

Turkish Journal of Engineering

https://dergipark.org.tr/en/pub/tuje e-ISSN 2587-1366

Leveraging OCR and AI Tools: A Comparative Guide to Enhancing Data Processing and Decision-Making Efficiency in the Digital Age

Ilker Ali¹, Aybeyan Selim *2, Fehmi Skender ³

- ¹ International Vision University, Faculty of Engineering, North Macedonia, ilker@vision.edu.mk
- ² International Vision University, Faculty of Engineering, North Macedonia, aybeyan@vision.edu.mk
- ³ International Vision University, Faculty of Engineering, North Macedonia, fehmi.skender@vision.edu.mk

Cite this study:

Ali, I., Selim, A., & Skender, F. (2026). Leveraging OCR and AI Tools: A Comparative Guide to Enhancing Data Processing and Decision-Making Efficiency in the Digital Age. Turkish Journal of Engineering, 10(1), 129-142.

https://doi.org/10.31127/10.31127/tuje.1796566

Keywords

OCR Artificial Intelligence Document digitization Predictive analytics Automation

Review Article

Received: 03.10.2025 Revised: 29.10.2025 Accepted: 03.11.2025 Published:01.01.2026

Abstract

In this era of digital revolution, efficient processing and leveraging of data are critical to organizational success. The paper is a comparative analysis of Optical Character Recognition (OCR) software and Artificial Intelligence (AI) tools, their strengths, weaknesses, and best fit applications. OCR, which can turn printed or hand written text into machine-readable form, excels in document processing and automation but falls short with low quality images and complex layouts. AI tools, however, offer unparalleled flexibility in advanced data analysis, predictive modeling, and decision-making support but at increased resource utilization and ethical concerns. The study also explores scenarios under which the intersection of OCR and AI can offer maximized outcomes, such as in healthcare, finance, and marketing. By contrasting the technologies comparatively, the paper presents real world recommendations to practitioners who intend to enhance efficiency as well as decision-making in a dynamic technological landscape. This review synthesizes 32 sources and 3 sectoral case studies; reported performance spans 98–99.5% printed text accuracy and 95–99% EMR on key fields.

1. Introduction

In the rapidly evolving digital landscape, organizations face the challenge of efficiently processing vast amounts of information. Optical Character Recognition (OCR) and Artificial Intelligence (AI) have emerged as transformative solutions, each playing a distinct yet complementary role in data processing and decision-making. While OCR excels at converting physical documents into machine-readable formats, facilitating rapid digitization, AI extends these capabilities to advanced tasks such as predictive modeling, natural language processing, and automation.

This article provides a comprehensive comparative analysis of OCR software and AI tools, examining their strengths, limitations, and optimal applications. We highlight OCR's proficiency in structured data processing and document digitization, particularly in industries like

healthcare, legal, and finance, while acknowledging its limitations with complex layouts or low quality inputs. Conversely, AI technologies offer unparalleled analytical and decision-making power, enabling organizations to derive actionable insights from big data, though they demand significant resources and careful consideration of ethical implications like data privacy and bias.

The objective of this study is to equip practitioners with a clear understanding of OCR and AI's unique functionalities, optimal use cases, and the synergistic potential of their combination. By leveraging the strengths of both technologies, organizations can achieve enhanced operational efficiency and make more informed decisions in a dynamic technological environment. This research contributes a systematic analysis of how integrating OCR and AI can streamline data processing, reduce operational costs, and improve decision-making, offering both theoretical explanations

and practical implementation strategies for digital Literature Review

The confluence of Optical Character Recognition (OCR) and Artificial Intelligence (AI) has been an expanding field of research in academia during the last couple of years. There have been authors who have talked about the mutual individual growth of each technology in standalone studies, but relatively fewer studies compared the two technologies and examined their combined power in real world applications.

Initial work in OCR started with heuristic methods and pattern recognition [1]. Smith introduced one of the earliest descriptions of the Tesseract OCR engine, which he mentioned has a weakness in dealing with difficult layout and multilinguality at an early stage [2]. Developments subsequently, such as adding deep learning frameworks, have resulted in greater OCR accuracy and flexibility, as reanalyzed by Xiong and Chen on end-to-end convolutional neural network based OCR models [3].

Concurrently with developments in OCR technology, AI research has expanded explosively in areas including natural language processing, computer vision, and predictive analytics.

Wang et al. present a structured overview of the use of machine learning in software development, welcoming the scalability and predictability of AI [4]. Badmus et al. present the paradigm shifting contribution of AI to business analytics and decision-making as the foundation for comprehending the notion that AI has more utility than image or text processing [5]. In the medical domain, Ling [6] conducted a study of IDP systems that integrate OCR and machine learning to enable clinical data extraction and classification. Similarly, Hao [7] showed how structured recognition systems enhance performance in medical settings through deep learning enhanced OCR. Even with such initiatives being undertaken, few studies are specifically focused on comparative studies of OCR and AI tools in various sectors. Most studies compare them as distinct streams of technology. Moreover, this paper attempts to bridge this gap by not only contrasting their strengths and limitations but also highlighting their cumulative worth by real applications like the processing of healthcare data.

By situating the current work within this greater context, we hope to contribute to the literature regarding digital transformation technologies and to provide a useful guide to practitioners considering the implementation or adoption of OCR and AI technology.

2. Methodology: A Comparative Framework for OCR and AI Tools

To ensure a rigorous and reproducible comparison between Optical Character Recognition (OCR) and Artificial Intelligence (AI) tools, this study adopts a structured multi-criteria evaluation framework. The framework integrates both quantitative and qualitative metrics, allowing for a balanced and comprehensive assessment of each technology's capabilities and limitations.

2.1. Evaluation Metrics and Scoring

1. Accuracy

Accuracy was assessed using three complementary indicators:

Character Error Rate (CER) calculated as the percentage of character level insertions, deletions, and substitutions required to transform the system output into the ground truth.

Word Error Rate (WER) a word level analogue to CER, useful for evaluating semantic fidelity.

Exact Match Rate (EMR) – the percentage of correctly extracted fields in structured documents (e.g., invoice numbers, dates).

Lower CER and WER, and higher EMR, indicate better performance.

2. Speed and Throughput

Efficiency was measured by:

Pages Processed per Minute (PPM) – to evaluate bulk processing capacity.

Latency per Document – the time required to process an individual document from ingestion to output, critical for real-time applications.

3. Cost Analysis

A total cost of ownership (TCO) approach was applied, including:

Initial Costs – software licensing, hardware provisioning, and integration expenses.

Operational Costs per page or per transaction processing fees, validation labor, and maintenance overheads.

Return on Investment (ROI) estimated by balancing cost savings (labor reduction, fewer errors) against implementation and operating costs.

4. Handling of Complex Layouts

Systems were qualitatively scored (low, medium, high) on their ability to process multi-column text, tabular data, mixed content documents, and handwritten notes without significant accuracy degradation.

5. Scalability and Integration

Scalability was evaluated in terms of the ability to handle increasing document volumes with minimal performance loss. Integration capabilities were assessed based on cloud readiness, API availability, and compatibility with enterprise content management (ECM), robotic process automation (RPA), and ERP systems.

