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Abstract 

 

For a heat engine working between two heat reservoirs, a hot reservoir at high temperature TH and a cold reservoir at 

low temperature TL, an effective temperature and an effective efficiency are introduced. The effective temperature is 

defined as the square root of the ratio between the net work output of the heat engine wnet and the SOT function (a 

new function introduced in this article). The SOT function is defined as the negative of the cyclic integral of the heat 

transfer change divided by the square of the temperature. The effective efficiency of the heat engine is defined (a 

novel definition) as one minus the ratio between the low temperature and the effective temperature. The effective 

temperature and the effective efficiency are worked out in details for the Carnot heat engine and the air standard 

cycles (Otto, Brayton, Stirling, and Ericsson). It was found for the considered cycles that the effective temperature is 

given by the expression 𝑇eff = √𝑇𝐿𝑇𝐻  and the effective efficiency is given by the expression 𝜂eff = 1 − √𝑇𝐿 𝑇𝐻⁄  for 

all the considered cycles. The importance of these two proposed measures is twofold: educational and they could be 

used as a quick tool by the designer. 

 

1. Introduction 

For a heat engine working between two heat reservoirs, a 

hot reservoir at high temperature TH and a cold temperature 

at low temperature TL, what is the maximal achievable 

efficiency by the heat engine? This question was answered 

by Sadi Carnot at the beginning of the 19th century by using 

methods of thermodynamics [1-2]. It was found that the 

maximal efficiency is limited by the Carnot efficiency 𝜂𝐶 =
1 − 𝑇𝐿 𝑇𝐻⁄ . It is well known that the Carnot cycle is the most 

efficient cycle operating between these specified temperature 

limits. The Carnot cycle includes four branches: isentropic 

compression, isothermal heat addition, isentropic expansion 

and isothermal heat rejection [3]. The Carnot cycle is an 

idealized thermodynamic cycle and is not appropriate to 

describe real heat engines such as air standard cycles. 

The Otto cycle, named after Nikolaus A. Otto, is the ideal 

cycle for spark-ignition reciprocating engines. The Otto 

cycle describes the ideal behavior of spark-ignition engines, 

in which the piston traces four strokes (four-stroke internal 

combustion engine). The internal combustion engine has 

intake and exhaust valves. These valves are closed during 

compression and expansion and they are open while 

exchanging intake (air mixture) and exhaust (combustion 

gases) [3].  

The Brayton cycle, named after George Brayton, is used 

to describe the behavior of the reciprocating oil-burning 

engine that was developed by Brayton around 1870. The 

Brayton cycle is used today to describe the behavior of gas 

turbines which includes four processes: isentropic 

compression and expansion, and constant pressure heat 

addition and rejection. The working fluid is an ideal gas [3].  

Stirling and the Ericsson engines are considered external 

combustion engines. That is, the energy flows to the cylinder 

from outside. External combustion has some advantages 

compared to internal combustion. Among these is the 

flexibility of choosing thermal energy sources, less air 

pollution due to complete combustion, more efficient use of 

energy sources, closed cycles operation which enables 

choosing best working fluids such as Hydrogen and Helium. 

The Stirling engine includes four processes: isothermal 

compression, isochoric heat addition, isothermal expansion 

and isochoric heat rejection. The Ericsson cycle differs from 

the Stirling cycle by the heat addition and heat rejection 

processes. While in the Stirling cycle these are isochoric 

processes, in the Ericsson cycle they are isobaric processes 

[3]. 

Curzon & Ahlborn [4] investigated the efficiency of a 

heat engine at maximum power operation. They considered 

in 1975 a model of heat engine (usually called the Curzon-

Ahlborn engine) with finite heat transfer rates. The heat 

engine produces zero power output in the extremes of very 

slow operation and very fast operation. It was found that the 

heat engine attains a maximum power point with the 

efficiency at this point being one minus the square root of the 

ratio between the temperature of the cold reservoir and the 

temperature of the hot reservoir 𝜂𝐶𝐴 = 1 − √𝑇𝐿 𝑇𝐻⁄ . Bejan 

[5] showed in 1994 that this result of heat engine efficiency 

at maximum power operation was previously derived by 

Novikov in 1957 when analyzing the performance of nuclear 

power plants [6]. 

