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A B S T R A C T  
 

Prediction of stock market value is one the most complicated issue during the past decades. 

Due to its importance, in this research, we consider the prediction of stock values based on 

non-parametric and parametric methods. In this first method, we use the fuzzy Markov 

chain procedure in order to prediction problem. In this regard, all of the rising and falling 

probabilities during the weekdays are calculated and then they applied to obtain the 

increasing and decreasing rate. Then, based on this information we model and predict the 

stock values. In the sequel, we implement different methods of parametric time series such 

as generalized autoregressive conditionally heteroskedastic (GARCH), ARIMA-GARCH, 

Exponential GARCH (E-GARCH) and GJR-GARCH by assuming the normal and t-student 

distribution for the error terms to obtain the best model in terms of minimum mean square 

errors. Finally, the mythologies developed here are applied for the Tehran Stock Exchange 

Index (TEDPIX). 
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1. Introduction 

The prediction of the financial market is a complex task since the distribution of financial time series is changing 

over a period of time. There is also never-ending debate as to whether these markets are predictable or not. In other 

words, they are called efficient markets (EMH) if being unpredictable ones, and vice versa. In the recent years, 

investors have started to show interest in trading on stock markets indices as it provides an opportunity to hedge their 

market risk and at the same time offers a good investment opportunity for speculators and arbitrageurs. 

There is a dream of the fascination of any investor to know the future asset prices and/or any financial instrument, 

e.g. stock exchange index. Basically, traders use several different approaches for prediction based upon the 

fundamental analysis, technical analysis (TA), psychological analysis, etc. The technical analysis paradigm states 

that all price relevant information is contained in market price itself. Hence, the instant processing of market messages 

plays a specific role, thus leading to permanent interactions among traders. TA concerns with identifications of both 

trends and trend reversals using more or less sophisticated procedures to predict future price movements from those 

of the recent past. So far many models have been proposed to predict stock markets, although, there is not a perfect 

and best model over the others for all time. 
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The GARCH model is developed by [1] to extend the earlier work on ARCH models by [2]. [3], [4], and [5] fitted 

GARCH models to USA stock market data and found that these models have better performance for predicting stock 

markets in the USA. [6], it is explained that the GARCH model provides a good first approximation to the observed 

temporal dependencies in daily data. In [7], the GARCH Models for Australian stock markets are fitted. Regression 

and GARCH models to the UK stock market prediction are used in [8]. New Zealand stock market through different 

kinds of GARCH models is modelled by [9]. The relative out of sample predictive ability of different GARCH 

models, with particular emphasis on the predictive content of the asymmetric component is explored by [10]. A four 

regime double threshold GARCH (DTGARCH) model is introduced in [11]. In [12], a fuzzy system method to 

analyse clustering in GARCH models is used. In [13], it is examined the performance of a selection of GARCH 

models: GARCH, EGARCH, and GJR. While the results are mixed, the paper concludes that different varieties of 

the GJR specification outperform the others included the study. In [31], it is introduced a fractionally integrated 

generalized autoregressive conditional heteroscedasticity model. Estimating functions approach combining with the 

first order EGARCH and GJR-GARCH models to predict the volatility of two market indices from the USA and 

Japanese stock markets is applied by [14]. In [15], new methods for improved ex-post interdaily volatility 

measurements based on high-frequency intradaily data are discussed. In [16], it is suggested that the long-run 

dependencies in financial market volatility may be better characterized by a fractionally integrated model. The 

multiplicative structure of the model was suggested for volatility modelling in the univariate case by [17], who 

proposed using the exponential distribution. For estimation and applications of GARCH models see [18], [19], [20], 

and [15]. Recently, [21] applied GARCH-type forecasting models for the volatility of the stock market and they 

found that the GARCH using Student’s t innovation model is the best model for volatility predictions of SSE380 

among the six models.   

Tehran Stock Exchange (TSE) is Iran’s largest stock exchange, which was first opened in 1967. TSE computed 

and published its price index under the title of TEPIX since April 1990. As of May 2012, 339 companies with a 

combined market capitalization of US$104.21 billion were listed on TSE. TSE, which is a founding member of the 

Federation of Euro-Asian Stock Exchanges, has been one of the world's best performing stock exchanges in the years 

2002 through 2013. TSE is an emerging or "frontier" market. The most important advantage that Iran's capital market 

has in comparison with other regional markets is that there are 37 industries directly involved in it. Industries such 

as the automotive, telecommunications, agriculture, petrochemical, mining, steel iron, copper, banking and insurance, 

financial mediation and others trade shares at the stock market, which makes it unique in the Middle East. The second 

advantage is that most of the state-owned firms are being privatized under the general policies of article 44 in the 

Iranian constitution. Under the circumstances, people are allowed to buy the shares of newly privatized firms.  