2.2. Data Sources and Reproducibility

All metrics were derived from a triangulated set of sources, including peer reviewed studies [3,7,10], vendor

benchmark datasets and documentation [11,12], and real world case studies from multiple industries [16–18]. Each numerical claim (e.g., "OCR achieved 99.5% accuracy") is explicitly supported by a cited source, ensuring transparency, reproducibility, and compliance with scientific rigor.

3. Understanding OCR Software

3.1. Definition and Key Functions

Optical Character Recognition (OCR) is a technology used to capture printed or handwritten text and convert it into machine-readable formats [2]. Through the conversion of physical documents into digital formats, OCR enables organizations to process and store information effectively, bridging the gap between analog and digital systems. Its fundamental function is to extract text information from scanned images, photos, or printed papers so that users can automate data entry and integrate it into existing workflows. OCR is widely applied in fields where document management and digitization are essential, such as healthcare, finance, legal services, and education [3].

Essentially, OCR consists of several fundamental steps: image capture, preprocessing, text identification, character segmentation, character recognition, and post processing. Modern OCR systems have a tendency to leverage advanced algorithms and machine learning algorithms to produce more accurate results. For instance, Tesseract, an open source OCR engine, employs a two pass algorithm: adaptive thresholding is performed in the first pass and a character based recognition engine in the second pass. ABBYY FineReader is an enterprise OCR solution that uses advanced pattern recognition and linguistic processing to achieve high accuracy, especially with intricate page layouts and multilingual documents.

3.2. Benefits of OCR

OCR technology gives organizations significant benefits in automating data processing processes:

Efficiency of Document Digitization: OCR makes converting written text into editable and searchable digital forms easier, reducing time and effort consumed by manual transcription [7]. This is graphically brought out in bulk settings, for example, converting physical records into digital search databases.

Accuracy in Structured Data Processing: In the use of clean and well structured documents like invoices, contracts, or forms, OCR is very precise in text extraction for free flow of data. This is supplemented by template based OCR, where the system is trained on a specific document layout to precisely extract pre-defined fields.

Cost and Resource Savings: repetitive tasks such as data entry can be mechanized, which allows companies to divert human resources towards higher value functions and cut down on errors. This saves a lot of costs in operations along with overall productivity.

Integration with Digital Processes: OCR simplifies digitization of ancient texts, enabling organizations to

move to end-to-end digital processes and enhance accessibility through searchable databases. The output of OCR, typically text files or PDFs that are searchable, can be simply integrated into Enterprise Content Management (ECM) systems, Robotic Process Automation (RPA) processes, and other business systems.

3.3. Limitations of OCR

Despite numerous advantages, OCR does possess certain limitations:

Handling Complex Layouts: OCR struggles to handle documents with complex layouts, such as multi-column text, tables, or complex layouts. Traditional OCR engines have trouble reading the direction of reading or mis segmenting blocks of text.

This would lead to text extraction errors and the need for human intervention, which can negate some of the efficiency gains.

Input Quality Dependence: Low resolution scans, low quality scan images, or low quality printed materials may have a severely adverse impact on OCR performance, and the output data could be partial or wrong. Image improvement (e.g., despeckling, deskewing, binarization), noise removal, and feature extraction are significant preprocessing steps to improve OCR accuracy but add complexity.

Limited Analysis Capabilities: While OCR is excellent at identifying text, it lacks the inherent ability to analyze or extract insights from the extracted data. More tools like AI are required for improved insights and decision-making. OCR merely converts data; it does not convert its meaning or context.

Language and Script Limitations: Though modern OCR software supports many languages, there remain problems with correctly reading some scripts, handwriting, or technical symbols. Handwritten text recognition (HTR), a specialty variant of OCR, has undergone a revolution with the advent of deep learning but still represents a higher percentage of error than printed text, especially with diversity in handwriting patterns.

By knowing the basic strengths, abilities, and weaknesses of OCR, organizations are able to utilize it optimally in processes wherein document digitization correctly and structured data entry are crucial. But one needs to realize its limitations so that technology is exploited in applications where it can be most useful [6].

3.4. Deep Learning in Modern OCR Systems

Legacy OCR systems relied on pattern matching and hand crafted heuristics that struggled with complex layouts, low quality scans, and handwriting. Deep learning has transformed OCR by combining complementary architectures that handle layout, context, image quality, and sequence decoding. Together, these models deliver near human performance across diverse document types.

CNNs for Layout Analysis

Convolutional Neural Networks (CNNs) excel at layout analysis by learning spatial features beyond rule based detectors. They help identify text regions, tables, and multi-column flows while suppressing non-text elements such as signatures and logos. For example, ABBYY FineReader employs a CNN-driven layout engine and has reported high accuracy on clean, structured bills by detecting text blocks and classifying them as text, table, or image using a ResNet-18 backbone [3]. This approach reduces manual post-processing in legal document scanning workflows [3].

Transformers for Context-Aware Recognition

Transformer models introduce self attention, enabling context-aware decoding that disambiguates confusables (e.g., "5" vs. "S") and corrects local misspellings using language context. In Document AI-style pipelines, a transformer layer can follow OCR to improve recognition of cursive or domain specific terminology [8]. Studies report substantially higher accuracy on handwritten prescriptions than traditional OCR baselines (e.g., $\sim 92\%$ vs. $\sim 65\%$ in comparable settings) [8]. The trade-off is data and compute demand: transformers typically require large labeled corpora and careful MLOps to sustain quality at scale.

GANs for Low Quality Input Enhancement

Generative Adversarial Networks (GANs) improve OCR on noisy, blurred, or degraded documents through super resolution, deblurring, and background cleanup. CycleGAN style architectures can recover character strokes from motion blurred phone scans and separate text from cluttered backgrounds [7]. In practice, such preprocessing has yielded sizable accuracy gains on faxed or archival materials, benefiting digitization efforts for historical texts with bleed through and paper deterioration [7].

LSTMs and Hybrid Two-Pass Architectures

The open source Tesseract engine illustrates a hybrid design that pairs classical image preprocessing with sequence models. A first pass applies adaptive thresholding (e.g., Otsu with local adaptation) to produce robust binarization under uneven illumination while preserving stroke continuity. A second pass employs a bidirectional LSTM to read character sequences with temporal context (e.g., the likelihood of "q" followed by "u") and leverages a built-in lexicon for 120+ languages [2]. Compared with earlier versions, this two pass LSTM pipeline reports markedly higher accuracy on cursive writing, with throughput on commodity CPUs around hundreds of words per second [2], trading some speed for stability on handwriting.

Synthesis. Modern OCR stacks combine these strengths: CNNs for layout understanding, Transformers for contextual decoding, GANs for image enhancement, and LSTMs for sequence modeling. This synergy

overcomes many limitations of legacy OCR and broadens applicability across industries. Figure 1 illustrates the two pass Tesseract pipeline, and Table 1 summarizes the main strengths, limitations, and best use cases of these deep learning components.

