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Abstract  
 

Developed during  recent two decades the new exposition of thermodynamics developed by Gyfropoulos and 

Beretta [1] is aimed both to remove logical circularities in teaching as well in removing obstacles for natural 

generalization of this science.  Keeping the line of reasoning, following Gyftopoulos and Beretta, we will introduce 

the basic concepts of thermodynamics without the notion of “heat” and “work”, and will extend the Gyftopoulos and 

Beretta exposition into three-dimensional continuum thermodynamics [2]. In proposed approach notion of “energy” 

and “energy interactions” play a dominant role. The main problem connected with the internal energy concept as a 

form of ,,energy storage’’ and the transformations of different forms of energy are discussed. Balance of energy is 

finally presented as a sum of internal, kinetic, potential and electromagnetic energies in the system that are 

compensated by the total energy flux, which consists of work, heat, chemical, electrical, magnetical and radiative 

energy fluxes at the system boundaries [3]. The law of energy (and mass) conservation can be considered as the 

most important one, which is superior over any other laws of nature. An example of “neo-classical” Navier-Stokes 

equation, being a model thermodynamically consistent, is developed and presented in details.  
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1. Introduction 

Thermodynamics is probably the oldest paradigm of 

science on the Earth, even oldest than astronomy and 

mathematics. Its main goal is to describe nature phenomena 

in terms of “peripatetical motion” and its “entelechy” [1]. 

Nowadays, thermodynamics possesses the same aims but 

expressed in modern technical language: to describe all 

known [or yet unknown] phenomena in terms of energy and 

its possibility for conversion. For example, nowadays, the 

most related notion to “entelechy” is internal energy. 

From the view point of bases of our civilization, it is 

important that there exist a concept that unifying our 

understanding of experience [3,4]. But it should be 

remembered that the popular use of the word “energy” 

refers to capacity of certain material bodies to perform 

work or other useful tasks. This capacity to work represents 

another quantity that scientist call “available energy”. If 

distinct from “energy”, the concept of “available energy” is 

related to both first and second law of thermodynamics. In 

other words, the concept of energy is the essence only of 

the first law, and up to date, cannot be involved as a 

postulate coming from other principles of science, including 

even Quantum Field Theory, where “energy” is always 

before “action” [5-15]. 

Generally, the main aim of this paper is a specific 

adaptation of the Gyftopoulos-Beretta approach to three-

dimensional, local presentation of the laws of 

thermodynamics on the ground of continuum physics. We 

have shown that reasoning based on global formulation in 

time and space can be adapted to a local formulation of 

thermodynamics within the framework of continuum 

thermodynamics, with some consequences for the co-called 

Irreversible Thermodynamics and Extended Non-

equilibrium Thermodynamics.  

 

2. Balance of Thermodynamic Parameters 

The fundamental question of thermodynamics is how 

state parameters [global: dAxX
A

kk 
)()(

  or local] evolve 

during physical processes, for instance, how specific 

volume and specific entropy change during simple 

izoenergetetic process in water steam. Stating on the 

original line of reasoning (Carnot, Rankine, Reech, 

Clausius, Gibbs) and extending  Hatsopoulos, Keenan,  

Gyftopoulos and  Beretta  approach, we propose to write 

following evolution equations [1,5]: 
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differentiation in time ( dtd / ), adapted for type tensor, 
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, Eq. (1) reduce to the volume and 

entropy evolution equations respectively: 
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Here appears some “fluxes” of volume and entropy but 

defined, according to original Rankine-Clausius reasoning, 

through corresponding fluxes of energy. However, looking 

for more generic quantities, instead of these particular 

definitions one can define the local volume flux 
V

h


 and 

local entropy flux 
S

h


  to be: 
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In Eqs. (2) and (3), according to Clausius’ pioneering 

assumption, some uncompensated energy transformations  

)(k
N ; 

V
VV

dVnN   ; 
V

SS
dVnN   are present in 

theses balances. In practice, the specific densities 
V

n ; 
S

n    

are treated as irreversible production of a state control 

variable. However, uncompensated heat transformation  

S
N   has been introduced by Clausius in 1854, yet before 

his own definition of “disaggregation” (1862) and 

“entropy” (1865) [4]. However, uncompensated work 

transformation 
V

N  has been also introduced for balance of 

chemical amounts by Duhem [12]. Remembering that  


V

dVvV   and  
V

dVS   in local statement, the 

balances (2) take a final form: 

 

VV
nhv
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d
 


div  ;    SS

nh
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d
 


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It should be added that the thermodynamical volume v   is 

not a simple inverse of density  . Another then 

thermodynamical arguments for balance of volume has 

recently been introduced by H. Brenner [2]. 