Data in this paper are taken from the Tehran stock exchange http://www.tse.ir/en/. The index TEDPIX is the aim 

of this paper for prediction. We consider the related data from 1999/12/08- 2016/07/26. The rest of the paper is as 

follows. In Section 2, we introduce the Nonparametric Fuzzy method while the different kinds of GARCH models 

are given in Section 3. Finally concluding remarks are given in Section 4. 

 

2. Nonparametric Fuzzy and GARCH Models 

In [22], it is proposed that the stock exchange is a stochastic process with the following structure: 
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where    
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/nt x y  . Here x are the stock values at the day nt  and y states the maximum stock values at the 

week that we consider the stock. Here, we adjust the parameter r  of the Fuzzy stochastic model by incorporating the 

Markov chain as follows. 
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We use 
ijr  to express the change rate  1,2; 1,2i j   from a specific day at the situation i  to the next day at 

situation .j  c denotes the probability that stock values at the day nt  decreasing and then at the day 1nt   decreasing, 

too. 12P  denotes the probability that stock values at the day nt  decreasing and then at the day 1nt   increasing. 21P  

denotes the probability that stock values at the day nt  increasing and then at the day 1nt   decreasing. 22P  denotes 

the probability that stock values at the day nt  increasing and then at the day 1nt   increasing. Table 1 shows the stock 

market values on some specific days for some weeks. Next, the rising and falling indicators are shown in Table 2. 

Table 1. Stock market values at some days 

 Date                                                     Days 

Wed Tues Mon Sun Sat  

⋮ ⋮ ⋮ ⋮ ⋮  

12408.4 12345.1 12342.6 12325.8 12242.8 (2009/10/24-2009/10/28) 

12506 12483.6 12529.5 12545 12482.4 (2009/10/31-2009/11/04) 

12381.4 12426.1 12581.5 12565.9 12576.9 (2009/11/07-2009/11/11) 

12176.4 12241.9 12325.4 12361.7 12403.1 (2009/11/15-2009/11/19) 

⋮ ⋮ ⋮ ⋮ ⋮  

Table 2. A portion of the stock market data 

index
 

Stock values Time Date 

⋮ ⋮ ⋮ ⋮ 

0.9761748 8153.5 20:07 2009/10/24 

0.9815459 8175.9 20:07 2009/10/25 

0.9889310 8203.6 20:07 2009/10/26 

1.0000000 8252.4 20:07 2009/10/27 

0.9998061 8251.6 20:07 2009/10/28 

⋮ ⋮ ⋮ ⋮ 

Table 3. Rising or falling indicator (1 for rising and 0 for falling) 

 Date                                        Days 

Wed Tues Mon Sun Sat  

⋮ ⋮ ⋮ ⋮ ⋮  

1 1 1 1 1 (2009/10/24-2009/10/28) 

0 1 0 1 1 (2009/10/31-2009/11/04) 

0 0 1 0 1 (2009/11/07-2009/11/11) 

0 0 0 0 1 (2009/11/15-2009/11/19) 

⋮ ⋮ ⋮ ⋮ ⋮  

Table 4 depicts the probability of decreasing or increasing for all days. For example for days, We use (times of 

appearance of (1, 1)/total number of entries) to obtain 11p . Finally, the changes in rates for every week’s days are 

given in Table 5. 

Table 4. The Probability of decreasing or increasing 

The Probability of decreasing (increasing) 
Time 

22p  21p  12p  11p  

0.3293 0.2305 0.2934 0.1467 Sat - Sun 

0.3083 0.3143 0.2125 0.1646 Sun - Mon 

0.2964 0.2245 0.2814 0.1976 Mon - Tues 

0.2784 0.2994 0.2305 0.1916 Tues - Wed  

0.2754 0.2335 0.2844 0.2065 Wed - Sat 
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Table 5. Change rates for all cases 

                                     Change rate 

22r  21r  12r  11r  Time 

-0.0035 0.0002 -0.0023 0.0020 Sat - Sun 

-0.0020 0.0012 -0.0015 0.0015 Sun - Mon 

-0.0006 0.0025 -0.0027 0.0026 Mon - Tues 

-0.0046 0.0008 -0.0039 0.0002 Tues - Wed  

-0.0139 0.0091 -0.0060 0.0033 Wed - Sat 

After calculating the change rates, the main argument ( r ) is calculated in Table 6. Finally, the predicted values 

of the index based on the given formula are calculated. It should be mention here that we used 90% of the data as the 

training and the last 10% for examining the model. The results of prediction and mean square errors are given at the 

end of Section 3 in order to compare them with parametric GARCH models. 