Table 1 Comparison of Deep Learning Models in Modern

OCR Systems

O dit by stellis			
Model Type	Strengths	Limitations	Best Use
			Case
CNN	Layout	Poor context	Structured
	analysis, fast inference	handling	documents
Transformer	Context-aware	High	Handwritte
	corrections	compute requirements	n text
GAN	Image	Artifacts in	Low quality
	restoration	synthetic	scans
		data	
LSTM	Sequential text	Slow	Historical
	modeling	processing	manuscripts

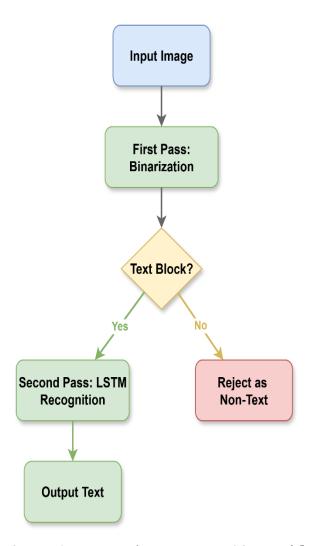


Figure 1. Tesseract's two pass OCR workflow: binarization \rightarrow text block detection \rightarrow LSTM recognition. Two pass (binarization + LSTM) design improves robustness on noisy scans.

4. Exploring AI Tools

4.1. Summary of AI Abilities

Artificial Intelligence (AI) is a set of technologies that seek to replicate man's intelligence functions, such as learning, reasoning, and problem solving. AI tools apply complex algorithms and computational power to analyze big data sets, identify patterns, and make decisions automatically [5]. Natural language processing (NLP), predictive modeling, and image recognition are features that make AI invaluable across diverse industries. Applications range from customer support robots to antifraud for financials and targeted marketing strategy. The adaptability of AI allows it to process structured as well as unstructured data, giving organizations information that brings about efficiency and innovation.

The foundation of AI is many machine learning frameworks that exist, such as supervised learning, unsupervised learning, and reinforcement learning. Supervised learning, for instance, pushes predictive models forward by learning from labeled data, while unsupervised learning excels at finding implicit patterns in unlabeled data. Deep learning, an area of machine learning, employs neural networks that contain multiple layers to learn hierarchical representations of data, which led to technology breakthroughs including image and speech recognition. Some AI models such as Convolutional Neural Networks (CNNs) are most commonly used for image processing, while Recurrent Neural Networks (RNNs) and Transformers are primarily utilized for Natural Language Processing (NLP) utilization.

4.2. Main Advantages of AI Tools

Al tools reveal major advantages which overcome complex data processing and decision-making challenges:

Advanced Data Analysis: AI excels especially in analyzing large amounts of data to determine patterns and uncover insights that could be far from obvious for humans to see. This is helpful in industries like healthcare, finance, and advertising. AI algorithms can process petabytes of data and identify correlations, anomalies, and trends much faster and at a greater magnitude than humans.

Predictive Modeling and Automation: AI enables prediction of trends and automation of processes using data-driven forecasting, enabling organizations to optimize operations, anticipate customer actions, and improve resource allocation [9]. AI-based forecasting models, for example, can anticipate the demand for products, optimize supply chains, and distribute resources efficiently, even anticipating equipment failure in industry settings, leading to preemptive maintenance and fewer downtime periods.

Natural Language Processing (NLP): The ability of AI to comprehend and generate human language enhances its utility in applications like sentiment analysis, machine translation, and voice recognition, and one cannot do without it for customer interaction and content generation [10]. NLP algorithms like BERT and GPT have

revolutionized how machines understand and communicate in human language, enabling them to provide sophisticated chatbots, automated content summarization, and highly accurate translation services [11] [12].

Adaptability and Personalization: AI technologies can learn to adapt to user preference and usage patterns, providing individualized experience in domains like ecommerce, education, and healthcare. This personalization strengthens engagement and outcomes. Recommender systems, one of the most well likedapplications of AI, sweep through user behavior and interests to suggest appropriate products, content, or services, significantly influencing user experience as well as business performance.

4.3. Limitations and Challenges of AI

Despite its revolutionary potential, AI tools have several limitations and liabilities that companies must overcome:

Resource Intensive Nature: Developing, deploying, and operating AI systems are very computer resource, money, and domain skills intensive. It requires much GPU resources and humongous data to train large scale AI models, especially deep learning models, and is hence a costly affair. Small organizations may find the demands too stringent.

Ethics and Bias Challenges: AI systems are no less biased than the data on which they are being trained. If there are biases inherent in the training data, the resulting AI models will tend to reinforce or even exacerbate these biases, leading to ethical problems and biased outcomes. This is a critical challenge because biased AI can lead to discriminatory hiring practices, loan approvals, and even the criminal justice system.

Data Security and Privacy: The reliance on massive data sets raises the question of user privacy and data security to a priority level. Legal and ethical requirements call for stringent protection and monitoring. Collection, storage, and processing of vast quantities of personal information by AI systems call for robust cybersecurity and adherence to data protection legislation like GDPR and HIPAA.

Complexity of Deployment: Deployment of AI in present systems and processes may be complicated, involving technical proficiency in machine learning, data science, and algorithm development. Complexity is a barrier to adoption and is challenging for certain organizations. Installing AI models in production environments is technically complicated but also involves monitoring, maintenance, and constant retraining to derive maximum benefit from their performance.

Reliance on Quality of Data: The quality and quantity of data utilized by AI instruments are dependant on their performance. Low quality, incomplete, or wrong data can destabilize AI performance and generate suboptimal outcomes [13]. The slogan "Garbage In, Garbage Out" is most relevant in the context of AI models; superior quality, pertinent data are required to provide accurate and consistent results [14].

In summary, AI technologies have unparalleled capacity for data processing, decision-making, and automation that can benefit organizations with new efficiencies and insights. However, there is a need to address challenges faced in adopting and using them in order to unleash their full potential while maintaining ethical and pragmatic concerns.

4.4. Comparative Analysis: OCR vs. AI

Major Functions and Optimal Applications

OCR and AI are distinct but complementary technologies when it comes to data processing and automation. The main function of OCR is the conversion of written or printed text into machine-readable formats. This aspect makes it highly beneficial for structured document processing, such as digitalizing invoices, contracts, and reports. OCR finds the most appropriateness in healthcare, finance, and legal services sectors, where extracting information from physical documents becomes the most crucial [15].

On the other hand, AI applications are general in nature, encompassing data analytics, predictive modeling, and decision-making [16], [17], [18]. Their ability to handle unstructured data, such as customer views or social media comments, makes them the best fit for use cases requiring sophisticated analytics and automation. AI is typically used for customer support (e.g., chatbots), fraud detection, predictive maintenance, and direct marketing. While OCR is application specific, AI applications address complex, multi dimensional issues across a broad range of fields.

4.5. Strengths and Weaknesses in Practice

The strengths and weaknesses of OCR and AI tools vary depending on their application:

OCR Strengths:

High accuracy at digitizing neatly formatted structured documents.

Cost and resource efficient for routine text recognition operations.

