698 2008 12.901 2009 12.093
2010 11.927 2011 12.891 2012 12.345
2013 12.916 2014 13.262

Table 4. Nadaraya Watson Estimator With Epanechikov As Density Function (Existing Model)
sample size Bandwidth Jump Size MSE rate convergence

Existing Model 35 0.1104331 1.786687 36.93614 0.005906131

−
1√
n ∑

n
i=1

1√
hλ ∗i

k( ū−ui
hλ ∗i

)(1−di)[m(ui)−m(ū)+ εi]

1
n ∑

n
j=1

1
hλ ∗j

k( u j−ū
hλ ∗j

)(1−d j)
.

(5.4)
Now by taking the denominator of the first
term.Show 1

n ∑
n
j=1

1
hλ ∗j

k( ū−u j
hλ ∗j

)d j
p−→ f0(ū)

2

=
1
n

n

∑
j=1

1
hλ ∗j

k(
ū−u j

hλ ∗j
)d j

Taking variance on both sides, we have

var[
1
n

n

∑
j=1

1
hλ ∗j

k(
ū−u j

hλ ∗j
)d j]≤

1
(nhλ ∗j )

2 E[k2(
ui− û
hλ ∗j

)d j]

(5.5)
Hence by using the transformation in equation (5.4), we
have

=
1
(n)

∫ M

0

1
(hλ ∗j )

2 k2(v) f0(ū+hλ
∗
j v)dv

=
1

(nhλ ∗j )

∫ M

0
k2(v) f0(ū+hλ

∗
j v)dv

By simplification, we have

= O(
1

nhλ ∗j
) = o(1)

Then, by using Chebyshev’s Inequality the general formula
is 1−1/SD2.

1
n

n

∑
j=1

1
hλ ∗j

k(
ū−u j

hλ ∗j
)d j =E[

1
n

n

∑
j=1

1
hλ ∗j

k(
ū−u j

hλ ∗j
)d j]+op(1)

By using the transformation, we have;

= f0(ū)
∫ M

0
k(v)dv+op(1)

=
f0(ū)

2
+op(1)

Hence, we know that

1
n

n

∑
j=1

1
hλ ∗j

k(
ū−ui

hλ ∗j
)d j

p−→ f0(ū)
2

Similarly, we do with second term of equation (5.3), by
taking their denominator;

1
n

n

∑
j=1

1
hλ ∗j

k(
ū−u j

hλ ∗j
)(1−d j)

Taking variance on both sides, we have

var[
1
n

n

∑
j=1

1
hλ ∗j

k(
ū−u j

hλ ∗j
)(1−d j)]

≤ 1
(nhλ ∗j )

2 E[k2(
ui− û
hλ ∗j

)(1−d j)] (5.6)

Hence by using the transformation we have

=
1
(n

∫ M

0

1
(hλ ∗j )

2 k2(v) f0(ū+hλ
∗
j v)dv

=
1

(nhλ ∗j )

∫ M

0
k2(v) f0(ū+hλ

∗
j v)dv

By simplification, we have

= O(
1

nhλ ∗j
) = o(1)

Then, by using Chebyshev’s Inequality the general formula
is 1−1/SD2.

1
n

n

∑
j=1

1
hλ ∗j

k(
ui− ū
hλ ∗j

)(1−d j)

= E[
1
n

n

∑
j=1

1
hλ ∗j

k(
ui− ū
hλ ∗j

)(1−d j)]+op(1)
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Table 5. Adaptive Nadaraya Watson Estimator With Epanechikov As Density Function (Proposed Model)
sample size Bandwidth Adaptive Bandwidth Jump Size MSE rate convergence

35 0.1104331 0.0186666 -0.5111896 0.856058 0.01477945

By using the transformation

= f0(ū)
∫ M

0
k(v)dv+op(1)

=
f0(ū)

2
+op(1)

Hence, we know that

1
n

n

∑
j=1

1
hλ ∗j

k(
ui− ū
hλ ∗j

)(1−d j)
p−→ f0(ū)

2

Hence, when we have large number we use Liapunov’s
condition;

∑
i

E|1
n

n

∑
i=1

1
hλ ∗j

k(
ui− ū
hλ ∗i

)diεi|2+ξ

=
1

(nhλ ∗i )
ξ

2

E[|1
n

n

∑
i=1

1
hλ ∗j

k(
ui− ū
hλ ∗i

)|2+ξ ]dE|ε|2+ξ u

≤ 1
nhλ ∗i

ξ

2
[supuεME(|ε|2+ξ )u]