Table 6. Estimated values of r 

Decreasing r Increasing r Days 

-0.001860368 0.0003604886 Sat - Sun 

-0.0009611297 0.0006678689 Sun - Mon 

-0.0009517537 0.001078018 Mon - Tues 

-0.002222598 0.000312451 Tues - Wed 

-0.005589916 0.002824761 Wed - Sat 

 

3. Parametric Time Series Models 

In this section, we use several volatility models and use these models to predict the conditional variance about the 

rate of return in Iran stock prediction. These models include the GARCH model, E-GARCH model and GJR-GARCH 

model to analyse the rate of return and consider using two different distributions on error terms: normal distribution 

and student-t distribution. So, this paper is mainly capturing the forecasting performance with volatility models under 

different error distributions. Finally, after comparing the root mean square error (RMSE), choose the best model to 

predict the conditional variance. We also compare the fuzzy model with proposed volatility models. The ARCH 

model (Auto-regressive conditional heteroscedastic model) is proposed by [2]. 

2 2 2 2

0 1 1 0

1

q

t t q t q i t i

i

          



                             (4) 

In [6], it is explained that the variation on error terms has been changed from the constant to be a random sequence. 

In [23], it is pointed out that t has a conditional mean and variance based on the information set 1tI  . also 

 1 0t tE I    and  2 2

1t t tE I   .  t t tz   and  ~ 0,1tz N .  

 

3.1. Generalized Arch (GARCH) Model 

The so-called generalized ARCH (GARCH) model proposed by [1] and [24], for substituting the ARCH model as 

follows: 

2 2 2

0

1 1

q p

t i t i i t j

i i

      

 

                            (5) 

[25] assume 0 0  ,  0, 1, 2,...,i i q   and 0, 1,2,...,j j q   , 1,2,...,j q . Further, 

1 1

1
q p

i j
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The most important point is that the GARCH model cannot capture the asymmetric performance. Later, for 

improving this problem, [26] proposed the EGARCH model and [27] proposed a GJR-GARCH model.  
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3.2. Exponential GARCH (EGARCH) Model 

[26] proposed the exponential GARCH (EGARCH) model as follows: 

     2 2

1 1

log log ,
p q

t t i j t j

i j

c g Z   

 

                                                               (7) 

where    t i i t i i t i t ig Z Z Z E Z        and t i
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 , see [22, 28] and [29] for more details on this model.  

 

3.3. GJR-GARCH Model 

[27] proposed a GJR-GARCH model, another asymmetric model. Define the sequence  t to t tz   and  t have 

normal distribution. So the GJR-GARCH model is written as follows: 

 2 2 2 2
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 see [30] for more details on the GJR-GARCH models. 

In this paper, we consider two popular distributions for the error namely, the normal and t results. Here we use the 

mean square error (MSE) of the estimators as a measure of prediction. The MSE measures the difference between 

the true values and estimated values, and accumulates all these difference together as a standard for the predictive 

ability of a model. The criterion is the smaller value of the MSE, the better the predicting ability of the model. For 

different GARCH models we used the log-retune of data and then implement statistical software R and some the time 

series packages “rugarch”, “fGarch” to estimate the model parameter. The results are given in the next section. Now, 

we apply the proposed method to predict the stock values for 30 days. Figure 1 shows the times series plot of TEDPIX 

index and mentioned data. 

 

Figure 1. The times series plot of TEDPIX index of data. 

It is obvious that the constant variance models such as ARIMA cannot be used for this data. Next, in the parametric 

GARCH models, we estimated the models’ parameters in Table 7.  
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Table 7. Results of estimated GARCH models parameters 

GJR-GARCH(1,1) EGARCH(1,1) GARCH(1,1) 
 

Student-t Normal Student-t Normal Student-t Normal 

0.012183 0.043795 -0.037495 -0.098972 0.012859 0.048948 Ω 

0.004743 0.008621 0.014869 0.021577 0.004861 0.008880 (s.e.( 

0.010207 0.000000 0.011677 0.000004 0.008156 0.000000 (p-value) 

0.200187 0.257400 0.024326 0.067623 0.190099 0.210812 𝛼1 

0.037655 0.042349 0.019164 0.019818 0.033597 0.030405 (s.e.( 

0.000000 0.000000 0.204317 0.000644 0.000000 0.000000 (p-value) 