Leff [7] considered four air standard cycles (Otto, Disel, 

Brayton, Atkinson) and found that the efficiency of these 

cycles at maximum power operation is similar to the 

achieved result by Curzon-Ahlborn. 

The methods of irreversible thermodynamics and finite 

thermodynamics have been used to analyze thermodynamic 

systems [8-26]. Analysis of the air standard cycles (Otto and 

others) could be found elsewhere [27-53]. 

In this article we ask: what are the effective temperature 

and the effective efficiency of a heat engine working 
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between two heat reservoirs for the cycles described above? 

The answers to these questions are given in the following 

paragraphs. 

The following sections describe: the SOT function in 

section II, the model of the heat engine in section III; the 

Carnot cycle is considered in section IV, the air standard 

cycles are considered in section V, numerical examples are 

given in section VI, and finally summary and conclusions are 

given in section VII. 

 

2. The SOT Function 

For a thermal process that goes from state A to state B, 

the negative integral of the heat transfer change divided by 

the square of the temperature from state A to state B is given 

by (a new function introduced in this article and it is called 

by the author the SOT function): 

 

2

qBSOT A
T


= −

 
(1) 

 

For isothermal process the SOT function is given by: 

 
1

2
B

SOT qA
T

= −    
(2) 

 

The first law of thermodynamics for a process with ideal 

gas working fluid is given by: 

 
q dE pdV = +  (3) 

 

By considering the various process types and using the 

first law of thermodynamics (Eq. 3), makes it easy to write 

explicit forms of the SOT function. In the following 

subsections some typical processes are considered. 

 

2.1 Constant Volume Process 

For the constant volume process (v=const.), the heat 

transfer change is proportional to the temperature change 

(dT) with constant volume heat capacity proportionality 

factor (cv). In this case the SOT function is given by: 

 














−=

BTATvcSOT
11

 

(4) 

 

2.2 Constant Pressure Process 

For the constant pressure process (p=const.), the heat 

transfer change is proportional to the temperature change 

(dT) with constant pressure heat capacity proportionality 

factor (cp). In this case the SOT function is given by: 

 

1 1
SOT c

p T TA B

 
= − 

 
 

  
(5) 

 

2.3 Constant Temperature Process 

For the constant temperature process (T=const.), the heat 

transfer change is proportional to the volume change (dv) 

with pressure proportionality factor (p). In this case the SOT 

function is given by: 

 

ln
vR ASOT

T vB

 
=  

 
 

 (6) 

 

2.4 Isentropic Process 

For the isentropic process - constant entropy process 

(s=const.), the heat transfer change is zero. In this case the 

SOT function is given by: 

 

0=SOT  (7) 

 

For a heat engine going in a cycle the SOT function is 

given by: 

 

−=
2T

q
SOT



 

(8) 

 

3. Effective Temperature and Efficiency of Heat Engines 

Consider a heat engine working between two heat 

reservoirs, a hot reservoir at high temperature (TH) and a cold 

reservoir at low temperature (TL). The schematics of the heat 

engine are depicted in Figure 1. 

 
Figure 1. Schematics of the engine working between two heat 

reservoirs, a hot reservoir at high temperature TH and a cold 

reservoir at low temperature TL. The heat input to the heat 

engine is QH and the heat rejection from the heat engine is 

QL. The net work output wnet is given by the QH-QL. 

 

The net work output wnet is calculated by means of the 

first law of thermodynamics (Eq. 3) and is given by: 

 

net
w Q Q

H L
= −  (9) 

 

The SOT function is given by Eq. (8). 