∫ M

0
k(v)2+ξ f0(ū+hλ

∗
i v)dv

= o(1)

By using central limit theorem (CLT) to find out the asymp-
totic variance;

∑
j

var(
1√

nhλ ∗i

n

∑
i=1

k(
ui− ū
hλ ∗i

)diεi)=E[
1

hλ ∗i
k2(

ui− ū
hλ ∗i

)dδ
2(u)]

=
∫ M

0
k2(v)δ 2(ū+hλ

∗
i v)dv

Similarly, we have

= δ
2−(ū) f0(ū)

∫ M

0
k2(v)dv+o(1)

now by using Liapunov’s CLT and after simplification, we
have

1√
nhλ ∗i

∑i ∑
n
i=1 k( ui−ū

hλ ∗i
)diεi

1
nhλ ∗i

∑ j k( u j−ū
hλ ∗j

)d jε j
−

1√
nhλ ∗i

∑i ∑
n
i=1 k( ui−ū

hλ ∗i
)(1−di)εi

1
nhλ ∗i

∑ j k( u j−ū
hλ ∗j

)(1−d j)ε j

d−→ N(0,4δ
2+(ū)+δ

2−(ū) f0(ū)
∫ M

0
k2(v)dv)

Finally, we consider the bias of the estimator;

var(
1√

nhλ ∗i

n

∑
i=1

k(
ui− ū
hλ ∗i

)di[m(ui−m(ū))]

≤ 1
hλ ∗i

Ek2(
ui− ū
hλ ∗i

)d[m(ui−m(ū))]2)

≤ [suprε[0,M]|m(ū+ rhλ
∗
i )−m(ū)|2]

∫ M

0
k2(v) f0(ū+hλ

∗
i v)dv

= o(1)

Hence, again by using Chebyshev’s Inequality;

1√
nhλ ∗i

∑i ∑
n
i=1 k( ui−ū

hλ ∗i
)di[m(ui)−m(ū)]

1
nhλ ∗i

∑ j k( u j−ū
hλ ∗j

)d j

−
1√

nhλ ∗i
∑i ∑

n
i=1 k( ui−ū

hλ ∗i
)(1−di)[m(ui)−m(ū)]

1
nhλ ∗i

∑ j k( u j−ū
hλ ∗j

)(1−d j)
(5.7)

By using the values which we find out for the denominator
of equation (5.3), replace into the equation (5.7), we have

=
2

f0(ū)

√
n

hλ ∗i
(E[k(

ui− ū
hλ ∗i

)d[m(ui−m(ū))]]

−E(k(
ui− ū
hλ ∗i

)d[m(ui−m(ū)(1−di)[m(ui−m(ū))]

After simplification, we have

=
2
√

nhλ ∗i
f0(ū)

hλ
∗
i (m

′+(ū)+m
′−(ū)) f0(ū)

∫ M

0
k(v)dv+o(1)

= 2
√

nhλ ∗i hλ
∗
i (m

′+(ū)+m
′−(ū))

∫ M

0
k(v)dv+op(1)

Therefore, at the end after simplification and by using
different method, we proved that:√

nhλ ∗i (α̂−α)
d−→ N(C2k1(0)(m

′+(ū)+m
′−(ū))),

4δ0δ
2+(ū)+δ

2−(ū)/ f0(ū)

Whereas,

p = 2h(λ ∗i )
3/2;k1(0) =

∫ M

0
k(v)dv

Proof of Theorem 2. In order to give importance to the
optimization, we have

q̂+(y) =
1
n

n

∑
j=1

khλ ∗j
(y−Yj)d j

And

q̂−(y) =
1
n

n

∑
j=1

khλ ∗j
(y−Yj)(1−d j)

The kernel density estimate at y is:

q̂0 = q̂+(y)+ q̂−(y)

Whereas, q̂+(y) is the density estimate come from data to
right of the discontinuity and similarly q̂−(y) is the part left
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of discontinuity. Whereas,m̂(yi) = vi
j ŷ j is the consistent

adaptive nadaraya Watson kernel estimator of m(yi).

