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In this paper, we investigate Ricci solitions on semi-invariant submani-
folds of trans Sasakian manifold. We obtain the conditions for the soliton
to be steady, shrinking and expanding. We give an example for semi-
invariant submanifolds of trans Sasakian manifold with ricci soliton.

1 Introduction

The curvature of a Riemannian manifold is very important in determining its geometric properties.
Riemannian curvature tensor and Ricci tensor are two basic elements used in calculating the curvature
of a manifold. In 1988(Hamilton, 1988), Hamilton defined Ricci flows using these concepts to obtain a
canonical metric on a Riemannian manifold such that

∂g(t)

∂t
= −2S.

On the other hand Ricci solitons, a special solution of Ricci flows, are closely related to knot theory and
special case of Einstein’s equation, thus enabling theoretical physicists and mathematicians to focus more
on this subject. A Ricci soliton (g, V, λ) on a Riemannian manifold is defined

£V g + 2S + 2λg = 0,

where £V denotes the Lie derivative operator along the vector field, S is Ricci tensor and λ is a reel
constant.
In recent years, the geometry of Ricci solitons has been of interest to many mathematicians. In particular,
it became more important after Grigori Perelman applied Ricci solitons to solve the long-standing Poincare
conjecture introduced in 1904 Morgan and Tian (2007). Thus, Ricci solitons have become a popular topic

https://dergipark.org.tr/tr/pub/jum
https://orcid.org/0000-0002-4618-8243
https://orcid.org/0000-0001-9093-1607
https://dergipark.org.tr/tr/pub/jum


Ramazan SARI, Süleyman DİRİK

of study in differential geometry in recent years and have been investigated in different spaces having a
Riemannian metric (Ingalahalli & Bagewadi, 2012).
The application of Ricci solitons to submanifolds has made important contributions to the study of the
geometric properties of submanifolds. The problem of studying the necessary conditions for the existence
of a Ricci soliton on a submanifold of a Riemannian manifold has led to important geometric results. In
particular, if a submanifold of Euclidean space has a Ricci soliton, the properties of these submanifolds
are analyzed and examples of Ricci solitons are given (Chen & Deshmukh, 2014). Many author studied
on ricci solitons (Chen & Deshmukh, 2014a), (Deshmukh et al., 2011), (Nagaraja & Premalatta, 2012).
In the Gray-Hervella classification of almost Hermitian manifolds (Gray & Hervella, 1980), there appears
a class W4 of Hermitian manifolds which are closely related to locally conformal Kaehler manifolds. An
almost contact metric structure on a manifold M is called a trans-Sasakian structure (Oubina, 1985) if
the product manifold M ×R belongs to the class W4. The class C5 ⊕C6 (Marrero, 1992) coincides with
the class of trans-Sasakian structures of (α, β).
In (Turgut Vanlı & Sarı, 2010), Turgut Vanli and Sari studied invariant submanifolds of a trans-Sasakian
manifold. Necessary and sufficient conditions are created to make a submanifold of a trans-Sasakian
manifold an invariant submanifold. Also,Vanli and Sari studied some theorems related to an invariant
submanifold of a trans-Sasakian manifold.
Recently, C. Gherghe (Gherghe, 2000) introduced a nearly trans-Sasakian structure of type (α, β), which
generalizes trans-Sasakian structures in the same sense as nearly Sasakian structures generalize Sasakian
ones.

2 Preliminaries

Let M̃ be (2n + 1) dimensional, an almost contact manifold with an almost contact metric structure
(φ, ξ, η, g), where φ is a (1, 1) tensor field, ξ is a vector field, η is 1-form and g is a compatible Riemannian
metric such that

φ2 = −I + η ⊗ ξ, η(ξ) = 1, φ(ξ) = 0, η ◦ φ = 0, (1)

g(φX,φY ) = g(X,Y )− η(X)η(Y ), (2)

g(φX, Y ) = −g(X,φY ), g(X, ξ) = η(X)

for all X,Y ∈ Γ(TM̃).

An almost contact metric structure (φ, ξ, η, g) on M̃ is called a trans-Sasakian structure of type (α, β)

if
(∇Xφ)Y = α(g(X,Y )ξ − η(Y )X) + β(g(φX, Y )ξ − η(Y )φX) (3)

for some smooth functions α and β on M̃ where ∇ is the Riemannian connection with respect to g.
From the formula (3) it follows that

∇Xξ = −αφX + β(X − η(X)ξ) = −αφX − βφ2X. (4)

If trans-Sasakian structure of type (1, 0) is Sasakian, trans-Sasakian structure of type (0, 1) is Kenmotsu,
trans-Sasakian structure of type (α, 0) are α-Sasakian, trans-Sasakian structure of type (0, β) are β-
Kenmotsu and trans-Sasakian structure of type (0, 0) are cosymplectic.
Ricci solition which generalization of an Einstein metric was introduced by Hamilton (Hamilton, 1988).
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A Riemannian metric g on a Riemann manifolds are called Ricci solition such that following equation

LXg + 2S + 2λg = 0 (5)

where S is Ricci tensor, L is the Lie derivative and λ a reel number. A Ricci solition is said to be
expanding, steady and shrinking if λ > 0, λ = 0 and λ < 0.