The effective temperature is defined as the square root of 

the ratio between the net work output and the SOT function, 

and is given by: 

 

net
eff

w
T

SOT
=  (10) 

 

Finally, the effective efficiency is defined as the 

difference between unity minus the ratio between the low 

temperature and the effective temperature, and is given by: 

1
eff

eff

TL

T
 = −  

(11) 

 

4. The Carnot Heat Engine 

The schematics of the Carnot heat engine is depicted in 

Figure 1. The net work output is given by (Eq. 9). The Carnot 

cycle includes two processes: heat addition and heat rejection 

at constant temperatures (high and low) connected with two 

isentropic (reversible adiabatic) processes. The entropy of 

the heat engine is calculated by means of the second law of 

thermodynamics and is given by: 

 

0
q

T


=  (12) 

 

By applying the assumptions of the Carnot cycle, Eq. 

(12) could be written explicitly as follows: 
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Q QH L

T TH L

=
 

(13) 

 

The SOT function for the Carnot cycle is derived by 

means of Eq. (1) and is given by: 

 

2 2

Q QL HSOT
T TL H

= −
 

(14) 

 

Applying Eq. (13) to Eq. (4) aids to simplify the 

expression for the SOT function. After algebraic 

manipulation and using Eq. (9), the SOT function of the 

Carnot heat engine simplifies to the following: 

 

netw
SOT

T TL H

=  
(15) 

 

Then, the effective temperature is defined as the 

geometric mean of the high temperature and the low 

temperature, a result suggested by (Eq. 15) and is given by: 

 

net
eff

w
T T TL H SOT

= =  (16) 

 

Finally, the effective efficiency for the Carnot heat 

engine is given by: 

 

1 1
eff

eff

T TL L

T TH

 = − = −
  

(17) 

 

5. Air Standard Cycles 

5.1 Ideal Otto Cycle 

The ideal Otto cycle is used to estimate the efficiency of 

spark ignition (SI) engine (Otto engine). The schematics of 

the Pressure – Volume (P-V) diagram of the ideal Otto cycle 

is shown in Figure 2. The cycle includes four processes: 1→2 

isentropic compression, 2→3 constant volume heat addition, 

3→4 isentropic expansion, and 4→1 constant volume heat 

rejection. 

 
Figure 2. Schematics if the ideal Otto cycle. 

 

For a given initial state (pressure P1, volume V1, 

temperature T1) with known highest temperature T3, the 

application of the thermodynamic state relations and the first 

law of thermodynamics of the different branches lead to the 

following results: 

The heat input to the engine QH is given by: 
 

)1(3)23( aTvcTTvcHQ −=−=
 

(18) 

 

 

 

where cv is the constant volume heat capacity, 𝜏 is the ratio 

between T1 and T3 and a (𝑎 = 𝑟𝑘−1) is the compression ratio 

r raised to the power (k-1) with k equals the ratio between 

constant pressure heat capacity (cp) and constant volume heat 

capacity (k = cp/cv) [1]. 

The heat rejection from the engine is given by: 

 
(1 )

( )4 1 3
a

Q c T T c TL v v a

−
= − =  (19) 

 

where T4 is the temperature at state 4. 

The net work output (wnet) extracted by the engine is 

given by: 

 

( )
1

1 1
net 3

w Q Q c T a
H L v a


 

= − = − − 
 

 (20) 

 

The SOT function is calculated based on Eq. (8). Noting 

that the contributions of the isentropic branches to the SOT 

function are zero, the resulting SOT function for the ideal 

OTTO cycle is given by: 

 

( )
1

1 1
Otto

1

cvSOT a
T a


 

= − − 
 

 
(21) 

 

By comparing Eqs. (20) and (21) it is observed that the 

effective temperature could be deduced and is given by: 

 

net
1 3eff

Otto

w
T T T

SOT
= =  (22) 

 

The effective efficiency for the ideal OTTO cycle is 

given by Eq. (17), where T1 is replaced by TL and T3 is 

replaced by TH. 

 

5.2 Ideal Brayton Cycle 

The ideal Brayton cycle is used to estimate the efficiency 

of gas turbines. The schematics of the Pressure – Volume (P-

V) diagram of the ideal Brayton cycle is shown in Figure 3. 

The Brayton cycle includes four processes: 1→2 isentropic 

compression, 2→3 constant pressure heat addition, 3→4 

isentropic expansion, and 4→1 constant pressure heat 

rejection. 

 
Figure 3. Schematics if the ideal Brayton cycle. 

