

GAZİOSMANPAŞA BİLİMSEL ARAŞTIRMA DERGİSİ (GBAD) Gaziosmanpasa Journal of Scientific Research

ISSN: 2146-8168 http://dergipark.gov.tr/gbad

Araştırma Makalesi (Research Article)

Alınış tarihi (Received): 08.10.2025 Kabul tarihi (Accepted): 03.11.2025 Cilt/Volume : 14 Sayı/Number: 2 Yıl/Year: 2025 Sayfa/Pages: 70-76

Yerli Diatom Toprağının *Sitophilus oryzae* (Linnaeus, 1763) (Coleoptera: Dryophtoridae)'ye Karşı İnsektisidal Aktivitesi

Burak NAZLI 1, Betül TARHANACI1,*, Turgut ATAY1

¹Department of Plant Protection, Faculty of Agriculture, Tokat Gaziosmanpaşa University, Tokat, Türkiye *Sorumlu yazar: betul.tarhanaci@gop.edu.tr

ÖZET: Bu çalışmada, yerli bir diatom toprağı olan Diaterra®'nın, *Sitophilus oryzae* (Linnaeus, 1763) (Coleoptera: Dryophtoridae), ergin bireyleri üzerindeki insektisidal etkisi, 20 ± 1 °C sıcaklık ve %55±5 bağıl nem koşullarında galvanize sac yüzey üzerinde değerlendirilmiştir. Denemeler, dört farklı dozda (0.25, 0.50, 1.00 ve 2.00 g/m²) üç tekerrürlü ve üç tekrar olacak şekilde yürütülmüştür. Ölü böcek sayıları 24, 48, 72, 96, 120, 144, 168, 192 ve 216. saatlerde kaydedilmiştir. İlk 24 ve 48 saatlık uygulama sürelerinde herhangi bir ölüme rastlanmamış, ancak 72. saat itibarıyla ölüm kaydedilmeye başlanmıştır. 72. saatte en yüksek dozda %40.2 olarak belirlenen ölüm oranı aynı dozda 96. saatten itibaren %50'yi aşmıştır. En yüksek ölüm oranı, 2.00 g/m² dozda 216. saatte %83.5 olarak kaydedilmiş olup aynı zaman aralığında diğer dozlardaki mortalite %50'ye ulaşamamıştır. Ayrıca maruz kalma süresinin ölümler üzerindeki etkisini değerlendirmek amacıyla, Diaterra®'nın 2 g/m² dozunda ergin *Sitophilus oryzae* bireyleri için LT₃0, LT₅0 ve LT₅0 değerleri hesaplanmıştır. Elde edilen tüm bu bulgular genel olarak değerlendirildiğinde, özellikle yüksek doz ve uzun süreli temas koşullarında Diaterra®'nın *S. oryzae* ergin bireyleri üzerinde önemli düzeyde etki gösterdiği görülmüştür. Ancak, bu etkinliğin daha kapsamlı bir şekilde değerlendirilebilmesi için farklı dozların kullanıldığı ve gerçek depo koşullarını yansıtan daha ayrıntılı çalışmalara ihtiyaç duyulmaktadır.

Anahtar Kelimeler –Diaterra®, Diatom toprağı, insektisidal etki, Sitophilus oryzae

Investigation of the Insecticidal Activity of Native Diatomaceous Earth Against *Sitophilus oryzae* (Linnaeus, 1763) (Coleoptera: Dryophtoridae)

ABSTRACT: In this study, the insecticidal effect of a locally produced diatomaceous earth, Diaterra®, on adult individuals of *Sitophilus oryzae* (Linnaeus, 1763) (Coleoptera: Dryophtoridae) was evaluated on a galvanized sheet surface under controlled conditions of $20 \pm 1^{\circ}\text{C}$ temperature and $55 \pm 5\%$ relative humidity. The experiments were conducted at four different doses (0.25, 0.50, 1.00, and 2.00 g/m²) with three replications and three repetitions per dose. The number of dead insects was recorded at 24, 48, 72, 96, 120, 144, 168, 192, and 216 hours. No mortality was observed within the first 24 and 48 hours of exposure; however, deaths began to occur after 72 hours. At 72 hours, the highest mortality rate was recorded at 40.2% for the highest dose, exceeding 50% at the same dose after 96 hours. The maximum mortality rate (83.5%) was observed at the 2.00 g/m² dose at 216 hours, while mortality at other doses did not reach 50% during the same period. Furthermore, to evaluate the effect of exposure duration on mortality, LT30, LT50, and LT90 values were calculated for adult *S. oryzae* individuals exposed to the 2 g/m² dose of Diaterra®. When all these findings are evaluated in general, it has been observed that Diaterra® has a significant effect on adult *S. oryzae* individuals, particularly under conditions of high dosage and prolonged contact. However, to comprehensively assess its efficacy, further detailed studies under different dosages and conditions simulating real storage environments are required.