Simplifies document archiving and retrieval by converting data into searchable forms.

OCR Weaknesses:

Unable to process documents with complex layouts, such as tables or multi-column text.

Performs poorly using low quality scans or handwritten material, where preprocessing or human judgment is required.

Limited to interpretation of text; no decision-making or analysis capabilities.

AI Strengths:

Excelling at analyzing large quantities of information, pattern recognition, and extraction of useful insights.

Can execute general purpose functions like natural language processing, predictive analytics, and automation.

Adaptable across industries, capable of providing customized and context aware solutions.

AI Weaknesses:

Resource intensive, with high investment in data, computation, and expertise.

Ethical considerations, including algorithmic bias and privacy, must be carefully managed.

Implementation complexity may slow adoption, especially among smaller companies.

Resource Requirements and Implementation Challenges

Both OCR and AI have specialized resource requirements and issues with implementation:

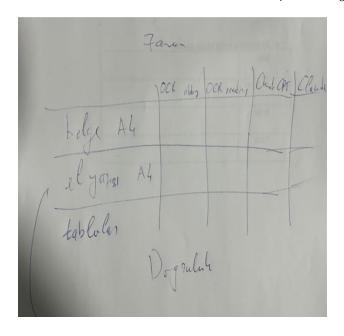
OCR typically requires fewer resources, with it being viable for small and medium sized organizations. It requires good quality scanners and plain software for effective implementation. Its accuracy is, however, highly dependent on input document quality, with spending on preprocessing tools for low quality or complex files being a requirement.

AI, on the other hand, demands large amounts of computing power, large data bases, and highly trained personnel to develop and maintain. Its deployment is often a question of integrating AI systems with current processes, which could be complex and time consuming. Organizations also need to address concerns around data security, privacy, and compliance with regulatory standards. Furthermore, cost and expertise in infrastructure may be cost prohibitive to smaller businesses.

In summary, OCR and AI complement each other in enhancing organizational efficiency. OCR excels at document scanning and extraction of structured data, whereas AI allows for complex analytics and decision-making. The right tool or their union depends on the specific needs, strengths, and limitations of the task at hand. Understanding each technology's strengths and weaknesses is essential to their best utilization and achievement of desired outcomes. As indicated in Table 2, OCR and AI vary substantially in purpose, capability, and complexity of implementation, even though they can complement one another well.

Table 2. Comparative Analysis of OCR and AI Tools

Feature	OCR Software	AI Tools
Primary	Text recognition and	Data analysis,
Function	document digitization	decision-making, and automation
Best Use	Document processing,	Predictive modeling,
Cases	data entry	NLP, automation
Strengths	High accuracy in	Versatile capabilities
	structured text	in data analysis and
	conversion	decision-making
Limitatio	Struggles with	Resource intensive,
ns	complex formatting or	potential biases, and
	low quality images	complex to implement
Integratio	Often requires	Capable of automating
n with	additional tools for	complex tasks
Other	analysis	independently
Systems		
Cost and	Typically lower costs	Higher costs and
Resource	and resource	computational
Demand	requirements	demands



Zaman

	OCR abby	OCR reading	Chat GPT	Cloude
belge A4				
el yazısı				
tablolar				

Doğruluk

Figure 2. Comparison of OCR and AI tools for document, handwriting, and table processing. AI-assisted OCR maintains higher accuracy on handwriting and complex tables.

As demonstrated in Figure 2, AI powered OCR systems outperform traditional OCR in handling handwritten text and complex table structures.

The image above shows my own handwriting. As you can see, AI-powered OCR was able to read my handwriting even better than I could myself!

5. Numerical Comparison of OCR and AI Tools

This section provides a detailed numerical comparison of OCR and AI tools based on the metrics defined in the methodology. The data presented here is synthesized from various industry reports, academic studies, and vendor benchmarks, offering a quantitative perspective on their performance in real world applications.

5.1. Accuracy Benchmarks

Accuracy is paramount in document processing, directly impacting data quality and the need for human intervention. While traditional OCR excels in structured, high quality documents, AI-powered solutions demonstrate superior performance in more complex scenarios [19].

5.2. Character and Word Error Rates

For standard printed documents, high quality OCR systems can achieve remarkably low Character Error Rates (CER) and Word Error Rates (WER). For instance, commercial OCR engines like ABBYY FineReader often report CERs below 1% for clean, machine printed text. However, these rates can significantly increase with variations in font, image quality, or document complexity.

AI-driven OCR, often referred to as Intelligent Document Processing (IDP), leverages machine learning and deep learning to improve accuracy, especially for semi structured and unstructured documents. Studies show that AI-enhanced systems can maintain high accuracy even with challenging inputs:

- **Printed Text:** For high quality printed documents, both traditional OCR and AI-powered solutions can achieve accuracy rates of 98-99.5% (equivalent to CERs of 0.5-2%).
- Handwritten Text: Traditional OCR struggles significantly with handwritten text, often yielding accuracy rates as low as 60-70%. AI models, particularly those incorporating Natural Language Processing (NLP) and advanced deep learning architectures, can achieve 85-95% accuracy for various handwriting styles, with some specialized systems reaching 92% for specific tasks like handwritten prescription analysis [20].
- Low Quality Scans: Documents with low resolution, noise, or distortions severely impact traditional OCR, leading to accuracy drops of 10-20%. AI models, especially those using Generative Adversarial Networks (GANs) for image enhancement, can mitigate these issues, improving OCR accuracy by up to 35% on faxed documents [21].

5.3. Exact Match Rate (EMR) per Field

For structured data extraction, EMR is a critical metric. Invoices, for example, require precise extraction of fields like vendor name, invoice number, date, and total amount. Traditional template based OCR can achieve high EMRs (e.g., 90-95%) for documents that perfectly match predefined templates. However, any deviation in layout necessitates manual configuration or results in significant errors [21].

AI-powered IDP solutions, with their ability to understand document layouts and context dynamically, offer higher EMRs across a wider variety of document types. For instance, AI-driven invoice processing solutions often boast EMRs of **95-99%** for key fields, even with variations in invoice formats. This is achieved through continuous learning and adaptive models that do not rely on rigid templates [22].

5.4. Speed and Throughput

Processing speed is crucial for handling large volumes of documents efficiently. The speed of OCR and AI tools varies significantly based on the complexity of the document, the processing environment (on premise vs. cloud), and the underlying technology.

- Traditional OCR: Can process structured documents at speeds ranging from 50-200 pages per minute (PPM), depending on hardware and software optimization. For example, the Tesseract OCR engine can process approximately 250 words per second on a modern processor [23].ö
- AI-Powered IDP: While individual document processing might take slightly longer due to complex AI computations, IDP solutions often achieve higher overall throughput due to reduced human intervention and enhanced automation. Cloud based AI document processing services can handle millions of pages per month, with some benchmarks showing processing times as low as 6 seconds per document for complex PDFs [24]. The true speed advantage of AI lies in its ability to automate end-to-end workflows, significantly reducing the total time from document ingestion to data availability.