 

For a given initial state (pressure P1, volume V1, 

temperature T1) with known highest temperature T3, the 

application of the thermodynamic state relations and the first 
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law of thermodynamics of the different branches lead to the 

following results: 

The heat input to the engine QH is given by: 

 
)1(3)23( aTpcTTpcHQ −=−=
 (23) 

 

where cv is the constant volume heat capacity, 𝜏 is the ratio 

between T1 and T3 and a (𝑎 = 𝑟𝑘−1) is the compression ratio 

r raised to the power (k-1) with k equals the ratio between 

constant pressure heat capacity (cp) and constant volume heat 

capacity (k = cp/cv) [1]. 

The heat rejection from the Brayton cycle is given by: 

 

a

a
TpcTTpcLQ

)1(
3)14(

−
=−=

 
(24) 

 

where T4 is the temperature at state 4. 

The net work output (wnet) extracted by the Brayton cycle 

is given by: 
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


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
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(25) 

 

The SOT function is calculated based on Eq. (8). Noting 

that the contributions of the isentropic branches to the SOT 

function are zero, the resulting SOT function for the ideal 

Brayton cycle is given by: 

 

( )
1

1 1
Brayton

1

cp
SOT a

T a


 
= − − 
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(26) 

 

By comparing Eqs. (25) and (26) it is observed that the 

effective temperature could be deduced and is given by: 

 

net
1 3eff

Brayton

w
T T T

SOT
= =

 
(27) 

 

The effective efficiency for the ideal Brayton cycle is 
given by Eq. (17), where T1 is replaced by TL and T3 is 

replaced by TH. 

 

5.3 Ideal Stirling Cycle 

The ideal Stirling cycle is used to estimate the efficiency 

of Stirling engine. The schematics of the Pressure – Volume 

(P-V) diagram of the ideal Stirling cycle is shown in Figure 

4. The cycle includes four processes: 1→2 isothermal 

compression, 2→3 constant volume heat addition, 3→4 

isothermal expansion, and 4→1 constant volume heat 

rejection. 

 
Figure 4. Schematics if the ideal Stirling cycle. 

 

For a given initial state 1 with known highest temperature 

T3, the application of the thermodynamic state relations and 

the first law of thermodynamics of the different branches 

lead to the following results: 

The heat input to the Stirling cycle QH is given by: 

 
)ln(3)23( rRTTTvcHQ +−=  (28) 

 

where cv is the constant volume heat capacity, 𝜏 is the ratio 

between T1 and T3 and a (𝑎 = 𝑟𝑘−1) is the compression ratio 

r raised to the power (k-1) with k equals the ratio between 

constant pressure heat capacity (cp) and constant volume heat 

capacity (k = cp/cv) [1]. 

The heat rejection from the Stirling cycle is given by: 

 

)ln(1)14( rRTTTvcLQ +−=  (29) 

 

where T4 is the temperature at state 4 and R is the ideal gas 

constant . 

The net work output (wnet) extracted by the Stirling cycle 

is given by: 

 
(1 ) ln( )

3
w Q Q c RT r

net H L v
= − = −  (30) 

 

The SOT function is calculated based on Eq. (8). Noting 

that the contributions of the isentropic branches to the SOT 

function are zero, the resulting SOT function for the ideal 

Striling cycle is given by: 

 

( )
1 1 ln( )

ln( ) 1
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1 3 1

R r
SOT R r

T T T


 
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(31) 

 

By comparing Eqs. (30) and (31) it is observed that the 

effective temperature could be deduced and is given by: 

 

net
1 3eff

Stirling

w
T T T

SOT
= =

 
(32) 

 

The effective efficiency the ideal OTTO cycle is given 

by Eq. (17), where T1 is replaced by TL and T3 is replaced by 

TH. 

 

5.4 Ideal Ericsson Cycle 

The ideal Ericsson cycle is used to estimate the efficiency 

of the Ericsson engine. The schematics of the Pressure – 

Volume (P-V) diagram of the ideal Ericsson cycle is shown 

in Figure 5. The cycle includes four processes: 1→2 

isothermal compression, 2→3 constant pressure heat 

addition, 3→4 isothermal expansion, and 4→1 constant 

pressure heat rejection. 