Keywords –Diaterra®, Diatomaceous Earth, insecticidal effect, Sitophilus oryzae

1. Introduction

Sitophilus oryzae (Linnaeus, 1763) (Coleoptera: Dryophtoridae) is a species commonly found in stored grains in tropical and subtropical regions (Kaundal et al. 2023). Adults of S. oryzae measure 2.5-4 mm in length, are dark brown in colour, slender and cylindrical in shape, and are characterized by a long rostrum and punctures on the pronotum (Hagstrum et al. 2013). Females use their rostrum to bore holes into intact grains, into which they deposit their eggs. A single female can lay on average 300-400 eggs. The emerging larva feeds and develops inside the grain kernel, then pupates, and finally the adult emerges by exiting from the grain. The developmental duration of S. oryzae varies depending on temperature and humidity conditions. Under temperatures of 27–30°C and relative humidity of 70%, the life cycle is completed in approximately 25–30 days (Rees, 2004). Sitophilus oryzae causes both qualitative (nutritional loss) and quantitative (weight reduction) damage in stored grains, leading to significant economic losses, particularly in wheat, rice, and maize. Since larvae develop inside the kernel by hollowing it out, the damage is not always externally visible. This concealed feeding reduces the marketability and export value of grains (Campbell and Arbogast, 2004; Hagstrum et al. 2012). According to FAO (2011), losses due to inadequate storage conditions and other biotic and abiotic factors range between 10-30%. To mitigate these losses, integrated management practices are prioritized, including regular cleaning of storage facilities, application of low temperatures, and chemical control through fumigants such as phosphine (Rajendran and Muralidharan, 2001). Insecticides are also widely used in storage facilities, flour mills, and silos in Türkiye and many other countries to control S. oryzae populations. In Türkiye, the active ingredients of the registered insecticides used in the control of S. oryzae are known to include aluminium phosphide, magnesium phosphide deltamethrin, phosphine, pirimiphos-methyl, malathion and sulfuryl fluoride (Anonymous, 2025). In addition to the benefits provided by insecticides, it is essential to emphasize the potential adverse impacts on non-target species, the environment, and human health (Araújo et al. 2023). Reports indicate that a slight resistance to the active ingredient Malathion has developed in S. oryzae populations in Türkiye (Alpkent et al., 2023). Due to their low toxicity, effectiveness even at small quantities, and abundant availability in Türkiye, diatomaceous earths, which are classified among inert dusts, have gained increasing importance in recent years.

Diatomaceous earth (DE), derived from fossilized diatoms (microscopic algae), has attracted considerable attention as a natural insecticide in pest management, particularly within the grain industry (Losic and Korunić, 2017). DE consists primarily of silicon dioxide (SiO₂) and exhibits unique physical properties that contribute to its efficacy against insect pests. Its insecticidal action is largely physical, as it absorbs epicuticular lipids from insects, leading to desiccation and dehydration. Unlike synthetic insecticides, DE is non-toxic to mammals and leaves no harmful chemical residues, making it a safer alternative for grain protection. In recent years, research has increasingly focused on evaluating the effectiveness of DE against agricultural, medical, and urban pests. Integrating DE with other pest control methods, such as biological agents and plant extracts, holds promise for more comprehensive and environmentally friendly pest management strategies (Korunić et al. 2015). Further development of DE-based products that meet grain quality and regulatory standards may enhance their acceptance in the grain industry, particularly as global pest management increasingly shifts toward sustainable and safe alternatives to synthetic pesticides (Korunić, 1998; Saw et al. 2025).

