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A NEW REPRESENTATION OF CONSTANT ANGLE SURFACES
IN H2 × R WITH SPLIT QUATERNIONS

SIDDIKA ÖZKALDI KARAKUŞ

Abstract. In this paper we study surfaces in H2×R for which the unit normal
makes a constant angle with the R-direction. The main idea is to show that
constant angle surfaces in H2×R can be obtained by split quaternion product
and the matrix representations. Also we give some related examples with their
projections of figures.

1. Introduction

An interesting problem of differential geometry of submanifolds, intensively stud-
ied in last years, consists in classification and characterization of surfaces whose unit
normal vector field forms a constant angle with a fixed field of directions of the am-
bient space. These surfaces are called helix surfaces or constant angle surfaces and
they have been studied in all the 3-dimensional geometries. This kind of surfaces
are strictly related to describe some phenomena in physics of interfaces in liquids
crystals and of layered fluids [7]. The early results were obtained by studying sur-
faces isometrically immersed in product spaces of type M2 × R, namely taken M2

to be the unit 2-sphere S2, the hyperbolic plane H2 in [8, 9]. The angle was con-
sidered between the unit normal of the surface M and the tangent direction to
R. An interesting classification of surfaces in the 3-dimensional Heisenberg group
making a constant angle with the fibers of the Hopf- fibration was obtained in
[25]. Moreover, Munteanu and Nistor obtained a classification of all surfaces in
Euclidean 3-space for which the unit normal makes a constant angle with a fixed
vector direction being the tangent direction to R [18]. In [19], it is also classified
certain special ruled surfaces in R3 under the general theorem of characterization
of constant angle surfaces. A classification is given of special developable surfaces
and some conical surfaces from the point of view the constant angle property in
[22]. Also some characterization are given for a curve lying on a surface for which
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the unit normal makes a constant angle with a fixed direction [22]. These curves
are called isophote curves in literature.
On the other hand, several authors have studied constant angle surfaces in

Minkowski 3-space. Lopez and Munteanu investigated spacelike surfaces with the
constant timelike direction [17] Atalay et al. by choosing the constant spacelike di-
rection, they obtained different parametrization for the spacelike surfaces [1]. Also,
the classifications are given for the timelike surfaces whose the normal makes a
constant angle with a constant direction by Guler et al in [13]. In another re-
cent paper [26] it is defined constant angle spacelike and timelike surfaces in the
three-dimensional Heisenberg group and equipped with a 1-parameter family of
Lorentzian metrics.
A rotation in R3 about an axis through the origin can be represented by a

3 × 3 orthogonal matrix with determinant 1. However, the matrix representation
seems redundant because only four of its nine elements are independent. Also the
geometric interpretation of such a matrix is not clear until we carry out several steps
of calculation to extract the rotation axis and angle. Furthermore, to compose two
rotations, we need to compute the product of the two corresponding matrices, which
requires twenty-seven multiplications and eighteen additions.
Quaternions are very effi cient for analyzing situations where rotations in R3 are

involved. A quaternion is a 4-tuple, which is a more concise representation than a
rotation matrix. Its geometric meaning is also more obvious as the rotation axis and
angle can be trivially recovered. The quaternion algebra to be introduced will also
allow us to easily compose rotations. This is because quaternion composition takes
merely sixteen multiplications and twelve additions [27]. So quaternionic approach
is a very important method for obtaining surfaces. For example in recent years
several authors used this method for obtaining canal surfaces and constant slope
surfaces [11, 15, 2, 3, 4, 5, 6].
A similar relation to the relationship between quaternions and rotations in the

Euclidean space exists between split quaternions and rotations in the Minkowski
3-space. Split quaternions are identified with the semi-Euclidean space E42. Kula
and Yaylı showed that algebra of split quaternions has a scalar product that al-
lows us to identify it with semi-Euclidean space E42. They also showed that two
unit split quaternions q and p determine a rotation in [16]. Ozdemir and Ergin ex-
amined properties of spatial rotations in the Minkowski 3-space via unit time-like
quaternions. Moreover, they represented Lorentz rotation matrix using a timelike
quaternion in [21].
The main idea in this paper is to show that constant angle surfaces in H2 × R

can be obtained by split quaternion product and the matrix representations with
similar methods of the paper [5]. Finally, some examples of these surfaces are given
with their projections of figures by using the Mapple Programme. But, before this,
we remind some concepts of split quaternions and the Lorentzian space.
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2. Preliminary