 
Figure 5. Schematics if the ideal Ericsson cycle. 
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Table 1. Numerical Results 

Power Source TL ºC TH ºC Carnot efficiency 
Effective 

efficiency 

Observed 

efficiency 
Effective  temperature K 

West Thurrock (UK) coal 

fired power plant 
25 565 64.4% 40.4% 36% 500 

CANDU (Canada) nuclear 

power plant 
25 300 48% 27.9% 30% 413 

Larderello (Italy) 

geothermal power plant 
80 250 32.5% 17.8% 16% 430 

Stirling/Ericsson 27 600  41.4  512 

Otto 27 1800 85.5 62  789 

Brayton 27 1100 78.1 53.2  642 

 

 

For a given initial state 1 with known highest temperature 

T3, the application of the thermodynamic state relations and 

the first law of thermodynamics of the different branches 

lead to the following results: 

The heat input to the engine QH is given by: 

 

)ln(3)23( rRTTTpcHQ +−=  
(33) 

 

where cv is the constant volume heat capacity, 𝜏 is the ratio 

between T1 and T3 and a (𝑎 = 𝑟𝑘−1) is the compression ratio 

r raised to the power (k-1) with k equals the ratio between 

constant pressure heat capacity (cp) and constant volume heat 

capacity (k = cp/cv) [1]. 

The heat rejection from the engine is given by: 

 
( ) ln( )

4 1 1
Q c T T RT r

L p
= − +  

(34) 

 

where T4 is the temperature at state 4. 

The net work output (wnet) extracted by the engine is 

given by: 
(1 ) ln( )

3
w Q Q RT r

net H L
= − = −  (35) 

 

The SOT function is calculated based on Eq. (8). Noting 

that the contributions of the isentropic branches to the SOT 

function are zero, the resulting SOT function for the ideal 

Ericsson cycle is given by: 

 

( )
1 1 ln( )

ln( ) 1
Ericsson

1 3 1

R r
SOT R r

T T T


 
= − = − 

 
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(36) 

 

By comparing Eqs. (35) and (36) it is observed that the 

effective temperature could be deduced and is given by: 

 

net
1 3eff

Ericsson

w
T T T

SOT
= =

 
(37) 

 

The effective efficiency the ideal OTTO cycle is given 

by Eq. (17), where T1 is replaced by TL and T3 is replaced by 

TH. 

 

6. Numerical Results 

Table 1 compares the effective efficiency with Carnot 

efficiency and with the observed efficiency for some real 

plants. As can be seen in the following table, the effective 

efficiency is much closer to the observed data [54]. 

 

 

7. Summary and Conclusions 

For a heat engine working between two heat reservoirs, a 

hot reservoir at high temperature TH and a cold reservoir at a 

low temperature TL the Carnot cycle and Curzon-Ahlborn 

heat engine were shortly reviewed and their performance 

efficiencies are given via the Carnot efficiency and the 

Curzon-Ahlborn respectively. 

The new terms SOT function, effective temperature and 

the effective efficiency were introduced. The SOT function 

was defined as minus the cyclic integral of the heat change 

divided by the temperature squared. The effective 

temperature was defined as the square root of the ratio 

between the net work output and the SOT function, and 

finally the effective efficiency was defined as one minus the 

ratio between the cold reservoir temperature and the effective 
temperature. 

The SOT function was calculated for different 

thermodynamic processes: isochoric, isobaric, isothermal 

and isentropic.  

A model of heat engine was considered and general 

expressions of the  SOT function, effective temperature and 

effective efficiency were given as useful tools for the 

designer. These expressions were applied to different 

thermodynamic cycles: The Carnot cycle and air standard 

cycles (Otto, Brayton, Stirling and Ericsson). 

The effective temperature for the considered heat engines 

was given as the square root of the product of the reservoirs' 

temperatures and the efficiency was given as one minus the 

square root of the ratio between the cold reservoir 

temperature and the hot reservoir temperature. 

The derived expressions can serve two important 

purposes: in education and for a quick estimation tool for 

heat engine designers.  
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