Numerous studies have been conducted to evaluate the efficacy of diatomaceous earth against a wide range of stored product pests. These studies have shown that the efficacy of

diatomaceous earth varies depending on several parameters, such as the species of the target pest (Athanassiou et al. 2007; Atay et al. 2023; Ogreten et al. 2025), the structural properties of the DE (Gokavi et al. 2021; Henteş and Işıkber, 2024), its formulation (Athanassiou et al. 2004; Agrafioti et al. 2023), and the type of surface to which it is applied (Ertürk et al. 2020; Baliota and Athanassiou, 2023; Mortazavi et al. 2024).

This study was conducted to demonstrate the effectiveness of Diaterra[®], a natural diatomaceous earth obtained from Türkiye, on *S. oryzae* adults on galvanised sheet surface. The aim of this study is not only to demonstrate the effect of Diaterra[®] on *S. oryzae* adults, but also to contribute to the literature on the effect of diatomaceous earth on galvanized sheet surface. The ultimate goal is to establish an environmentally friendly and sustainable control method against the target pest.

2. Material and Methods

2.1. Insect rearing

Approximately 400–500 adult individuals of *Sitophilus oryzae* were collected from the culture maintained at the Insect Rearing Laboratory of Tokat Gaziosmanpasa University Faculty of Agriculture and placed into 1 liter glass jars containing 300 grams of whole wheat each. The jar lids were covered with muslin cloth to prevent insect escape while allowing airflow. After an oviposition period of 48 hours, the adult *S. oryzae* individuals were removed from the jars. The emergence of new adults was monitored, and once a sufficient number was obtained, the experiments were initiated. Throughout the study, the *S. oryzae* culture was continuously maintained (Alkan et al. 2024).

2.2. Diatomaceous earth

The diatomaceous earth product, Diaterra® (Organo Mineral Agriculture Mining Industry Trade Import Export Limited Company), was utilized in this study. Its composition includes 72.80% SiO₂, 9.00% Al₂O₃, 2.40% Fe₂O₃, 1.70% CaO, 2.40% MgO, 0.10% MnO, 0.20% P₂O₅, 0.20% Na₂O, 0.90% K₂O, and 0.40% TiO₂. The particle size of Diaterra® ranged from 2.594 μm to 39.745 μm, with an average particle diameter of 9.492 μm (Alkan et al. 2024).

2.3. Application of the diatomaceous earth

Bioassay was performed under controlled conditions at a temperature of 20 ± 1 °C and a relative humidity of $65 \pm 5\%$. Four different doses of the treatment (0.25, 0.50, 1.00, and 2.00 g/m^2) were applied, each on galvanized sheet surfaces measuring $15 \times 13.5 \times 0.25$ cm. Each dose was arranged in three replicates, with three repetitions per replicate. The diatomaceous earth was evenly distributed over the surface of the galvanized sheet using a glass Drigalski spatula. For each experimental unit, 20 adult insects were introduced. To ensure direct contact between the insects and the diatomaceous earth, the test arenas were covered with plastic petri dish lids measuring 90 mm in diameter. Additionally, 0.5 grams of whole wheat were provided in each unit as a food source for the insects. Insect mortality was recorded at intervals of 24, 48, 72, 96, 120, 144,168, 192 and 216 hours post-application. In control groups, insects were maintained in environments without diatomaceous earth, while a registered insecticide, K-Obiol® (Deltamethrin 25 g/l + Piperonyl Butoxide 250 g/l), was used as a positive control.

2.4. Statistical analysis

Initially, the raw mortality data were converted into percentage values and then subjected to an ArcSine transformation to normalize the proportional data, following the recommendations of Zar (1999) and Warton et al. (2011). The transformed mortality rates were analysed using analysis of variance (ANOVA), and differences among treatment groups were evaluated through Tukey's multiple comparison test at a significance threshold of 0.05. Statistical analyses were performed employing the General Linear Model procedure available in MINITAB Release 18, as outlined by McKenzie and Goldman (2005). Additionally, the analysis of means (ANOM), a variant of ANOVA commonly applied in quality improvement contexts, was utilized to compare group means (Pallmann and Hothorn, 2016).