3 Semi Invariant Submanifold of Trans Sasakian Manifold

In this section, we define semi-invariant submanifolds of trans Sasakian manifold. We give an example
for semi-invaiant submanifold.

Definition 3.1. An (2m+1)−dimensional Riemannian submanifold M of a trans Sasakian manifold M̃

is called a semi invariant submanifold if ξ is tangent to M and there exists two differentiable distributions
D and D⊥ on M satisfying:

(i) TM = D ⊕D⊥ ⊕ sp{ξ};

(ii) The distribution D is invariant under φ, that is φDx = Dx for any x ∈ M ;

(iii) The distribution D⊥ is anti-invariant under φ, that is φD⊥
x ⊆ T⊥

x M for any x ∈ M.

Now, we choose a local field of orthonormal frame {E1, ..., E2p, E2p+1, ..., E2m, ξ} on M . Then we have,

D = sp{E1, ..., E2p}, D⊥ = sp{E2p+1, ..., E2m} (6)

where dimD = 2p and dimD⊥ = 2q.

Then if p = 0 we have an anti-invariant submanifold tangent to ξ and if q = 0, we have an invariant
submanifold. Now, we give the following example.

Example 3.2. In what follows, (R2n+1, φ, η, ξ, g) will denote the manifold R2n+1 with its usual almost
contact metric structure given by

η = e−zdz, ξ = ez
∂

∂z

φ(

n∑
i=1

(Xi
∂

∂xi
+ Yi

∂

∂yi
) + Z

∂

∂z
) =

n∑
i=1

(Yi
∂

∂xi
−Xi

∂

∂yi
) +

n∑
i=1

Yiyi
∂

∂z

g = η ⊗ η + e−2z(

n∑
i=1

dxi ⊗ dxi + dyi ⊗ dyi),

(x1, ..., xn, y1, ..., yn, z) denoting the Cartesian coordinates on R2n+1. We consider M = {(x1, x2, x3, x4,y1, y2, y3, y4, z) ∈
R9 : z ̸= 0}. We determine the vector fields

e1 = ez
∂

∂x1
, e2 = ez

∂

∂x2
, e3 = ez

∂

∂x3
, e4 = ez

∂

∂x4
,

e5 = ez
∂

∂y1
, e6 = ez

∂

∂y2
, e7 = ez

∂

∂y3
, e8 = ez

∂

∂y4
, e9 = ez

∂

∂z
.

Therefore {e1, ..., e9} is an orthonormal basis on M. On the other hand

φ(e1) = −e5, φ(e2) = −e6, φ(e3) = −e7, φ(e4) = −e8, φ(e9) = 0.
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Then for all X,Y ∈ Γ(TM), we have

φ2(X) = −X + η(X)ξ, η(e9) = 1

g(φX,φY ) = g(X,Y )− η(X)η(Y ).

Then we obtain (M,φ, η, ξ, g) is an almost contact manifold. A submanifold of R9 defined by

M = X(u, v, k, l, t) = (u, k, 0, 0, v, 0, l, 0, t).

Then local frame of TM

e1 = ez
∂

∂x1
, e2 = ez

∂

∂y1
,

e3 = ez
∂

∂x2
, e4 = ez

∂

∂y3
,

e5 =
∂

∂z1
= ξ

and
e∗1 = ez

∂

∂x3
, e∗2 = ez

∂

∂y2

from a basis of T⊥M . We determine D1 = sp{e1, e2} and D2 = sp{e3, e4}. Then D1, D2 are invariant
and anti-invariant distribution, respectively. Thus TM = D1⊕D2⊕sp{ξ} is a semi invariant submanifold
of R9.

Let ∇̃ be the Levi-Civita connection of M̃ with respect to the induced metric g. Then Gauss and
Weingarten formulas are given by

∇̃XY = ∇∗
XY + h(X,Y ) (7)

∇̃XN = ∇∗⊥
X N −ANX (8)

for any X,Y ∈ Γ(TM) and N ∈ Γ(T⊥M). ∇∗⊥ is the connection in the normal bundle, h is the
second fundamental from of M̃ and AN is the Weingarten endomorphism associated with N . The second
fundamental form h and the shape operator A related by

g(h(X,Y ), N) = g(ANX,Y ). (9)

Let M be semi invariant submanifold of M̃ . M is said to be totally geodesic if h(X,Y ) = 0, for any
X,Y ∈ Γ(TM).