ŷ j = yi +αd

Such that q− is lq times continuously differentiable and
bounded away from zero. And

vi
j =

khλ ∗i
(yi− y j)

∑
n
r=1 khλ ∗i

(yi− y j)

We have,
ε̂i = yi− m̂(yi)−diα̂

m̂(y) =
1
n ∑

n
i=1

1
hλ ∗i

k( y−yi
hλ ∗i

)(yi−diα̂)

q̂0(y)

Whereas, we have

δ
2+(ȳ) = limyy→y+0 var(z/yi=y)

and
δ

2−(ȳ) = limyy→y+0 var(z/yi=y)

δ 2(yi) = var(zi/yi) is uniformly bounded near y0 and the
limits δ 2+(y0),δ

2+(y0) exist are finite we have;

ŝ(y) =
1

nhλ ∗i
∑

i
k(

y− yi

hλ ∗i
)x̂i

and
s(y) = m(y)q0(y)

Suppose α̂ ( jump size) is a consistent estimator for α .
Then by defining their left and right hand side of variance
estimation by

ˆδ 2+(ȳ) =
1
n ∑

n
i=1

1
hλ ∗i

k( ȳ−yi
hλ ∗i

)diε̂
2
i

1
2 q̂0(ȳ)

and

ˆδ 2−(ȳ) =
1
n ∑

n
i=1

1
hλ ∗i

k( ȳ−yi
hλ ∗i

)(1−di)ε̂2
i

1
2 q̂0(ȳ)

Let we have

ˆδ 2+(ȳ) =
1
n ∑

n
i=1

1
hλ ∗i

k( ȳ−yi
hλ ∗i

)diε̂
2
i

1
2 q̂0(ȳ)

(5.8)

Hence, we consider the numerator of the equation (5.8)

1
n

n

∑
i=1

1
hλ ∗i

k(
ȳ− yi

hλ ∗i
)diε̂

2
i =

1
n

n

∑
i=1

1
hλ ∗i

k(
ȳ− yi

hλ ∗i
)diε̂

2
i

+
1
n

n

∑
i=1

1
hλ ∗i

k(
ȳ− yi

hλ ∗i
)di[(m(yi)

− (
1
n ∑

n
i=1

1
hλ∗i

k( ȳ−yi
hλ∗i

)di
)2

q̂2
0

(α̂−α)2]

+2
1
n

n

∑
i=1

1
hλ ∗i

k(
ȳ− yi

hλ ∗i
)diε̂i[(m(y)i)−

1
n ∑

n
i=1

1
hλ ∗i

k( ȳ−yi
hλ ∗i

)diŷi

q̂0
(y)i]

−(
1
n ∑

n
i=1

1
hλ ∗i

k( ȳ−yi
hλ ∗i

)di(1−di)
2

q̂o(yi)
)(α̂−α)]

−2
1
n

n

∑
i=1

1
hλ ∗i

k(
ȳ− yi

hλ ∗i
)di

1
n ∑

n
i=1

1
hλ ∗i

k( ȳ−yi
hλ ∗i

)(1−di)

q̂o(yi)

(α̂−α)(m(yi)−
1
n ∑

n
i=1

1
hλ ∗i

k( ȳ−yi
hλ ∗i

)diŷi

q̂o(yi)
) (5.9)

Divide equation (5.9) in part (a+b+ c) and solve one by
one;

1
n

n

∑
i=1

1
hλ ∗i

k(
ȳ− yi

hλ ∗i
)diε̂

2
i +

1
n

n

∑
i=1

1
hλ ∗i

k(
ȳ− yi

hλ ∗i
)di[(m(yi)

− (
1
n ∑

n
i=1

1
hλ∗i

k( ȳ−yi
hλ∗i

)di
)2

q̂2
0

(α̂−α)2]

By using Lemmas A1, A2 we have

supyεM0 |dq̂+(y)| ≤ supyεM0d|q̂+(y)−Eq̂(y)|+supyεM0 |dq̂+(y)|

= op(
1

nhλ ∗i
)

now by taking part we have

2
1
n

n

∑
i=1

1
hλ ∗i

k(
ȳ− yi

hλ ∗i
)diε̂i[(m(y)i)−

1
n ∑

n
i=1

1
hλ ∗i

k( ȳ−yi
hλ ∗i

)diŷi

q̂0
(y)i]

−(
1
n ∑

n
i=1

1
hλ ∗i

k( ȳ−yi
hλ ∗i

)di(1−di))
2

q̂o(yi)
)(α̂−α)]