3. Results

The effects of the commercially available diatomaceous earth, Diaterra[®], applied at different doses (0.25, 0.50, 1, and 2 g/m²) on the mortality rates of adult S. oryzae were monitored at a constant temperature of 20 °C for up to 216 hours. In the negative control group, mortality remained below 2% throughout the observation period, representing the lowest statistically observed level. This indicates that no experimental effect occurred aside from natural mortality. The low dose (0.25 g/m²) maintained mortality below 1% throughout the observation period and was statistically similar to the control. In contrast, at a dose of 0.50 g/m², an increase in mortality was observed from the 72nd hour, reaching approximately 24.2% by the 216th hour (F=42.36, DF=5.45, P<0.05). Although this increase was statistically significant, it remained limited compared to higher doses. Higher concentrations demonstrated a clear dose–response relationship. At an application rate of 1 g/m², mortality exceeded 25% at 72 hours (F=43.82, DF=5.45, P<0.05) and increased to 41% by 216 hours (F=42.36, DF=5.45, P<0.05). The highest dose, 2 g/m², was the most effective, resulting in mortality exceeding 40.2% at 72 hours and 83.5% at 216 hours (F=42.36, DF=5.45, P<0.05). These findings indicate a positive and statistically significant correlation between diatomaceous earth dosage and exposure duration with insect mortality rate. The reference insecticide, K-Obiol®, achieved 100% mortality at all time points, confirming the expected complete effect (Table 1.)

Table 1. Mortality (±SE) of *Sitophilus oryzae* adults exposed on galvanized sheet surface treated with different Diaterra® diatomaceous earth doses and time

Treatment	24 h	48 h	72 h	96 h	120 h	144 h	168 h	192 h	216 h
Control	0.00±0.00b	0.00±0,00b	0.88±2.23d	1.41±2.26d	1.41±2.26d	1.41±2.26d	1.41±2.26d	1.59±2.76d	1.59±2.76de
0.25 g/m^2	0.00±0.00b	0.07±0.63b	0.31±1.08d	0.31±1.08d	0.46±1.66d	0.92±1.85d	0.92±1.85d	0.92±1.85d	0.92±1.85e
0.50 g/m^2	$0.00\pm0.00b$	0.00 ± 0.00 b	9.04±8.19cd	9.67±8.30cd	16.86±4.90cd	19.53±5.63cd	21.56±6.45cd	22.17±7.06cd	24.15±8.48cd
1 g/m ²	0.00±0.00b	0.00±0.00b	25.54±16.96bc	30.68±17.51bc	30.68±17.51bc	33.82±15.98bc	34.89±16.18c	37.75±16.47c	41.11±16.28c
2 g/m ²	$0.00\pm0.00b$	0.00±0.00b	40.21±7.65b	55.78±16.25b	60.65±17.83b	68.16±15.46b	75.54±15.67b	78.03±2.76b	83.45±10.59b
K-Obiol®	100.00±0.00a*	100.00±0.00a	100.00±0.00a	100.00±0.00a	100.00±0.00a	100.00±0.00a	100.00±0,00a	100.00±0.00a	100.00±0.00a

*When examining the columns, the ratios containing the same letter are not statistically different according to the Tukey test (P<0.05)

To assess the effect of exposure time on mortality, LT₃₀, LT₅₀, and LT₉₀ values of Diaterra[®] applied at a dose of 2 g/m² on galvanized sheet surfaces against adult *Sitophilus oryzae* were calculated. Based on the data obtained, the LT₃₀, LT₅₀ and LT₉₀ values for *S. oryzae* were calculated as 84.602, 128.998 and 237.494 hours, respectively (Table 2).

Table 2. Lethal time values (LT₃₀, LT₅₀, and LT₉₀; hours) of Diaterra® applied at 2 g/m² on galvanized sheet surfaces against *Sitophilus oryzae* adults

Slope	LT ₃₀	LT50	LT90	Heterogeneity	Chi-square
	(confidence limits)	(confidence limits)	(confidence limits)		
0.012±0.001		128.998 (113.229-145.408)	237.494 (209.652-283.573)	7.0965	553.53

4. Discussion

Diatomaceous earths obtained from different geological sources, or even from the same region but possessing distinct physical characteristics, may exhibit variable efficacy as insecticides against stored-product pests due to these properties (Korunić, 2013). Moreover, the insecticidal activity of diatomaceous earth is influenced by multiple factors, including particle size and shape, application dose, treated surface, formulation type, insect species, crop type, relative humidity, and temperature (Athanassiou et al. 2007; Rojht et al. 2010; Gokavi et al. 2021; Agrofioti et al. 2023; Ertürk et al. 2020). Islam et al. (2010) reported 98% mortality of *Sitophilus oryzae* after 7 days of exposure at 25°C when applying the Protect-It® formulation at a dose of 300 ppm. Similarly, Athanassiou et al. (2005) observed mortality rates of 33% and 46% at doses of 0.25 g kg⁻¹ and 0.5 g kg⁻¹, respectively, after 7 days at 22 °C using SilicoSec®, and noted that increasing the temperature to 25 °C raised mortality at the same low dose to 38%. These findings indicate that higher temperatures can significantly enhance the efficacy of diatomaceous earth, and differences in formulation can also influence the outcomes.