-0.029225 -0.082249 0.306937 0.407212   𝛾1 

0.039214 0.039381 0.044408 0.039808   (s.e.( 

0.456107 0.036750 0.000000 0.000000   (p-value) 

0.813426 0.708689 0.961814 0.864019 0.808901 0.698507 𝛽1 

0.031818 0.036308 0.013364 0.020780 0.031918 0.036630 (s.e.( 

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 (p-value) 

4.690839  4.548663  4.698665  ν 

0.540187  0.524758  0.541265  (s.e.( 

0.000000  0.000000  0.000000  (p-value) 

Table 7. Results of estimated GARCH models parameters (continued) 

GJR-GARCH(2,2) 

Threshold=2 

GJR-GARCH(1,2) 

Threshold=2 

GJR-GARCH(2,1) 

Threshold=2  

Student-t Normal Student-t Normal Student-t Normal 

0.010095 0.053145 0.014242 0.052434 0.010095 0.053147 Ω 

0.003028 0.012922 0.005584 0.009808 0.004131 0.012221 (s.e.) 

0.000855 0.000039 0.010760 0.000000 0.014532 0.000014 (p-value) 

0.185803 0.191679 0.250616 0.317492 0.185790 0.191688 𝛼1 

0.059160 0.049519 0.055444 0.053236 0.061807 0.047710 (s.e.) 

0.001686 0.000108 0.000006 0.000000 0.002647 0.000059 (p-value) 

0.000000 0.142115     0.000000 0.142114 𝛼2 

0.033450 0.067260   0.066017 0.066064 (s.e.) 

0.999999 0.034608   0.999996 0.031463 (p-value) 

0.061654 -0.025446 -0.045160 -0.117541 0.061675 -0.025450 𝛾1 

0.035186 0.062667 0.051215 0.051302 0.087465 0.060257 (s.e.) 

0.079735 0.684706 0.377906 0.021953 0.480725 0.672760 (p-value) 

-0.109257 -0.083498   -0.109265 -0.083497 𝛾2 

0.043622 0.068416   0.089044 0.068112 (s.e.) 

0.012257 0.222297   0.219788 0.220248 (p-value) 

0.836999 0.637245 0.455737 0.223879 0.837005 0.637235 𝛽1 

0.377259 0.209443 0.255164 0.114954 0.031723 0.059265 (s.e.) 

0.026512 0.002346 0.074090 0.051469 0.000000 0.000000 (p-value) 

0.000000 0.000000 0.315226 0.425180   𝛽2 

0.302625 0.170582 0.229871 0.110967   (s.e.) 

1.000000 1.000000 0.170277 0.000127   (p-value) 

4.672339  4.692637  4.672250  ν 

0.532948  0.539747  0.536530  (s.e.) 

0.000000  0.000000  0.000000  (p-value) 

Then these models are used to predict the stock values in Table 8. In this Table, the mean square errors are 

calculated. The results show that for TEDPIX prediction the best model with minimum MSE is GJR-GARCH(2,2)-

Normal. Next, we compare this model with a fuzzy model in terms of minimum mean square error. Finally, based on 

Fuzzy model MSE for 30 days forecasting is 7428405 while based on GJR-GARCH (2,2)-Normal the value of the 

mean square error is 17890446 which to too large, so we recommend the fuzzy Markov chain model for Iran stock 

prediction.  
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Table 8. RMSE of different models. 

           Models                                        RMSE 

0.9566516 GARCH(1,1) - Normal 

0.9928256 GARCH(1,1) - Student-t 

0.9604817 EGARCH(1,1) - Normal 

0.9918592 EGARCH(1,1) - Student-t 

0.9528201 GJR-GARCH(1,1) - Normal 

0.9926979 GJR-GARCH(1,1) - Student-t 

0.9513464 GJR-GARCH(2,1) - Normal 

0.9926126 GJR-GARCH(2,1) - Student-t 

0.9598617 GJR-GARCH(1,2) - Normal 

0.9927451 GJR-GARCH(1,2) - Student-t 

0.9513463 GJR-GARCH(2,2) - Normal 

0.9926125 GJR-GARCH(2,2) - Student-t 

 

4. Conclusion 

Prediction of stock is an important and complicated task. Due to its importance, in this paper, we discussed 

different methods of stock prediction. It is observed that for Iran stock market the Fuzzy method work better than 

other Parametric GARCH models in terms of minimum mean square error (MSE) in prediction. 
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