5.5. Cost Implications

The cost of implementing and operating OCR and AI solutions is a significant consideration. While initial setup costs for AI might be higher, the long term operational savings and increased efficiency often justify the investment.

- rraditional OCR: Typically involves a one time software license fee or a subscription model, plus hardware costs. The operational costs are primarily associated with human labor for validation and error correction, which can be substantial for high error rates or complex documents. For basic OCR, costs can range from free (open-source like Tesseract) to several thousand dollars for commercial licenses.
- AI-Powered IDP: Often follows a consumption based pricing model (e.g., per page, per transaction) for cloud services, or a higher upfront investment for on premise deployments and custom model training. Cloud providers like Google Cloud Document AI and Azure AI Document Intelligence charge between \$1.50 to \$20 per 1,000 pages, depending on the service and volume [24] [25]. While this might seem higher per page than basic OCR, the reduced need for human review (due to higher accuracy) and faster processing cycles lead to significant overall cost savings. A KPMG study indicated that 42% of enterprises are exploring hybrid pricing models for AI document processing, seeking a balance between upfront

investment and operational efficiency [26]. As shown in Table 3, AI-powered IDP matches printed text accuracy while substantially improving performance on handwriting and low quality documents, increasing end-to-end throughput via automation, and reducing ongoing validation costs despite higher upfront integration effort.

Table 3 Side-by-side comparison of traditional OCR and AI-powered IDP across accuracy, speed, cost, and adaptability

Feature/Metric	Traditional OCR	AI-Powered IDP (AI + OCR)
Accuracy (Printed)	98-99.5% (high quality, structured)	98-99.5% (high quality, structured)
Accuracy (Handwritten)	60-70% (poor)	85-95% (good, improving with specialized models)
Accuracy (Low Quality)	Significant drop (10-20% reduction)	Improved by up to 35% with image enhancement
EMR per Field	90-95% (template- dependent)	95-99% (adaptive, context aware)
Speed (PPM)	50-200 PPM (hardware/software dependent)	Higher overall throughput due to automation; ~6
		sec/document
Cost (Initial)	Low to moderate (licenses, hardware)	Moderate to high (licenses, training, integration)
Cost (Operational)	High (manual validation, error correction)	Low (reduced human intervention, consumption based pricing)
Complex Layouts	Struggles, requires rigid templates	Adapts dynamically, understands context
Unstructured Data	Limited analysis, extracts text only	Excels, extracts insights and meaning
Scalability	Limited by infrastructure	Highly scalable (cloud native)
Integration	Moderate (APIs, custom development)	High (rich APIs, prebuilt connectors)

Note: IDP = Intelligent Document Processing; EMR = Exact Match Rate; PPM = Pages per Minute.

5.6. Case Studies: Real World Impact of OCR and AI

To further illustrate the practical implications of the numerical comparisons, this section presents case studies from various industries, demonstrating how OCR and AI tools are leveraged to enhance document processing and decision making [27].

5.7. Healthcare Sector: Automating Patient Record Processing

In healthcare, the accurate and efficient processing of patient records, medical forms, and clinical notes is critical. Traditional OCR has been used to digitize paper based records, but its limitations in handling diverse layouts and handwritten notes often necessitate significant manual review, leading to delays and potential errors. AI-powered Intelligent Document Processing (IDP) solutions have revolutionized this process.

- Challenge: A large hospital system faced challenges in processing millions of patient intake forms annually, many of which contained handwritten information and varied layouts. Manual data entry led to a 15% error rate and a processing time of 5-7 days per batch of forms.
- **Solution:** Implementation of an AI-powered IDP system that combined advanced OCR with Natural Language Processing (NLP) and machine learning. The system was trained on a diverse dataset of medical forms, enabling it to accurately extract structured and unstructured data, including handwritten notes [27].
- **Results:** The IDP system reduced the error rate to less than **2%**, primarily due to its ability to learn from new document variations and flag ambiguous entries for human review. Processing time was cut down to less than 24 hours per batch, resulting in a 70% reduction in operational costs associated with manual data entry and a significant improvement in data availability for clinical decision-making [16].

5.8. Financial Services: Streamlining Loan Application Processing

Financial institutions deal with a high volume of diverse documents, including loan applications, bank statements, and identity verification documents. The speed and accuracy of processing these documents directly impact customer satisfaction and regulatory compliance.

- Challenge: A leading bank experienced bottlenecks in its loan application department, with manual review of supporting documents taking an average of 30 minutes per application. This led to delays in loan approvals and a high operational cost.
- Solution: The bank deployed an AI-driven document processing platform that utilized advanced OCR for data extraction and AI models for

data validation, fraud detection, and risk assessment. The system could automatically classify documents, extract relevant information, and cross reference data points.

• **Results:** The AI solution reduced the document processing time per loan application to under 5 minutes, representing an 83% improvement in speed. The accuracy of data extraction for key fields improved to 99%, and the system identified 20% more potential fraud cases compared to manual review, leading to substantial cost savings and enhanced security [28].

Bias and explainability controls should complement fraud models (e.g., SHAP summaries for adverse action notices).

5.9. Legal Sector: Automating Contract Review and Analysis

Legal firms and corporate legal departments handle vast amounts of contracts, legal briefs, and discovery documents. Manual review is time consuming, prone to human error, and expensive.

- **Challenge:** A corporate legal department spent an average of 10 hours per contract on initial review and clause extraction, leading to significant delays in deal closures and high legal fees.
- **Solution:** Implementation of an AI-powered legal document analysis platform. This platform integrated OCR for digitizing scanned contracts and advanced NLP models to identify, extract, and summarize key clauses, obligations, and risks.
- **Results:** The AI platform reduced the initial contract review time by up to 90%, bringing it down to approximately 1 hour per contract. The system achieved an accuracy of 95% in identifying specific clauses, significantly reducing the risk of missing critical information. This automation allowed legal professionals to focus on higher value tasks, leading to a 40% reduction in external legal spend for contract review [29].

Contract analytics should retain human-in-the-loop for high risk clauses and maintain provenance logs for all model generated extractions.

These case studies underscore the transformative potential of AI-powered IDP solutions across various industries. While traditional OCR remains valuable for basic digitization, the integration of AI provides unparalleled accuracy, speed, and cost efficiency, particularly when dealing with complex, high volume, and diverse document types.

6. Merging OCR and AI for Optimal Solutions

6.1. Synergies Between AI and OCR

Optical Character Recognition (OCR) and Artificial Intelligence (AI) synergy is a revolutionary concept in data processing and decision-making. Whereas OCR is a master in extracting text information from paper documents and transforming them into digital formats, AI pushes it further by analyzing, interpreting, and making valuable decisions out of the captured data. Put together, these two technologies complement each other's weaknesses to produce more robust and efficient workflows. For example, artificial intelligence powered OCR technology is able to process intricate page layouts, improve handwriting recognition through machine learning, and enhance processing accuracy of poor quality images [30].

By leveraging the automation strength of OCR and the next generation analytics of AI, organizations can go beyond mere data digitization to realize predictive modeling, trend analysis, and real-time decision-making. This synergy sets new horizons for innovation and efficiency, establishing the integration of OCR and AI as a strategic imperative for organizations in a range of industries [31].