The efficacy of diatomaceous earth depends on factors including particle size, surface area, silica content, and application rate. Athanassiou et al. (2007) reported that application of the diatomaceous earths, Insecto, PyriSec, and Protect-It on wheat at a concentration of 500 ppm resulted in mortality rates of 96.5, 99.0, and 99.7%, respectively, after 7 days of exposure. Aisvarya et al. (2021), determined the LD₅₀ value of the diatomaceous earth used against S. oryzae to be 1.27 mg/100 g. Furthermore, they achieved a 100% mortality rate at a dose of 15 mg/100 g of maize seeds within six days after exposure. Also, Sağlam et al. (2022) stated that Detech diatomaceous earth caused mortality rates of 82.1% and 92.2% at 600 and 900 ppm doses, respectively, against S. oryzae adults by the end of the seven days. In addition, Alagöz and Sağlam (2022) confirm this view, stating that five different diatomaceous earths used against S. oryzae adults caused different levels of effect at the same doses and exposure periods. They emphasised that the diatomaceous earth with the code FB2N1, which had a low effect, had a high SiO₂ content (92%) and thus highlighted that diatomaceous earth with a high silicon content (<90%) may have low efficacy against insects. The diatomaceous earth used in this study contains 72.80% SiO₂ and has shown a significant effect, causing 83.5% mortality after 216 hours (9 days). There are a limited number of studies specifically addressing the effectiveness of diatomaceous earth products on different surface types. Laboratory experiments have been conducted to evaluate the insecticidal efficacy of various DE formulations when applied directly to surfaces such as concrete, ceramic, plywood, plastic, metal, and other materials (Gowers and le Patourel, 1984; Collins and Cook 2006; Ertürk et al. 2020; Alkan et el. 2024; Mortazavi et al. 2024). The findings generally revealed that the effect of diatomaceous earth varied depending on the surface to which it was applied. According to Ertürk et al. (2020), the mortality rate of S. oryzae was significantly higher on concrete surfaces than on wooden surfaces. However, Baliota and Athanassiou (2023) tested diatomaceous earth and zeolite formulations from natural Greek deposits against *S. oryzae*, *R. dominica*, and *T. confusum* on concrete and steel surfaces at 0.5 and 1 g/m². They found that all treatments caused 100% adult mortality after 7 days, even at the lower dose, with no significant differences between surface types. In this study conducted on galvanized sheet surface, the efficacy against *S. oryzae* was determined to be 83.5% after 9 days. These comparisons emphasize the need to optimize diatomaceous earth applications according to environmental conditions and product characteristics for effective management of stored-product pests.

5. Acknowledgements

We thank to Nazlı Sena ERBİR for her assistance in laboratory studies. This study was presented orally at the 9th International Plant Protection Congress of Türkiye, held in Ankara, Türkiye, from September 3–5, 2025, and was published in the congress abstract book