By using Lemma A3

supyεM0 |q̂0(y)−q0(y)| ≤ supyεM0 |q̂0(y)−q+0 (y)|+|q
+
0 (y)−q0(y)|

= op(
1

nhλ ∗i
)

Similarly by taking part, we have

2
1
n

n

∑
i=1

1
hλ ∗i

k(
ȳ− yi

hλ ∗i
)di

1
n ∑

n
i=1

1
hλ ∗i

k( ȳ−yi
hλ ∗i

)(1−di)

q̂o(yi)

(α̂−α)(m(yi)−
1
n ∑

n
i=1

1
hλ ∗i

k( ȳ−yi
hλ ∗i

)diŷi

q̂o(yi)

By using lemma A3, we have

supȳ≤y≤ȳ+Mhλ ∗i
|ŝ(y)− s(y)| ≤ supyεM0 |ŝ(y)− s̄(y)|

+supȳ≤y≤ȳ+Mhλ ∗i
|s̄(y)− s(y)|

= op(
1

nhλ ∗i
)

supȳ≤y≤ȳ+Mhλ ∗i
|m(y)− ŝ(y)

q̂0(y)
| ≤ supyεM0 |

m(y)
q̂0(y)

|supyεM0 |q̂0(y)−q0(y)|

+supyεM0| 1
q̂0(y)

|supȳ≤y≤ȳ+Mhλ∗i
|ŝ(y)−s(y)|

= op(
1

nhλ ∗i
)
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Whereas we have

var(
1
n

n

∑
i=1

1
hλ ∗i

k(
ȳ− yi

hλ ∗i
)diε̂i)≤

1
(nhλ ∗i )

2 E[k2(
ȳ− yi

hλ ∗i
)dδ

2(y)]

By using approximation, we have

=
1

nhλ ∗i

∫ M

0
k2(v)δ (ȳ+hλ

∗
i v) f0(ȳ+hλ

∗
i v)dv

= o(
1

nhλ ∗i
)

As already we have prove they asymptotic properties of
the estimator, we use the asymptotic variance that is;

var(
1
n

n

∑
i=1

1
hλ ∗i

k(
ȳ− yi

hλ ∗i
)di) = o(

1
nhλ ∗i

)

Hence, by using the results of chebysehev’s inequality
for the uniform convergence, and also that (α̂ − α) =
op(

1
nhλ ∗i

)we have the last term of the equation (5.7) equals

to op(
1

nhλ ∗i
) Hence, by applying the application of cheby-

seve’s inequality we prove that; we have the last term of
the equation (5.8) equals to op(

1
nhλ ∗i

) Hence, by applying
the application of chebyseve’s inequality we prove that;

δ̂
2+(ȳ)

p−→ δ
2+(ȳ)

Similarly, we do for

ˆδ 2−(ȳ) =
1
n ∑

n
i=1

1
hλ ∗i

k( ȳ−yi
hλ ∗i

)(1−di)ε̂2
i

1
2 q̂0(ȳ)

(5.10)

Hence, we consider the numerator of the equation (5.10)

1
n

n

∑
i=1

1
hλ ∗i

k(
ȳ− yi

hλ ∗i
)(1−di)ε̂

2
i =

1
n

n

∑
i=1

1
hλ ∗i

k(
ȳ− yi

hλ ∗i
)(1−di)ε̂

2
i

+
1
n

n

∑
i=1

1
hλ ∗i

k(
ȳ− yi

hλ ∗i
)(1−di)[(m(yi)−

(
1
n ∑

n
i=1

1
hλ∗i

k( ȳ−yi
hλ∗i

)(1−di)
)2

q̂2
0

(α̂−α)2]

+2
1
n

n

∑
i=1

1
hλ ∗i

k(
ȳ− yi

hλ ∗i
)(1−di)ε̂i[(m(y)i)

−
1
n ∑

n
i=1

1
hλ ∗i

k( ȳ−yi
hλ ∗i

)(1−di)ŷi

q̂0
(y)i]

−(
1
n ∑

n
i=1

1
hλ ∗i

k( ȳ−yi
hλ ∗i

)di(1−di)
2

q̂o(yi)
)(α̂−α)]

−2
1
n

n

∑
i=1

1
hλ ∗i

k(
ȳ− yi

hλ ∗i
)(1−di)

1
n ∑

n
i=1

1
hλ ∗i

k( ȳ−yi
hλ ∗i

)(1−di)

q̂o(yi)