In this section we introduce the notion of constant angle surfaces in M̃ = H2×R
and give some first characterizations. Let H2 × R be the Riemannian product of(
H2(−1), gH

)
and R with the standard Euclidean metric, where H2(−1) denotes the

hyperbolic plane of constant curvature −1. Denoted by g̃ = gH + dt2 the product
metric and 5̃ the Levi-Civita connection of g̃. Denote by t the global coordinate
on R and ∂t = ∂

∂t
is the unit vector field in the tangent bundle T

(
H2 × R

)
that is

tangent to the R−direction.
Now consider a surface M in M̃ = H2 × R. Let us denote with η a unit normal

to M . Then we can decompose ∂t as

∂t = T + cos θη

where T is the projection of ∂t on the tangent space ofM and θ is the angle function
defined by

cos θ = g̃ (∂t, η) .

By a constant angle surface M in H2×R, we mean a surface for which the angle
function θ is constant on M . There are two trivial cases, θ = 0 and θ = π

2 . The
condition θ = 0 means that ∂t is always normal, soM is an open part of H2×{t0} ,
t0 ∈ R. In the second case ∂t is always tangent. This corresponds to the Riemannian
product of a curve in H2and R.
There are many models for the hyperbolic plane (e.g. the Klein model, the

Poincare disk, the upper half plane H+, the Minkowski model H), cf.[23]. The
study of the constant angle surfaces was done by the authors in [10] by using the
upper half plane model of the hyperbolic plane. In the following we will deal with
the Minkowski model or the hyperboloid model for H2.
We denote by R31 the Minkowski 3-space with coordinates x, y and z, endowed

with the Lorentzian metric tensor

< ., . >L= −dx2 + dy2 + dz2.

In Minkowski 3-space, the vectors are characterized by Lorentzian inner product.
For a vector v = (v1, v2, v3) ∈ R31, the vector v is said to be a spacelike if <
v, v >L> 0 or v = 0, timelike if < v, v >L< 0, lightlike (or null ) if < v, v >L= 0.
Furthermore, curves are classified depending on their tangent vectors. A curve is
called spacelike, timelike or lightlike (or, null ) if the tangent vector of the curve is
always spacelike, timelike or lightlike, respectively.
Then H2 can be considered as the upper sheet (x > 0) of the hyperboloid{

(x, y, z) ∈ R31 : −x2 + y2 + z2 = −1
}
.

The external unit normal to H in a point p ∈ H ⊂ R31 is N = p and we have
< N,N >L= −1.
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We recall the notion of the Lorentzian cross-product (see e.g.[23]): For any
a = (a1, a2, a3) , b = (b1, b2, b3) ∈ R31, Lorentzian cross product is defined by

a ∧L b = (a3b2 − a2b3, a3b1 − a1b3, a1b2 − a2b1) .
As analogue to the vector cross product in the Euclidean space, it has similar
algebraic and geometric properties:

(i) a ∧L b is perpendicular to a and b, i.e. < a ∧L b, a >L=< a ∧L b, b >L= 0;
(ii) a ∧L b = −b ∧L a;
(iii) < a ∧L b, a ∧L b >L= − < a, a >L< b, b >L + < a, b >2L, for all a, b ∈ R31.
Let M be a 2-dimensional surface in H×R ⊂ R31 ×R. On the ambient space we

consider the product metric: g0 = −dx2 + dy2 + dz2 + dt2.
The characterization of constant angle surface in H2 × R was given in [9]. The

main result is the following:

Theorem 1. A surface M in H× R is a constant angle surface if and only if the
position vector F is up to isometries of H× R, locally given by

F : M −→ H× R : (u, v)→ F (u, v),

where
F (u, v) = (cosh ξ(u)f(v) + sinh ξ(u)f(v) ∧L f ′(v), u sin θ) ,

f is a unit speed curve on H, ξ(u) = u cos θ and θ is the constant angle [9].