6. References

- Agrafioti, P., Vrontaki, M., Rigopoulou, M., Lampiri, E., Grigoriadou, K., Ioannidis, P. M., ... & Athanassiou, C. G., 2023. Insecticidal effect of diatomaceous earth formulations for the control of a wide range of stored-product beetle species. Insects, 14(7), 656.
- Aisvarya, S., Kalyanasundaram, M., Kannan, M., Lakshmanan, A., & Srinivasan, T., 2021. Toxicity of diatomaceous earth on seed weevil, *Sitophilus oryzae* L. and its effect on agro-morphological characters of maize seeds. Journal of Applied and Natural Science, 13(4), 1180.
- Alagöz, V., & Sağlam, Ö., 2022. Insecticidal efficacy of some Turkish diatomaceous earth deposits against rice weevil, *Sitophilus oryzae* L. (Coleoptera: Curculionidae) on paddy. Journal of Tekirdag Agricultural Faculty, 19 (2), 446-455.
- Alkan, M., Atay, T., Tarhanacı, B., & Ertürk, S., 2024. Efficacy of surface applications of Diaterra® against *Sitophilus granarius* (Linnaeus, 1758) (Coleoptera: Dryophthoridae) and *Tribolium castaneum* (Herbst, 1797) (Coleoptera: Tenebrionidae). International Journal of Tropical Insect Science, 44(3), 1417-1426.
- Alpkent, Y. N., Yılmaz, A., & Ertürk, S., 2023. Determination of malathion resistance in *Sitophilus oryzae* L., 1763 and *Sitophilus granarius* L., 1758 (Coleoptera: Curculionidae) populations in Türkiye. Turkish Journal of Entomology, 47(2), 235-243.
- Anonymous, 2025. T.C. Tarım ve Orman Bakanlığı. Sitophilus oryzae Ruhsatlı bitki koruma ürünleri. Bitki Koruma Ürünleri Veri Tabanı. https://bku.tarimorman.gov.tr/Zararli/Details/486 (Erişim tarihi: 18 Mayıs 2025)
- Araújo, M. F., Castanheira, E. M., & Sousa, S. F., 2023. The buzz on insecticides: a review of uses, molecular structures, targets, adverse effects, and alternatives. Molecules, 28(8), 3641.
- Atay, T., Alkan, M., Ertürk, S., Toprak, U., 2023. Individual and combined effects of α-pinene and a native diatomaceous earth product on control of stored product beetle pests. Journal of Asia-Pacific Entomology, 26 (4), 102149.
- Athanassiou, C. G., Kavallieratos, N. G., & Meletsis, C. M., 2007. Insecticidal effect of three diatomaceous earth formulations applied alone or in combination, against three stored-product beetle species on wheat and maize. Journal of Stored Products Research, 43(4), 330-334.
- Athanassiou, C. G., Kavallieratos, N. G., Economou, L. P., Dimizas, C. B., Vayias, B. J., Tomanović, S., & Milutinović, M. 2005. Persistence and efficacy of three diatomaceous earth formulations against *Sitophilus oryzae* (Coleoptera: Curculionidae) on wheat and barley. Journal of Economic Entomology, 98(4), 1404-1412.
- Athanassiou, C.G., Kavallieratos, N.G., Andris, N.S., 2004. Insecticidal effect of three diatomaceous earth formulations against adults of *Sitophilus oryzae* (Coleoptera: Curculionidae) and *Tribolium confusum* (Coleoptera: Tenebrionidae) on oat, rye and triticale. Journal of Economic Entomology, 97, 2160–2167.
- Baliota, G.V., Athanassiou, C.G., 2023. Evaluation of inert dusts on surface applications and factors that maximize their insecticidal efficacy. Applied Sciences, 13, 2767.