(α̂−α)(m(yi)−
1
n ∑

n
i=1

1
hλ ∗i

k( ȳ−yi
hλ ∗i

)(1−di)ŷi

q̂o(yi)
)

(5.11)

Divide equation (5.11) in parts and solve one by one;

1
n

n

∑
i=1

1
hλ ∗i

k(
ȳ− yi

hλ ∗i
)(1−di)ε̂

2
i +

1
n

n

∑
i=1

1
hλ ∗i

k(
ȳ− yi

hλ ∗i
)(1−di)[(m(yi)−

(
1
n ∑

n
i=1

1
hλ∗i

k( ȳ−yi
hλ∗i

)(1−di
)2

q̂2
0

(α̂−α)2]

By solving using Lemmas A1, A2 we have

supyεM0 |dq̂−(y)| ≤ supyεM0d|q̂−(y)−Eq̂(y)|+supyεM0 |dq̂−(y)|

= op(
1

nhλ ∗i
)

Know by taking part we have

2
1
n

n

∑
i=1

1
hλ ∗i

k(
ȳ− yi

hλ ∗i
)(1−di)ε̂i[(m(y)i)

−
1
n ∑

n
i=1

1
hλ ∗i

k( ȳ−yi
hλ ∗i

)(1−di)ŷi

q̂0
(y)i]

−(
1
n ∑

n
i=1

1
hλ ∗i

k( ȳ−yi
hλ ∗i

)di(1−di)
2

q̂o(yi)
)(α̂−α)]

By using Lemma A3

supyεM0 |q̂0(y)−q0(y)| ≤ supyεM0 |q̂0(y)−q−0 (y)|+|q
−
0 (y)−q0(y)|

= op(
1

nhλ ∗i
)

Similarly by taking part, we have

2
1
n

n

∑
i=1

1
hλ ∗i

k(
ȳ− yi

hλ ∗i
)(1−di)

1
n ∑

n
i=1

1
hλ ∗i

k( ȳ−yi
hλ ∗i

)(1−di)

q̂o(yi))
(α̂−α)

(m(yi)−
1
n ∑

n
i=1

1
hλ ∗i

k( ȳ−yi
hλ ∗i

)(1−di)ŷi

q̂o(yi)

using lemma A3, we have

supȳ≤y≤ȳ+Mhλ ∗i
|ŝ(y)− s(y)| ≤ supyεM0 |ŝ(y)− s̄(y)|

+supȳ≤y≤ȳ+Mhλ ∗i
|s̄(y)− s(y)|

= op(
1

nhλ ∗i
)

supȳ≤y≤ȳ+Mhλ ∗i
|m(y)− ŝ(y)

q̂0(y)
| ≤ supyεM0 |

m(y)
q̂0(y)

|supyεM0 |q̂0(y)−q0(y)|

+supyεM0| 1
q̂0(y)
|supȳ≤y≤ȳ+Mhλ∗i

|ŝ(y)−s(y)|

= op(
1

nhλ ∗i
)

Whereas we have

var(
1
n

n

∑
i=1

1
hλ ∗i

k(
ȳ− yi

hλ ∗i
)(1−di)ε̂i)≤

1
(nhλ ∗i )

2 E[k2(
ȳ− yi

hλ ∗i
)(1−diδ

2(y)]

By using approximation, we have

=
1

nhλ ∗i

∫ M

0
k2(v)δ (ȳ+hλ

∗
i v) f0(ȳ+hλ

∗
i v)dv

= o(
1

nhλ ∗i
)
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As already we have prove they asymptotic properties of
the estimator, we use the asymptotic variance that is;

var(
1
n

n

∑
i=1

1
hλ ∗i

k(
ȳ− yi

hλ ∗i
)(1−di)) = o(

1
nhλ ∗i

)

Hence, by using the results of chebysehev’s inequality for
the uniform convergence, and also that

(α̂−α) = op(
1

nhλ ∗i
)

we have the last term of the equation (5.11) equals to

op(
1

nhλ ∗i
) Hence, by applying the application of cheby-

seve’s inequality we prove that; we have the last term of
the equation (5.11) equals to op(

1
nhλ ∗i

) Hence, by applying
the application of chebyseve’s inequality we prove that;

δ̂
2−(ȳ)

p−→ δ
2−(ȳ)

This result requires a more stringent moment for the lim-
iting distribution to estimate . variance estimator and the
above consistency theorem don’t required continuity in the
derivatives of m at the discontinuity.
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