We denote by R̃ and R the curvature tensor fields associated with ∇̃ and ∇∗ respectively. The Gauss
equation is given by

R̃(X,Y, Z,W ) = R∗(X,Y, Z,W ) + g(h(X,Z), h(Y,W ))− g(h(X,W ), h(Y, Z)) (10)

for all X,Y, Z,W ∈ Γ(TM).

4 Ricci Solitons on Semi-Invariant Submanifolds of Trans Sasakian Manifold

In this section, we study ricci solitons on semi-invaraint submanifold of a trans Sasakian manifold. We
obtain expanding ,steady and shrinking of invariant and anti-invariant distributions.

Theorem 4.1. Let (g, ξ, λ) is a Ricci soliton on a semi-invariant submanifolds M of a trans Sasakian manifold
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M̃ . Then, invariant distribution D is η−Einstein.

Proof. For all X ∈ Γ(D), using (4) we have

(Lξg)(Y, Z) = g(∇Y ξ, Z) + g(Y,∇Zξ)

= 2βg(φY, φZ). (11)

We know that
(Lξg)(Y, Z) + 2S(Y, Z) + 2λg(Y, Z) = 0

Then from ( 11) we obtain that

S(Y, Z) = −(β + λ)g(Y, Z) + βη(Y )η(Z). (12)

We consider φ(gradα) = (2q − 1)gradβ for (2q + 1)−dimansional semi-invariant submanifold. Then

ξβ = g(ξ, gradβ) =
1

2q + 1
g(X,φgradα) = 0,

Xβ =
1

2q − 1
g(X,φgradα)

and
(φX)α = g(φX, gradα)

S(X, ξ) = 2q(α2 − β2)η(X). (13)

Further using (12) we have
S(X, ξ) = −λη(X). (14)

Therfore from (13) and ( 14) we obtain

λ = 2q(β2 − α2).

Theorem 4.2. A Ricci soliton (g, ξ, λ) on invariant distribution D of semi-invariant submanifold of a trans
sasakian manifold is expanding ,steady and shrinking according as β2 − α2 > 0, β2 − α2 = 0 and β2 − α2 < 0,
respectively.

Let M is semi-invariant submanifold of α-Sasakian manifold. For all X ∈ Γ(D⊥), using ( 7) we have

∇Xξ = 0 and h(X, ξ) = αφX. (15)

Then, using (4), we get
(Lξg)(Y, Z) = g(∇Y ξ, Z) + g(Y,∇Zξ) = 0.

Therefore from (5) we obtain
S(Y, Z) = −λg(Y, Z). (16)

Theorem 4.3. Let (g, ξ, λ) is a Ricci soliton on a semi-invariant submanifolds of α−Sasakian manifold. Then
anti-invariant distirbution D⊥ is Einstein.

On the other hand, for all X ∈ Γ(D⊥), using ( 15), we have

S(X, ξ) = 0.
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Then from (16), we conclude that
λ = 0.

Theorem 4.4. A Ricci soliton (g, ξ, λ) on anti-invariant distribution D⊥ of semi-invariant submanifold of
α−Sasakian manifold is always steady.

On the other hand, let M is semi-invariant submanifold of β-Kenmotsu manifold.
For all Y ∈ Γ(D⊥), from (7) we get

∇Y ξ = βφ2X and h(Y, ξ) = 0. (17)

Then, using (17) we have

(Lξg)(Y, Z) = g(∇Y ξ, Z) + g(Y,∇Zξ)

= −2βg(φY, φZ).

Therefore using (5) we obtain

S(Y, Z) = −(β + λ)g(Y, Z) + βη(Y )η(Z). (18)

Theorem 4.5. Let (g, ξ, λ) is a Ricci soliton on a semi-invariant submanifolds of β-Kenmotsu manifold. Then
anti-invariant distirbution D⊥ is η−Einstein.

On the other hand, using (17) we have

S(X, ξ) = 2pβη(X). (19a)

Moreover from (18) we get
S(X, ξ) = −λη(Y ). (20)

Using (19a) and (20) we obtain
λ = −2pβ.

Theorem 4.6. A Ricci soliton (g, ξ, λ) on invariant distribution D⊥ of semi-invariant submanifold of β-Kenmotsu
manifold is expanding ,steady and shrinking according as β > 0, β = 0 and β < 0, respectively.