- Campbell, J. F., & Arbogast, R. T., 2004. Stored-product insects in a flour mill: population dynamics and response to fumigation treatments. Entomologia Experimentalis et Applicata, 112(3), 217-225.
- Collins, D. A., & Cook, D. A., 2006. Laboratory evaluation of diatomaceous earths, when applied as dry dust and slurries to wooden surfaces, against stored-product insect and mite pests. Journal of Stored Products Research, 4(2):197–206. https://doi.org/10.1016/j.jspr.2005.01.005
- Ertürk, S., Atay, T., Toprak, U., Alkan, M., 2020. The efficacy of different surface applications of wettable powder formulation of Detech® diatomaceous earth against the rice weevil, *Sitophilus oryzae* (L.) (Coleoptera: Curculionidae). Journal of Stored Products Research, 89, 101725 https://doi.org/10.1016/j.jspr.2020.101725.
- FAO, 2011. Global food losses and food waste Extent, causes and prevention. Rome: Food and Agriculture Organization of the United Nations.
- Gokavi, N., Jayakumar, M., Mote, K., & Surendran, U., 2021. Diatomaceous earth as a source of silicon and its impact on soil physical and chemical properties, yield and quality, pests and disease incidence of Arabica Coffee cv. Chandragiri. Silicon, 13(12), 4583-4600.
- Gowers, S.L., & le Patourel, G.N.J., 1984. Toxicity of deposits of an amorphous silica dust on different surfaces and their pick-up by *Sitophilus granarius* (L.) (Coleoptera: Curculionidae). J. Stored Prod. Res. 20, 25–29.
- Hagstrum, D. W., Phillips, T. W., & Cuperus, G., 2012. Stored product protection. Kansas State University, Manhattan, KS. KSRE Publ.
- Henteş, S., & Işıkber, A. A., 2024. Insecticidal efficacy of local diatomaceous earth compositions with different particle sizes against stored grain pests. Turkish Journal of Entomology, 48(3), 353-365.
- Islam, M. S., Hasan, M. M., Lei, C., Mucha-Pelzer, T., Mewis, I., & Ulrichs, C., 2010. Direct and admixture toxicity of diatomaceous earth and monoterpenoids against the storage pests *Callosobruchus maculatus* (F.) and *Sitophilus oryzae* (L.). Journal of Pest Science, 83(2), 105-112.
- Kaundal, P., Padwal, K. G., Singh, R. N., & Srivastava, C. P., 2023. Morphological and molecular identification of *Sitophilus oryzae* Linnaeus and *Sitophilus zeamais* Motschulsky (Coleoptera: Curculionidae). Journal of Experimental Zoology India, 26 (2).
- Korunić, Z. J. J. S. (1998). Diatomaceous earths, a group of natural insecticides. Review. Journal of Stored Products Research, 34(2-3), 87-97.
- Korunić, Z., 2013. Diatomaceous Earths-Natural insecticides. Pestic Phytomed (Belgrade), 28(2):77-95
- Korunić, Z., Rozman, V., Liška, A., & Lucić, P. (2015). A review of natural insecticides based on diatomaceous earths. *Poljoprivreda / Agriculture*, 22(1), 2–14.
- Losic, D., & Korunic, Z. (2017). Diatomaceous earth, a natural insecticide for stored grain protection: Recent progress and perspectives.
- Mckenzie, J. D., Goldman, R., 2005. The Student Guide to MINITAB Release 14 Manual. Pearson Education, Boston, MA
- Mortazavi, H., Toprak, U., Tütüncü, Ş., Ormanoglu, N., & Ferizli, A. G., 2024. Surface application of diatomaceous earth, SilicoSec® is effective on *Sitophilus granarius* and *Rhyzopertha dominica*, but less against *Tribolium confusum*. Journal of Stored Products Research, 107, 102334.
- Ogreten, A., Eren, S., Mutlu, C., Ayaz, T., Saeed, A., Bingham, G. V., & Morrison, W. R., 2025. Insecticidal Effects of Native Raw and Commercial Diatomaceous Earth Against Lesser Grain Borer and Granary Weevil Under Different Environmental Conditions. Insects, 16(6), 549.
- Pallmann, P., Hothorn, L., 2016. Analysis of means: a generalized approach using R. Journal Applied Statistics, 43(8):1541–1560.
- Rajendran, S., & Muralidharan, N., 2001. Performance of phosphine in fumigation of bag stacks and bulk grain in India. Pesticide Outlook, 12(5), 208–211.
- Rees, D., 2004. Insects of stored products. CSIRO publishing.
- Rojht, H., Horvat, A., Athanassiou, C. G., Vayias, B. J., Tomanović, Ž., & Trdan, S., 2010. Impact of geochemical composition of diatomaceous earth on its insecticidal activity against adults of *Sitophilus oryzae* (L.) (Coleoptera: Curculionidae). Journal of pest science, 83(4), 429-436.
- Sağlam, Ö., Bayram, A., Işıkber, A. A., Şen, R., Bozkurt, H., & Hentes, S., 2022. Insecticidal and repellency effects of a Turkish diatomaceous earth formulation (Detech) on adults of three important pests of stored grain. Turkish Journal of Entomology, 46(1), 75-88.
- Saw, G., Sarkar, S., Dhar, D. W., & Das, S., 2025. Diatoms as Insect Control Agents. In Diatoms and Sustainable Agriculture (pp. 141-158). CRC Press.
- Warton, D. I., Hui, F. K. C., 2011. The arcsine is asinine: the analy- sis of proportions in ecology. Ecology 92:3-10.
- Zar, J. H., 1999. Biostatistical Analysis, fourth edn. Prentice Hall, Upper Saddle River, NJ, USA