 

2.1 Constitution of the Entropy and Volume Flux 

What is a role of the entropy and volume balance [Eq. 

(2) or Eq. (4)] ? Do and should be treated as equilibrium or 

non-equilibrium quantities? Why within the local 

formulations of thermodynamics these balances are 

omitted?  For instance, it is well-known that Navier-Stokes 

equation, without balances Eqs. (4)1 and (4)2 is 

thermodynamically correct and consistent? 

Therefore, keeping the original Sadi Carnot line of 

reasoning, where balance of volume are explicitly used for 

calculations, and, additionally, balance of entropy is a main 

postulate expressed as a “law of caloric conservation”, we 

may assume that state variables V  and S  of working 

continuum change both under conversion and external 

sources of process described by a proper set of equations. 

From thermodynamical point of view, no details of 

momentum transport are important but the “evolution” of 

main intensive state variables. Thus, solving of balances 

Eqs. (4)1 and (4)2 are only possible if fluxes of appropriate 

quantities (e.i. local volume flux 
V

h


 and local entropy flux 

S
h


) are defined by some constitutive relations. 

Both vectors: 
V

h


 and 
S

h


  must have also a contribution 

to the energy flux vector – taking Eqs. (2) and (3) into 

account, defining additional mechanical volumetric  
m

F


   

and thermal  
q

F


  energy flux to be: 

 

Vm
hpF


       and  
Sq

hF
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                                         (5) 

 

Parameters p   and    should be treated here as some 

lagrangian multipliers [8]. Proposed here the volume flux of 

energy 
V

h


  is consistent with a model of diffuse volume 

transport recently developed by H. Brenner [2]. He defines 

the volume flux by a kind of volume velocity 
vV

vh


   

which is fundamentally different from the mass velocity  v


 

introduced 260 years back by Euler. Brenner underlines the 

thermodynamical role of 
v

v


 velocity calling it’s “the work 

velocity”. Surprisingly, such extended fluid kinematics with 

two fluid velocities is independently postulated by the 

GENERIC (General Equation for Non-Equilibrium 

Reversible-Irreversible Coupling) - field theoretical 

treatment of continuum physics, discovered in pioneering 

paper by Grmela and Öttinger [13]. 

 

2.2 Balance of a Volume Tensor 

The balance of thermodynamical volume eq. (4)1 cannot 

be directly treated as another form of balance of mass, since 
1 v . Balance (4)1 should be interpreted as a balance of 

state variable for mechanical-type of contribution to the 

internal energy. In solid working continuum the role of 

thermodynamic volume plays an elastic tensor of 

deformation or, more generally, to the symmetric volume 

tensor 
jiij

eevv


 . Then, instance of (4)1  we postulate: 

V
nv

dt

d 
  hdiv   .                                                       (6) 

 

Physical interpretation of the volume flux 

kjiijk
eeeh


h  is rather complex – in the literature it 

appears in the case of so-called weekly non-local plasticity 

[14]. However, the irreversible production of volume tensor 

V
n


  is present in many irreversible solid phenomena (creep 

deformation tensor, slip and plastic deformation tensor, 

etc). For instance, heat engines used in aeronautics are 

based on zirconia solids as a working continuum and the 

austenite-martensite phase transition as a main form of 

energy storage. It is observed that even after few thousand 

cycles, this working continuum degrades so much that it 

appears of irreversible plastic deformation induced by a 

cyclic phase transition. 

 

2.3 Partial Balance of Kinetic Energy 

Recognized by Coriolis (1842) and Umov (1878), 

actually, we balance the kinetic energy of a simple 

continuum by using the balance of momentum (Newtonian 

equation of motion). The scalar property of energy will be 

related with momentum only if we do scalar multiplication 

of momentum balance by the specific momentum v


: 
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Assuming, that tensor of momentum flux for simple 

working fluid is defined as additive contribution of 

spherical pressure tensor and the viscous laminar fluid 




 It  we can also split contribution of energy into 

recoverable and dissipative parts:  
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In the above equation we note: the rate of change of 

kinetic energy depends on gain of production bv

  taken 

from diminishing gravitational energy, the amount of 

energy conversion 
1

dt

d
 [where the pressure    

means mechanical total pressure which is measurable via a 

barometer], part of energy dissipation )(tr d


  [where d


 is 

symmetric part of the velocity gradient], and the exchange 

of energy by a part of mechanical flux 

vhpvF
Vwork


  - . It means that only in a partial 

balance of energy we can observe explicitly three categories 

of energy transformations: production, conversion and 

dissipation.  