Example 4.7. We consider the 3-dimensional M = {(x, y, z) ̸= (0, 0, 0) ∈ R3} where (x, y, z) standart
coordinates of R3. The vector fields

e1 = z
∂

∂x
, e2 = z

∂

∂y
, e3 = −z

∂

∂z

are linearlyindependent at each point of M . Let g be the Riemannian metric defined by

g(ei, ej) = 0 and g(ei, ei) = 1.

Let η be the 1-form defined by η(W ) = g(W, e3) for any W ∈ Γ(TM). Let φ be the (1, 1) tensor field
defined by

φ(
∂

∂x
) = − ∂

∂y
, φ(

∂

∂y
) =

∂

∂x
, φe3 = 0.

Thus we have
φe1 = −e2, φe2 = e1, φe3 = 0.
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For any vector field W = a1
∂
∂x + a2

∂
∂y + a3

∂
∂z ∈ Γ(R3) we have

g(W,W ) = a21 + a22 + a23 and g(φW,φW ) = a21 + a22

and
φ2W = −a1

∂

∂x
− a2

∂

∂y
= −W + η(W )ξ,

η(ξ) = 1, g(φW,φW ) = g(W,W )− η2(W ).

Then for e3 = ξ, (φ, ξ, η, g) defines on almost contact metric structure on M . Now by direct computations
we obtain

[e3, e1] = −e1, [e1, e2] = 0, [e3, e2] = −e2.

The Riemannian connnection ∇ ofthe metric tensor g is given by the Koszul’s formula which is

2g(∇XY,Z) = Xg(Y, Z) + Y g(Z,X)− Zg(X,Y )− g(X, [Y,Z])− g(Y, [X,Z]) + g(Z, [X,Y ]).

By using the above formula, we obtain

∇e1e1 = −e3, ∇e1e2 = 0, ∇e1e3 = e1

∇e2e1 = 0, ∇e2e2 = −e3, ∇e2e3 = e2

∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0.

We see that

(∇e1φ)e1 = −∇e1e2 − φ(−e3)

= 0. (21)

So,

0 = α(g(e1, e1)e3 − η(e1)e1) + β(g(φe1, e1)e3 − η(e1)φe1)

= αe3 + β.

(∇e1φ)e2 = ∇e1φe2 − φ∇e1e2

= ∇e1e1

= −e3 (22)

So,

−e3 = α(g(e1, e2)e3 − η(e2)e1) + β(g(φe1, e2)e3 − η(e2)φe1)

= β(−g(e2, e2)e3)

= −βe3

∇e1e3 = −αφe1 + β(e1 − η(e1)e3) (23)

e1 = αe2 + βe1
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by (21,22,23) we see that the manifold satisfies (1) and (3) for X = e1, α = 0, β = 1 and e3 = ξ. It can
be show that for X = e2, e3 the manifolds also satisfies ( 1) and (3) for α = 0, β = 1 and e3 = ξ, so
the manifold is a trans Sasakian manifold of type (0, 1). Using the formula Riemannian curvature, we
conclude the following expressions:

R(e1, e2)e1 = 0, R(e1, e2)e2 = −e1, R(e1, e2)e1 = e2

R(e2, e3)e1 = 0, R(e2, e3)e2 = −e3, R(e2, e3)e3 = −e2

R(e1, e3)e1 = −e3, R(e1, e3)e2 = 0, R(e1, e3)e3 = −e1

R(e2, e1)e1 = −e2, R(e3, e1)e1 = −e3, R(e3, e2)e2 = −e3

from the above expressions of the curvature tensor R, we obtain that

S(e1, e1) = −2, S(e2, e2) = −2, S(e3, e3) = −2.

The potential vector field on M is given by

V =
x

z
e1 +

y

z
e2 + ze3.

Therefor we get
[V, e1] = 0, [V, e2] = 0, [V, e3] = e3.

Then, we obtain
(LV g)(ei, ej) + 2S(ei, ej) + 2λg(ei, ej) = 0

for λ = 2, where i, j = 1, 2, 3. As a result, M is an steady Ricci soliton.

5 Conclusion

The Ricci soliton is an important concept in differential geometry and geometric analysis, and plays a
particularly significant role in Ricci flow theory. A Ricci soliton is a metric solution that transforms itself
under the Ricci flow only by a diffeomorphism and scaling. That is, the metric evolving under the Ricci
flow actually evolves by changing shape (shrinking, expanding or steady) without altering the geometry.
In this paper, the idea of examining semi-invariant submanifold with ricci solitons are emphasized. The
works on this subject will be useful tools for the applications of submanifold with different manifolds.
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