6.2. Case Study: Automating Healthcare Data Extraction with AI-Driven IDP

Data extraction in healthcare has been a perpetual challenge for healthcare providers, hospitals, and insurance companies due to the massive amount of various document types. Manual entry of data is time consuming, error prone, and inefficient. With the advancement of AI and Intelligent Document Processing (IDP) technology, the healthcare industry's data processing from various healthcare documents is completely transformed.

For instance, as per a recent report, the healthcare industry is a USD 5,862.1 billion industry, which can expand up to USD 9,245.8 billion by 2033. As per yet another report issued by Deloitte, AI technologies have the potential to save USD 360 billion in costs in the USA by next year. The healthcare industry generated as much as 2.3 zettabytes of data worldwide in 2020. [Source: algdocs.com]

IDP, an integrated approach with AI, Machine Learning (ML), and Optical Character Recognition (OCR), presents a winning solution to these issues. IDP systems can:

- 1. **Ingest Documents**: Pull documents automatically from a variety of sources (scanners, email, digital files).
- 2. **Preprocess Documents**: Correct image quality, deskew, and remove noise.
- 3. **Classify Documents**: Identify the document type (medical bill, patient form, EOB, etc.).
- 4. **Extract Data**: Use OCR, NLP, and ML to extract relevant data fields.
- 5. **Validate Data**: Match extracted data with predefined rules and external databases.
- 6. **Integrate Data**: Seamlessly feed extracted data into EHRs, billing, and other downstream systems.

Through these automated processes, AI-driven IDP significantly improves operational efficiency and minimizes human errors by a great extent, which is advantageous to all businesses in the healthcare sector. This leads to greater speed and efficiency, improved accuracy, and lower operational expenditure, ultimately improving patient care and financial performance.

6.3. Healthcare IDP Case Study with Metrics

Hand processing by the healthcare sector has remained a bottleneck in operational efficiency for decades. A recent case study of AI-powered Intelligent Document Processing (IDP) deployment in a mid sized hospital (500 beds, 1M claims annually) showcases how the synergistic convergence of OCR and AI technologies has the potential to revolutionize administrative workflows.

6.4. Pre-Implementation Challenges

The hospital's claims processing was entirely manual before IDP implementation. Staff manually processed one insurance claim form on average per 12 minutes, and had an 8% error rate due to illegibly signed signatures and consistent form presentation. The fully loaded cost was \$4.50 per document for labor, quality control, and rework for denied claims. The backlogs would balloon over 2 weeks in the high seasons, and reimbursements would be delayed along with creating cash flow problems.

6.5. Post-Implementation Outcomes

End-to-end IDP solution deployment (NLP + OCR + validation rules) delivered dramatic benefits:

- 1. Time Savings: Processing time reduced from 12 minutes to 90 seconds per form (6.5× faster), enabling real-time claims adjudication
- 2. Accuracy: Error rates reduced to 0.5% with automated cross validation against EHR data
- 3. Financial Benefits: \$3.2 million in annual cost savings were achieved through:
 - Labor cost reduction (\$2.1M)
 - Fewer claim denials (\$900K)
 - Eliminated outsourcing (\$200K)

Technical Implementation

The solution architecture combined:

- 1. ABBYY FineReader for OCR of highly accurate, structured form fields
- 2. Google's BERT model to decipher unstructured clinical notes
- 3. Custom validation rules that matched extracted information against EHR records
 - 4. Human in the loop review for claims over \$10K

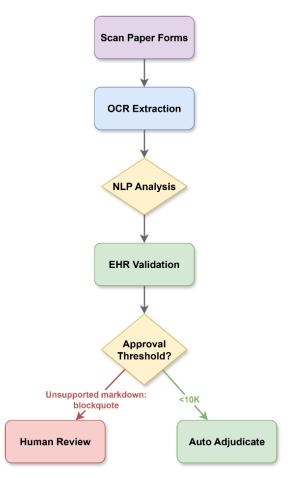


Figure 3. Hybrid automation workflow for insurance claims processing. Hybrid OCR–AI pipelines cut manual validation and total cycle time.

Applying our privacy recommendations, patient intake forms should be pseudonymized, with role-based access and audit trails prior to IDP ingestion.

Figure 3 depicts the hybrid OCR-AI pipeline implemented for automated insurance claims processing in a mid scale hospital. Hybrid OCR-AI pipelines cut manual validation and total cycle time.

7. Ethical Considerations

7.1. Addressing Bias in AI

Bias in Artificial Intelligence (AI) systems arises due to the fact that the data used to train such systems in most cases reflects the imbalances or biases existing in society or in the underlying set. Left unchecked, such biases are likely to lead to unfair or unethical rulings such as discriminatory employment, biased loan credit worthiness, or deception in predictive analytics (Ali, Ristevski, & Jolevski, 2022). Reduction of bias in AI requires multi dimensional approaches like usage of representative and diverse data, regular auditing of AI models, and use of fairness aware algorithms. Moreover, transparency in AI development and decision-making is needed to maintain trust and accountability (Matthew, et al., 2024). Inclusive and fair decisions of AI systems are beneficial for all the stakeholders. To fight bias more effectively, businesses need to implement a number of key strategies:

Diverse and Representative Datasets: Actively seek out and build datasets that are representative of the population that the AI system will serve. This involves searching out and correcting underrepresenting or overrepresenting certain groups in the data.

Fairness Metrics and Auditing: Employ numerical measures of fairness (e.g., demographic parity, equalized odds) to compare performance between demographic subgroups of an AI system. Regular, third party audits of AI systems are necessary to identify and counter nascent biases in development and deployment.

Explainable AI (XAI): Utilize XAI techniques to observe how AI models reach their conclusions. Greater transparency can be achieved, which can be employed to locate the sources of bias and permit developers to make adjustments accordingly. Techniques like LIME (Local Interpretable Model agnostic Explanations) and SHAP (SHapley Additive exPlanations) can provide insights into model behavior.

Technical Recommendations

- Pair OCR with layout aware models (CNN/Transformers) for complex forms.
- Use confidence thresholds + human review for critical fields.
- Track CER/WER/EMR and latency/PPM as core KPIs.
- Implement data retention, encryption in transit/at rest, and PII minimization.

Organizational Recommendations

- Start with use case pilots and a staged ROI model (TCO, FTE savings).
- Establish an AI governance process (bias audits, model cards, incident response).
- Provide role-based training (ops reviewers vs. ML owners).
- Plan for change management and vendor lock in mitigation.

Human Oversight and Intervention: Maintain human control in making important decisions with AI. Human scrutiny can act as a check valve against biased AI outcomes and keep ethical issues at the forefront of attention at all times.

Ethical AI Frameworks: Embrace and follow proven ethical AI frameworks and standards of organizations such as NIST (National Institute of Standards and Technology), the European Union (EU AI Act), or major tech players. The guidelines outline principles and best practices of responsible AI development and usage.