 

3. Neo-classical Navier-Stokes Equations 

Let us consider as shortly as possible an example of the 

Gyftopoulos-Beretta exposition of thermodynamics strictly 

adapted to the classical Navier-Stokes-Fourier equations. It 

leads to a neo-classical Navier-Stokes model of working 

fluid which is a simple viscoelastic, “heat” conducting 

fluid. The recoverable constitutive relations are expressed 

only by the specific state parameters: velocity v


 (specific 

density of momentum); specific volume v  and specific 

entropy  . Specific internal energy is a function of 

intensive parameters ),(  v . 

Let us start from the primal energy balance in the form 

of a global equality: 

 

  dAnFFKU
dt

d

V
heatwork


 )Φ(     .                       (9) 

 

Here, for our system A [e.g.  a simply connected body B], 

with a total volume V and a boundary V , oriented with a 

normal vector n


, we have denoted internal energy, by 


V

ρε dVU ; kinetic energy, by: 
V

 dVρK  ; 

potential energy of body forces, by: 
V

 dVρ .  Eq. (1) 

expresses, that total change of stored energy of a body B is 

compensated by energy being supplied (extracted) through 

the mechanical energy flux: 
Vwork

hpvtF


  and the 

thermal energy flux: 
Sheat

hF


 . Definitions for these 

fluxes are fundamental for the primal statement of energy 

balance in the Carnot sense – they contain total, and not 

only reversible, momentum flux t


and total not only 

diffusive flux of entropy 
S

h


 as well as the volume flux 
V

h


. 

Even though the mechanical and thermal energy fluxes are 

applied on disjoint side surfaces 
workheat

AAV  , there is 

no mathematical obstacle whatsoever, to employ Stokes’ 

theorem on the divergence. Assuming that: 

0div  v
dt

d 
  or, in other words – satisfaction of mass 

balance, Eq. (9) may be rewritten: 

 

0)](div

)()div)([(




dVhphvt

v
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V




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

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 .                (10) 

This equation is always true, regardless the set of 

governing equations (that is, equations for mass, 

momentum, volume and entropy balances) is satisfied or 

not. It will now be shown that, if the fields and parameters 

of state satisfy conditions supposed by governing equations, 

equation of energy receives a very important form allowing 

for further restrictions to describing fields – it means that 

even though the solutions may satisfy conservation 

equations for mass, momentum, volume and entropy, they 

need not to satisfy conservation equation for energy, and in 

consequence lead to generating energy ex nihilo. 

In Eq. (10), according to Brenner’s [2] concept of 

volume balance, we introduce the following splitting of the 

volume flux: 

 

vv
hvh '


                                                                        (11) 

 

which is consistent with postulate that the volume flux is 

identical with the volume velocity: pvvh
Bvv
grad


 [2]. 

Material derivatives of kinetic and potential energy are 

vv
   and vbx

x


 







  respectively. The following 

identities also occur: vtvtvt


grad)div()(div   and 

 graddiv)(div
S


SS

hhh


. According to the well-

accepted tradition, the velocity gradient will be denoted by 

vl


grad  and decomposed into symmetric and anti-

symmetric parts wdl


 . Temperature gradient will be 

denoted by grad
S
g


 and pressure gradient by 

p
V

gradg


. 

Through addition and subtraction of )(
S

n    and 

)(
V

nvp    , the integral of equation (10) becomes: 
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Once the fields vhhvt
VS
,,,,,,


  satisfy balance equations 

of mass, momentum, moment of momentum Ttt


  as well 

as volume and entropy, including, that dtlt
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 and 

Iptt


'  energy Eq. (12) reduces to: 
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Even if a thermo-elastic fluid is expressed via scalar state 

parameters ,v , what is much simple than in solids, the 

mechanism of the internal energy storage is more complex, 

due to multiplicative, not additive, contribution to 

),( v  . The time material (not the spatial one) rate of 

internal energy is: v
v


















 . Therefore, by taking 

material derivative of the internal energy, we obtain: 
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Working fluid will be thermo-elastic in the Carnot sense if, 

and only if thermodynamic pressure and temperature are 

connected with internal energy by equations of state 

v
p






 , 








 . These two constitutive relations are 

fundamental for proving that balance of total energy can be 

fulfilled in any processes governed by balance of mass, 

momentum, moment of momentum, volume and entropy.  