Let us recall some details about the main theorem. Since f(v) lies on the hy-
perboloid it follows that f ′(v) is spacelike. But the curve f has unit speed so,
〈f ′(v), f ′(v)〉L = 1. In each point of the curve f one has an orthonormal basis,
namely {f(v), f ′(v), f(v) ∧L f ′(v)} . Taking into account that 〈f ′(v), f ′′(v)〉L = 0
for all v, one can express f ′′(v) as linear combination of f(v) and f(v) ∧L f ′(v).
Now let us give some basic concepts about the split quaternions. The split

quaternions or coquaternions are basic elements of four dimensional associative al-
gebra defined by James Cockle. Like the real quaternions defined by Hamilton in
1843, the split quaternions have some different properties (eg. nilpotent elements,
nontrivial idempotents, nonzero zero divisors) from real quaternions. Whereas
3-dimensional Euclidean spatial rotations can be expressed by real quaternions,
Minkowski spatial rotations can be stated by split quaternions. The set Q′ of all
split quaternions is given by

Q′ =
{
q = d+ ai+ bj + ck : a, b, c, d ∈ R, i2 = −1, j2 = k2 = ijk = 1

}
.

A split quaternion can be written as q = d + ai + bj + ck or q = Sq + Vq, where
Sq = d ∈ R is the scalar component of q and Vq = ai + bj + ck is the vectorial
component of q. We also write following four-tuple notation to represent a split
quaternion:

q = (a, b, c, d) ,

q = (w, d) ,
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where Sq = d ∈ R, Vq = w ∈ R31. If Sq = 0, the split quaternion is called pure split
quaternion. Addition of two split quaternions, multiplication of a split quaternion
with a scalar λ ∈ R and conjugate of a split quaternion, q, can be given in Q′ as
follows:

q + p = (Sq + Sp) + (Vq + Vp),

λq = λSq + λVq,

q = Sq − Vq.
By using dot and cross-product in the Minkowski 3-space we can give the quaternion
product of two split quaternions p and q as:

q ×L p = SqSp + 〈Vq, Vp〉L + SqVp + SpVq + Vq ∧L Vp. (2.1)

Moreover the following relation between a split quaternion and its conjugate is
satisfied, Iq = q×L q = q×L q = d2+a2−b2−c2.We say that a split quaternion q is
a spacelike, timelike or lightlike quaternion, if Iq < 0, Iq > 0 or Iq = 0 respectively.
The norm of a split quaternion q ∈ Q′ is given by Nq =

√
|Iq|. If Iq = ±1,

then the split quaternion q is said to be a unit split quaternion. A non-lightlike
split quaternion q 6= 0 has an inverse quaternion denoted by q−1 according to split
quaternion product which satisfies the following property q ×L q

Iq
= q

Iq
×L q = 1,

which gives us that the inverse of q can be given as

q−1 =
q

Iq
,

[21]. The vector part of any spacelike quaternions is spacelike but the vector part
of any timelike quaternion can be spacelike or timelike. Polar forms of the split
quaternions are given by following classification:

(i) Let q be a unit spacelike split quaternion. Then it can be expressed in the
form q = sinh θ + v cosh θ, where v is a unit spacelike vector in R31.

(ii) Let q be a unit timelike split quaternion with the spacelike vector part. Then
it can be expressed in the form q = cosh θ + v sinh θ, where v is a unit spacelike
vector in R31.

(iii) Let q be a unit timelike split quaternion with the timelike vector part. Then,
it can be expressed as q = cos θ + v sin θ, where v is a unit timelike vector in R31
[16, 21, 28].
Unit timelike quaternions are used to perform rotations in the Minkowski 3-

space. Let Φ : R31 → R31 be a linear mapping and Φ = q ×L v ×L q−1, where q is a
unit timelike quaternion and v is a pure split quaternion (that is, a vector in R31).
So, for every timelike unit quaternion q = a0 + a1i+ a2j + a3k, we can give matrix
representation Mq of Φ as follows:

Mq =

 a20 + a21 + a22 + a23 2a0a3 − 2a1a2 −2a0a2 − 2a1a3
2a0a3 + 2a1a2 a20 − a21 − a22 + a23 −2a0a1 − 2a2a3
−2a0a2 + 2a1a3 2a0a1 − 2a2a3 a20 − a21 + a22 − a23

 .
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It can be seen that all rows of this matrix are orthogonal in the Lorentzian mean.
Therefore the unit timelike quaternion q = a0+a1i+a2j+a3k is equivalent to 3×3
orthogonal rotational matrix Mq. The matrix represents a rotation in Minkowski
3-space under the condition that detMq = 1. This is possible with unit timelike
quaternions. Also causal character of vector part of the unit timelike quaternion q
is important. If the vector part of q is timelike or spacelike then the rotation angle
is spherical or hyperbolic, respectively [21].

3. A New Approach On Constant Angle Surface in H2 × R with Split
Quaternions

In this section we consider unit timelike quaternions with the spacelike vector
parts

Q(u, v) = cosh ξ(u)− sinh ξ(u)f ′(v)

defines a 2-dimensional surface inH×R ⊂ R31×R, where f ′(v) = (f ′1(v), f ′2(v), f ′3(v))
and f is a unit speed spacelike curve on H. As we gave earlier, for the unitary
quaternion Q(u, v), the matrix representation of the map Φ : R31 → R31 is given by

MQ =

 cosh2 ξ +
(
f′21 + f′22 + f′23

)
sinh2 ξ −2

(
f′3 cosh ξ + f′1f

′
2 sinh ξ

)
sinh ξ 2

(
f′2 cosh ξ − f

′
1f
′
3 sinh ξ

)
sinh ξ

2
(
−f′3 cosh ξ + f′1f

′
2 sinh ξ

)
sinh ξ cosh2 ξ +

(
−f′21 − f

′2
2 + f′23

)
sinh2 ξ 2

(
f′1 cosh ξ − f

′
2f
′
3 sinh ξ

)
sinh ξ

2
(
f′2 cosh ξ + f′1f

′
3 sinh ξ

)
sinh ξ −2

(
f′1 cosh ξ + f′2f

′
3 sinh ξ

)
sinh ξ cosh2 ξ +

(
−f′21 + f′22 − f

′2
3

)
sinh2 ξ

 .
We are now ready to show main result of this paper:

Theorem 2. Let F : M −→ H × R : (u, v) → F (u, v) be an immersion up to
isometries of H× R. Then the constant angle surface M can be reparametrized by

F (u, v) = u sin θ +Q(u, v)×L Q1(u, v), (3.1)

where "×L" is the split quaternion product, Q1(u, v) = f(v) is a unit speed spacelike
curve on H and a pure split quaternion and θ is the constant angle.

Proof. Since Q(u, v) = cosh ξ(u)− sinh ξ(u)f ′(v) and Q1(u, v) = f(v), we obtain

Q(u, v)×L Q1(u, v) = (cosh ξ(u)− sinh ξ(u)f ′(v))×L f(v) (3.2)

= cos ξ(u)f(v)− sin ξ(u)f ′(v)×L f(v).

By using the Eq.(2.1), we get

f ′(v)×L f(v) = 〈f ′(v), f(v)〉L + f ′(v)ΛLf(v).

We know that 〈f ′(v), f(v)〉L = 0 since f is a unit speed spacelike curve on H. Thus

f ′(v)×L f(v) = f ′(v)ΛLf(v) (3.3)

= −f(v)ΛLf
′(v).

If we substitute Eq.(3.3) into Eq.(3.2), we get

Q(u, v)×L Q1(u, v) = cosh ξ(u)f(v) + sinh ξ(u)f(v)ΛLf
′(v).
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Then the immersion F : M → H× R is given by
F (u, v) = u sin θ + cosh (u cos θ) f(v) + sinh (u cos θ) f(v)ΛLf

′(v),

= (cosh (u cos θ) f(v) + sinh (u cos θ) f(v)ΛLf
′(v), u sin θ) ,

as we wished to prove.

Remark 1. Theorem 1 says that a unit speed curve f (v) in H, is rotated by Q(u, v)
through the hyperbolic angle ξ(u) about the spacelike axis Sp{f ′ (v)}.