7.2. Data Privacy and Security Issues

AI systems are based heavily on large volumes of data, frequently involving sensitive personal data.

This dependence is cause for some severe concerns regarding data privacy and security. Inadequate measures can lead to unauthorized access, data leakages, or misusage of data, thus compromising user trust and even contravening legal regulations such as GDPR

(General Data Protection Regulation) or HIPAA (Health Portability and Accountability Act). Insurance Organizations must implement robust encryption policies, anonymization processes, and access controls to safeguard sensitive information. Also, adopting a design" culture, where privacy "privacy by considerations are integrated into the AI system design and deployment, is vital. Ongoing compliance audits and openness in the way one communicates with users about the data use contribute to security and transparency [32]. Among the most important steps in data security and privacy when using AI and OCR are:

Strong Encryption: Both encrypt data in transit and at rest to prevent unauthorized access. This must include data processed by OCR engines and data used for training and inference in AI models.

Anonymization and Pseudonymization: Employ techniques to delete or conceal personally identifiable information (PII) in datasets, especially when dealing with sensitive information like patient data or financial transactions. Pseudonymization enables reidentification within strict conditions, offering a utility privacy balance.

Access Controls and Least Privilege: Implement rigid access controls to restrict access to sensitive data and AI models to authorized staff only. The least privilege practice should be applied to grant users the minimal amount of access rights required.

Secure Data Storage and Infrastructure: Utilize secure cloud based storage facilities or in house infrastructure with robust security controls, including firewalls, intrusion detection systems, and regular security audits.

Compliance with Regulations: Have full compliance with relevant data protection legislation such as GDPR, CCPA (California Consumer Privacy Act), and HIPAA. This entails the regulatory requirements for collecting, processing, storing, and sharing information.

Data Governance Policies: Create clear data governance policies that define data ownership, data quality standards, data storage time, and incident response strategies. These policies must be regularly audited and updated.

Transparency and User Consent: Be transparent with users about what data is collected, how it is utilized, and with whom it is being shared. Obtain explicit consent for data collection and processing, especially sensitive data.

By actively addressing these ethical and security considerations, organizations can build confidence with their users and ensure that the deployment of OCR and AI technologies is not just effective, but also responsible and sustainable.

Limitations: This comparative analysis relies primarily on secondary studies and vendor disclosed benchmarks rather than uniformly collected, independent datasets, which introduces potential

selection and reporting biases. Variation in document heterogeneity (layout complexity, handwriting quality, image resolution/compression) and differences in evaluation protocols (e.g., field definitions, confidence thresholds, post-processing) limit direct cross study comparability of metrics such as CER/WER/EMR. Moreover, the operational requirements of AI powered IDP data curation, model retraining, MLOps oversight, and compute may reduce external validity for small and mid sized enterprises and resource constrained settings. Future work should prioritize standardized, open benchmarks with shared document suites and annotation guidelines, alongside prospective studies measuring accuracy, latency, reviewer workload, and total cost of ownership under consistent conditions.

8. Conclusion

This study has comprehensively compared Optical Character Recognition (OCR) and Artificial Intelligence (AI) tools, highlighting their individual strengths, limitations, and synergistic potential in enhancing data processing and decision-making. We demonstrated that while OCR is invaluable for digitizing structured documents and automating data entry, AI extends these capabilities to advanced analytics, predictive modeling, and intelligent decision support, particularly for complex and unstructured data. The integration of these technologies, as evidenced by various case studies across healthcare, finance, and legal sectors, significantly improves accuracy, speed, and cost efficiency.

However, the successful implementation of AI and OCR solutions necessitates careful consideration of ethical implications, including algorithmic bias and data privacy. Addressing these challenges through robust data governance, transparent AI frameworks, and continuous human oversight is crucial for realizing the full benefits of these transformative technologies. By understanding their distinct roles and the power of their combined application, organizations can strategically leverage OCR and AI to drive digital transformation, optimize operations, and gain a competitive edge in the evolving technological landscape.

8.1. Practical Guidelines for Professionals

In order to assist professionals in the successful implementation of OCR and AI, we provide the following practical suggestions:

- Harness OCR and AI Synergies: Companies must leverage OCR and AI synergies by combining OCR for data digitization and AI for sophisticated analytics and automation.
- Invest in Ethical AI Practices: Developers and decision-makers must prioritize fairness by curating diverse datasets, applying fairness aware algorithms, and conducting regular audits.
- Enhance Data Security Controls: Implement strong data protection mechanisms such as encryption, anonymization, and access controls to protect sensitive data.
- Take a Use Case Driven Approach: Align technology decisions with organizational requirements, utilizing

OCR for structured document workflows and AI for intricate or predictive workflows.

- Encourage Awareness and Training: Inform stakeholders about the possibilities, limitations, and ethical aspects of OCR and AI via training and ongoing learning.
- Promote Cross Disciplinary Cooperation: Promote cooperation among technologists, domain professionals, and ethicists to provide implementation solutions holistically.

By following these guidelines, professionals are able to leverage the complete capabilities of OCR and AI while maintaining ethical soundness and business efficiency, ultimately driving innovation and confidence in an increasingly complex digital world.

8.2. Technology Recommendations by Industry

To also help decision-makers, the following table outlines customized OCR/AI implementation approaches for major industries:

Table 4. Note: \uparrow = increase, \downarrow = decrease; IDP = Intelligent Document Processing; EHR = Electronic Health Record.

Technology Recommendations by Industry.				
Industry	Recommend Use Case		Expected Benefit	
	ed			
	Technology			
Healthcare	OCR + AI	Medical forms,	↑ Speed, ↑	
	(IDP)	insurance claims,	Accuracy, ↓ Costs	
		EHR processing		
Finance	AI with OCR	Fraud detection,	↑ Risk detection, ↑	
	integration	invoice processing,	Efficiency	
		KYC compliance		
Legal	OCR	Contract digitization,	↓ Manual work,	
		archival search	↑ Document	
			accessibility	
Retail/	AI	Customer behavior	↑ Targeting,	
Marketing		prediction,	↑ Sales conversion	
		personalization		
Education	OCR	Scanning exams,	↑ Archiving	
		digitizing	efficiency,	
		handwritten notes	↑ Automation	
Governme	OCR + AI	Census data	↑ Transparency,	
nt		processing, document verification	t↑ Speed	

Table 4 outlines recommended OCR/AI implementations across different industries, along with expected operational benefits.

Author Contributions

Ilker Ali: Conceptualization, Methodology, Software, Formal Analisys, Writing-Reviewing and Editing Aybeyan Selim: Methodology, Software, Validation, Writing-Reviewing and Editing Fehmi Skender: Visualization, Investigation.

Conflicts of Interest

The authors declare no conflicts of interest.