In the case of ideal gas, the internal energy depends on two 

constitutive coefficients 
v

c  and 
p

c - the specific heat in 

constant volume and pressure, respectively. From this pair; 

pv
cc ,  one can obtain another pair – Carnot: (1824)  

 

vp
ccR   and  Poisson (1831): 
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c
 : 

)exp()(
1
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v
c
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


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
  ,                                      (15) 

 

which leads to the well-established constitutive equations: 
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v
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Finally, remaining part of the balance of energy is: 
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This expression say that dissipative contribution to energy 

balance should be self-equilibrated, since dissipation does 

not mean creation ex nihilo. Eq. (17) can be also interpreted 

as an “inner dissipative conversion of energy”. This mean 

that mechanical dissipative energy can convert into thermal 

dissipative energy and reverse, thermal dissipative energy 

can convert to mechanical dissipative energy. The last 

statement is rather original in the framework of common 

understanding of second law of thermodynamic. Thus, in 

some sense Eq. (17) could be treated to be definitions of 

irreversible contribution 
V

n  (volume production) and 
S

n  

(entropy production). If these contributions would be non-

negative 0
V

n , 0
S

n  then remaining parts are also non-

negative 0
SS

h g


; 0' 
VV

h g


; 0' dt


. 

The condition of self-equilibrated dissipation Eq. (17) 

can be fulfilled also if we define 
V

n  and 
S

n  in the form of 

specific dissipation potential  . In fluid, the momentum 

flux tensor 't


 becomes an additive composition of spherical 

and shape viscous contributions; ea. : 


 Ipt )(' . In 

general, the viscous part is traceless: 0)(tr 


, and the 

volume-like viscous part is a spherical one: Ip


)(  . 

Thus, the expression dt

'  in Eq. (17) turns into: 

dvp
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However, the viscous work and heat diffusion properties 

depend on the following dissipative potential: 
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where 


k  is an entropy diffusion coefficient connected with 

the Fourier conductivity coefficient k  simply as kk 

  

and   and '  are the Stokes shear and volumetric 

viscosity coefficients and 
B

  is the Brenner coefficient. 

Making use of Eq. (10) and the definitions of diffusive 

fluxes: 
d

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finally we obtain the well-established constitutive 

equations:  
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tr'   .                     (20) 

 

Additionally, several restrictions are imposed on 

constitutive coefficients – there are – the Alexis Petit 

inequalities 0
vp

cc ; the Lamè-Kowalski inequality 

0


k , the Duhem inequalities 0 , 0'32    and so 

on. From positivity of dissipation functional it follows also 

positivity of the Brenner coefficient  0
B

  [2]. 

 

4. Conclusions 

Summarizing the consequences of the Gyftopoulos-

Beretta thermodynamics exposition – the presented above  

mathematical model of continuum – the “neo-classical” 

Navier-Stokes - has a thermodynamic consistency, what 

means that unknown fields assigned from a proper set of 

governing equations  must additionally fulfill the condition 

of not creating energy from nothing [ 0
e
S , Eq. (17)]. 

Second consequence is: energy conversion within the 

working fluid is impossible if state parameters are defined 

by other than Eq. (16) constitutive equations. For 

multiplicative form of specific energy (like Eq. (15)) is, the 

energy conversion is possible without additional 

assumption, however, for an additive expression of internal 

energy, like in thermo-elastic solids, or thermo-electric  

fluids, convertibility is assured only by additional crossing 

term in constitutive relations. 

Third consequence is the condition of self-equilibrated 

dissipation, which follows from condition 0
e
S  and 

frequently postulated in the literature the principle of 

mutual “inner conversion” of dissipative energy. Therefore, 
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numerous inequalities [like the Drucker-Prager inequality 

for granular solids] used in the literature have their sources 

in the first, not in the second, law of thermodynamics.  

Finally, it means that the classical Clausius-Duhem 

inequalities have no deeper foundations and nowadays 

should be treated as historic no right composition of 

Clausius’ global entropy inequality with Duhem’s local 

energy inequality. 

Fourth consequence is a new role of vector of entropy 

flux for which we have proposed an independent 

constitutive Eq. (20). It is helpful solution, since the 

seminal question of interrelation between thermal energy 

flux and entropy flux is now eliminated. 
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