�

As a consequence of this theorem, we get the following corollary.

Corollary 1. Let MQ be the matrix representation of the map Φ : R31 → R31 for
the unit timelike quaternions with the spacelike vector parts Q(u, v). Then, for the
pure quaternion Q1(u, v), the constant angle surface in H× R can be written as

F (u, v) = u sin θ +MQQ1(u, v).

Remark also that the two trivial cases are included in the parametrization (3.1).
(i) If θ = 0, then ξ(u) = u, Q(u, v) = coshu− sinhuf ′(v), (3.1) becomes

F (u, v) = Q(u, v)×L Q1(u, v)

which gives us H2 × {0} .
(ii) If θ = π

2 , then ξ(u) = 0, Q(u, v) = 1, (3.1) becomes.

F (u, v) = u+Q1(u, v)

This clearly gives the Riemannian product of a curve in H2 and R.

Example 1. Let us consider unit speed spacelike curve in H2 defined by f(v) =
(cosh v, 0, sinh v) and taking θ = 0. Then the constant angle surface M can be
parametrized by

F (u, v) = Q(u, v)×L Q1(u, v)

= coshu (cosh v, 0, sinh v) + sinhu (0,−1, 0)

= (coshu cosh v,− sinhu, coshu sinh v, 0) ,

(see Figure 1).

Example 2. Let f(v) =
(

cosh v,
√
3
2 sinh v, 12 sinh v

)
is a unit speed spacelike curve

in H2 and θ = π
2 . Then the constant angle surface M can be parametrized by

F (u, v) = u+Q1(u, v)

F (u, v) =

(
cosh v,

√
3

2
sinh v,

1

2
sinh v, u

)
,

(see Figure 2).
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Example 3. Let Q1(u, v) = f(v) = (cosh v, sinh v, 0) is a unit speed spacelike curve
in H2, ξ(u) = u cos θ and Q(u, v) = cos ξ(u) − sin ξ(u)(sinh v, cosh v, 0). Then the
constant angle surface M can be parametrized by

F (u, v) = u sin θ +Q(u, v)×L Q1(u, v)

= u sin θ + cosh ξ(u)f(v) + sin ξ(u)f(v)×L f ′(v)

= u sin θ + cosh ξ(u)(cosh v, sinh v, 0) + sinh ξ(u)(0, 0, 1)

= u sin θ + (cosh ξ(u) cosh v, cosh ξ(u) sinh v, sinh ξ(u)).

Up to parametrization we get

F (u, v) = (coshu cosh v, coshu sinh v, sinhu, u tan θ) ,

(see Figure 3).

4. Visualization

The 3D-surfaces geometric modeling are very important in the surface modeling
systems. We give the visualization of the surfaces with the parametrization

F (u, v) = (x(u, v), y(u, v), z(u, v), w(u, v))

in R4 by use of Maple Programme. We plot the graph of the surface with plotting
command

plot3d (x, y, z + w)

We construct the geometric model of the constant angle surfaces in H2 × R
defined in Example 1 (see, Figure 1), Example 2 (see, Figure 2) and Example 3
(see, Figure 3). obtained for u ∈

[
−π2 ,

π
2

]
, v ∈

[
−π2 ,

π
2

]
.

Figure 1. The projections of constant angle surfaces in H2 × R
obtained for u ∈

[
−π2 ,

π
2

]
, v ∈

[
−π2 ,

π
2

]
.
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Figure 2. The projections of constant angle surfaces in H2 × R
obtained for u ∈

[
−π2 ,

π
2

]
, v ∈

[
−π2 ,

π
2

]
.

Figure 3. The projections of constant angle surfaces in H2 × R
obtained for θ = π

3 , u ∈
[
−π2 ,

π
2

]
, v ∈

[
−π2 ,

π
2

]
.
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[11] Gök, İ., Quaternionic approach of canal surfaces constructed by some new ideas, Adv. Appl.
Cliff ord Algebras, 27 (2017) 1175—1190.

[12] Gray, A., Abbena, E. and Salamon, S., Modern Geometry of Curves and Surfaces with
Mathematica. 3rd Edition. Studies in Advanced Mathematics. 47, 2006.
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