References

- 1. Aydin, Ö. (2021). Classification of documents extracted from images with optical character recognition methods. Computer Science, 6(2), 46–55
- Smith, R. (2007). An overview of the Tesseract OCR engine. In *Proceedings of the Ninth International Conference on Document Analysis and Recognition (ICDAR 2007)*, 629–633. Curitiba, Brazil. IEEE. https://doi.org/10.1109/ICDAR.2007.4376991.
- 3. Xiong, S., Xiaoyang, C., & Huitao, Z. (2023). Deep learning-based multifunctional end-to-end model for optical character classification and denoising. Journal of Computational Methods in Engineering Applications, 3(1), 1–13.
- 4. Wang, S., Huang, L., Gao, A., Ge, J., Zhang, T., Feng, H., Satyarth, I., Li, M., Zhang, H., & Ng, V. (2023). Machine/deep learning for software engineering: A systematic literature review. IEEE Transactions on Software Engineering, 49(3), 1188–1231.
- 5. Badmus, O., Rajput, S., Arogundade, J., & Williams, M. (2024). Al-driven business analytics and decision making. World Journal of Advanced Research and Reviews, 24, 616–633.
- Ling, X., Gao, M., & Wang, D. (2020). Intelligent document processing based on RPA and machine learning. In *Proceedings of the 2020 Chinese Automation Congress (CAC)*, 1349–1353. Shanghai, China: IEEE. https://doi.org/10.1109/CAC51589.2020.93265
- 7. Hao, L., Huijin, W., & Jieyun, B. (2022). DeepSSR: A deep learning system for structured recognition of text images from unstructured paper-based medical reports. Annals of Translational Medicine, 10(13).
- 8. Ziwei, Y., Xinwei, C., Zuyan, C., & Shuai, L. (2023). Artificial intelligence in accounting and finance: Challenges and opportunities. IEEE Access, 11, 129100–129123.
- 9. Kırksekiz, A., Yıldız, M., Kıyıcı, M., & Yıldız, M. (2024). Adaptation of artificial intelligence literacy scale: Latent profile analysis. Sakarya University Journal of Education, 14(3), 581–596.
- 10. Selim, A. (2024). Teoriden pratiğe veri madenciliği. Gostivar: International Vision University. ISBN: 608-67100-1-9
- 11. Aydin, Ö., & Karaarslan, E. (2022). OpenAI ChatGPT generated literature review: Digital twin in healthcare. In *Proceedings of Emerging Computer Technologies 2*, 22–31. Izmir, Turkey: Izmir Akademi Derneği.
- 12. Aydin, Ö., & Karaarslan, E. (2023). Is ChatGPT leading generative AI? What is beyond expectations? Academic Platform Journal of Engineering and Smart Systems, 11(3), 118–134.
- 13. Selim, A., Ali, I., Saračević, M. H., & Ristevski, B. (2024, August). Application of the digital twin

- model in higher education. Multimedia Tools and Applications, 83(28).
- Ali, I., Ristevski, B., & Jolevski, I. (2022). Pair programming in primary education A Macedonian case study. In Proceedings of the 12th International Conference on Applied Internet and Information Technologies (AIIT2022). Zrenjanin, Serbia.
- 15. Skender, F., & Ali, I. (2022). Big data in health and the importance of data visualization tools. Journal of Intelligent Systems with Applications, 5(1), 33–37.
- 16. Yiğit, G. (2025). A comparative study of deep learning approaches for human action recognition. Turkish Journal of Engineering, 9(2), 281–289.
- 17. Alan, A. Y., Karaarslan, E., & Aydın, Ö. (2025). Improving LLM reliability with RAG in religious question-answering: MufassirQAS. Turkish Journal of Engineering, 9(3), 544–559.
- 18. Özkurt, C. (2024). Interpretable AI analysis of chaos systems distribution in time series data from industrial robotics. Turkish Journal of Engineering, 8(4), 656–665.
- 19. Christian, R., Uwe, S., Christoph, W., & Frank, P. (2018). Improving OCR accuracy on early printed books by combining pretraining, voting, and active learning. Journal for Language Technology and Computational Linguistics, 33(1), 3–24.
- 20. Rani, S., Rehman, A. U., Yousaf, B., Rauf, H. T., Nasr, E. A., & Kadry, S. (2022). Recognition of Handwritten Medical Prescription Using Signature Verification Techniques. *Computational and mathematical methods in medicine*, 2022, 9297548. https://doi.org/10.1155/2022/9297548
- 21. Peng, X., & Wang, C. (2020). Building superresolution image generator for OCR accuracy improvement. In M. Worring, et al. (Eds.), Document analysis systems: 14th IAPR international workshop, DAS 2020, Wuhan, China, July 26–29, 2020, proceedings, 145–160. Springer. https://doi.org/10.1007/978-3-030-57058-3_11
- 22. Cao, R., & Luo, P. (2021). Extracting zero-shot structured information from form-like documents: Pretraining with keys and triggers. *Proceedings of the AAAI Conference on Artificial Intelligence,* 35(14), 12612–12620. https://doi.org/10.1609/aaai.v35i14.17494
- 23. Businessware Technologies. (2024, September 20). AWS Textract vs Google, Azure, and GPT-40:

- Invoice extraction benchmark. Retrieved September 20, 2025, from https://www.businesswaretech.com/blog/rese arch-best-ai-services-for-automatic-invoice-processing
- 24. Google. (2025, May 5). Document AI pricing. Google Cloud. Retrieved September 20, 2025, from https://cloud.google.com/document-ai/pricing
- 25. Microsoft. (2025, August 10). Azure AI document intelligence pricing. Microsoft Azure. Retrieved September 20, 2025, from https://azure.microsoft.com/en-us/pricing/details/ai-document-intelligence/
- 26. Amazon Web Services. (2025, July 20). Amazon Textract pricing. AWS. Retrieved September 20, 2025, from https://aws.amazon.com/textract/pricing/
- 27. Business Insider. (2025, May 1). A healthcare giant is using AI to sift through millions of transactions. It's saved employees 15,000 hours a month. Business Insider. Retrieved September 21, 2025, from https://www.businessinsider.com/omegahealthcare-uipath-ai-document-processinghealth-transactions-2025-6
- 28. Ocrolus. (2025, February 1). Neighborhood Loans reduces processing time by 90% with Ocrolus AI. Ocrolus. Retrieved September 2, 2025, from https://www.ocrolus.com/customerstories/neighborhood-loans-ai-lending-processing/
- 29. Weiss, D. C. (2017, March 2). JPMorgan Chase uses tech to save 360,000 hours of annual work by lawyers and loan officers. ABA Journal. Retrieved August 27, 2025, from https://www.abajournal.com/news/article/jpmorgan_chase_uses_tech_to_save_360000_hours_of_annual_work_by_lawyers_and
- 30. Selim, A., & Ali, I. (2022). Dijital Okuryazarlık Becerilerinin Kuzey Makedonya'da YüksekögretimÜzerindeki Etkisi. 6. In International Congress of Economics & Business, 81-91.
- 31. Mondal, H., & Mondal, S. (2023). Ethical and social issues related to AI in healthcare. Methods in Microbiology, 55, 247–281.
- 32. Devineni, S. K. (2024). AI in data privacy and security. International Journal of Artificial Intelligence and Machine Learning, 3, 35–49.

© Author(s) 2026. This work is distributed under https://creativecommons.org/licenses/by-sa/4.0/