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ABSTRACT. In this work, we investigate the second BVP (boundary value problem) associated with the linear equi-
librium theory of thermoelasticity with microtemperatures. We obtain a solution of the second BVP in terms of a
double-layer thermoelastic potential, unlike the results reported in the literature, where a solution is represented by a
single-layer thermoelastic potential.
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1. INTRODUCTION

The theory of thermoelasticity with microtemperatures is a generalized extension of classi-
cal thermoelasticity, developed to more accurately describe the thermo-mechanical behaviour
of materials with internal microstructures, such as composites, porous materials, and nanos-
tructured metals. Unlike classical theory, where temperature is considered as a uniform macro-
scopic scalar quantity, microtemperature models introduce new internal thermal variables to
represent heat transport phenomena and deformations at the microscopic scale.

In [20], Iesan and Quintanilla introduced a three-dimensional model of thermoelasticity, in-
corporating microtemperatures as additional internal variables. In their formulation, each ma-
terial point is characterized not only by a macroscopic temperature field, but also by a vector of
microthermal variables, which provide a more refined description of local heat transfer at the
microscopic scale. In [20], the authors also derive existence and uniqueness theorems, as well
as results on the asymptotic behavior of solutions. Further developments of this model can be
found in [18, 19]. See also [11, 21] and the references therein.

Several works have contributed to the mathematical formulation and development of the
theory due to Iesan and Quintanilla. In particular, Svanadze [28] derived fundamental solu-
tions for the equations of the equilibrium and steady oscillations related to this theory. Green'’s
formulae within the linear equilibrium theory of the considered thermoelasticity framework,
as well as uniqueness theorems for both internal and external basic BVPs, were established
in [27]. Also in [27], existence theorems for the internal and external BVPs were proved us-
ing the potential method in combination with the theory of singular integral equations. See
[26, 29] for the basic BVPs of steady vibrations studied using the potential method. As far as
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the two-dimensional case is concerned, see [2], where specific features of planar problems were
analyzed.

The theory of thermoelasticity with microtemperatures has been extended in various ways.
For example, a linear theory for microstretch elastic materials with microtemperatures, focus-
ing on bodies without microrotational effects, has been presented in [17], establishing unique-
ness and existence theorems for the dynamic behavior of anisotropic materials. Liverani and
Quintanilla [24] studied thermoelastic models with microtemperatures including fading-me-
mory, proving well-posedness and exponential energy decay. Other recent contributions in-
clude nonlinear models [1] and double and triple-porosity frameworks [16, 22, 30].

In [23], we proposed a boundary integral formulation for the Dirichlet problem in the linear
equilibrium theory of thermoelasticity with microtemperatures, based on the single-layer po-
tential ansatz. The approach used stems from the integral method first introduced by Cialdea
[3], who proposed a solution of the Dirichlet problem for Laplace’s equation, in a bounded
connected domain, represented by means of a single-layer potential, instead of the classical
double-layer one. A similar approach consists in looking for the solution of the Neumann
problem by means of a double-layer potential (see, e.g. [6]). The method relies on the theory
of reducible operators and the theory of differential forms, and it has been extended in several
contexts (see, e.g. [8,7, 10,9, 4, 5]).

The aim of the present work is to employ the double-layer ansatz to represent a solution of
the second BVP in the linear equilibrium theory of thermoelasticity with microtemperatures,
where the thermal and mechanical fluxes are prescribed on the boundary. Such a BVP arises
naturally in applications involving external stress, insulation, or prescribed heat fluxes, and
poses distinctive analytical challenges due to the structure of the PDE system and the role of
the stress operator in the boundary formulation.

The paper is organized as follows. Section 2 reviews some key notation, introduces the
thermoelasticity system with microtemperatures, the single- and double-layer thermoelastic
potentials, and summarizes the main result obtained in [23] for the Dirichlet problem. Section
3 is devoted to some boundary integral operators and their kernels. Finally, in Section 4 we ad-
dress the second BVD, represent the solution in terms of double-layer thermoelastic potentials,
and prove solvability via a suitable Fredholm system.

2. PRELIMINARIES

Throughout the article, © denotes a bounded domain (open connected set) of R?, with com-
plement R3 \  connected, and such that its boundary ¥ is a Lyapunov surface, i.e. ¥ € C12,
a €]0,1]. The vector n(z) stands for the outward unit normal vector at the point z € ¥, and
D= (8/81‘1, 8/81‘2, 8/8.%‘3)

For h € N, let C"(Q) denote the space of all real-valued continuous functions defined on
Q) whose partial derivatives exist and are continuous up to order h. Moreover, C"#(Q) (0 <
B < 1) denotes the space of all functions defined on 2 possessing continuous derivatives up to
order h, with all derivatives of order h being Holder continuous with exponent £.

The subspace of C"(Q2) of functions whose partial derivatives can be continuously extended
to (2 is denoted by C"(Q).

Likewise, C"# (Q2) stands for the subspace of C"(Q) whose derivatives of order h are Holder
continuous with exponent g, for 0 < 5 < 1.

From now on, let p be a real number such that 1 < p < +o00. As usual, the symbol L?(X)
stands for the space of all real-valued measurable functions v for which |u|P is integrable over
Y. We denote by L} (X) the space of differential forms of degree 1 (in short, 1-forms) whose
components belong to L?(X). The Sobolev space W!?(X) can be viewed as the space of all
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functions in L?(3) whose weak differential belongs to L} (X). If u € [W1?(X)]7, then du denotes
the vector (duy, ..., dur). For details about differential forms, we refer the reader to [14, 15].

In order to distinguish the limit obtained by approaching the boundary ¥ from 2 and R3\ Q,
respectively, we will use the following notations:

ut(z2) = limu(z) and w (z)= lim u(z), zeX.
;60 :cgJRS\ﬁ

Let us now introduce some additional concepts and preliminary results that will be useful later.
For reader’s convenience, we proceed to split up the section in several subsections.

2.1. The system of the linear equilibrium theory of thermoelasticity with microtempera-
tures. Suppose that the bounded domain (2 is occupied by an isotropic elastic material with
microstructure. Following [26, 27], the system of homogeneous equations of the linear equilib-
rium theory of thermoelasticity for such materials is

pAu+ (A + p) grad div u — 8 grad 6 = 0,
(2.1) ke Aw + (kg + k5) grad div w — k3 grad 6 — kow = 0,
kAO + kq divw =0,
where u = (u1,us2,us) is the displacement vector, w = (w1, w2, ws) is the microtemperature
vector, 6 is the temperature measured from the constant absolute temperature Ty (7 > 0), and
A, B,k k..., kg are constitutive coefficients.
Let us assume that the following conditions are satisfied:
w>0, 32+ 2u > 0,
(2.2) 3ky+ ks + kg >0, kg +ks >0, ke — ks >0,
k>0, (k1 + Toks)? < 4Tpkks.
Observe that conditions (2.2) are involved in the uniqueness theorems for the basic BVPs (see
[27]). Moreover, (2.2) assure the ellipticity of system (2.1).
It is convenient to rewrite the system (2.1) in a matrix form:
(2.3) AD)U(x) =0, z€Q,

where U = (u,w,6)T, superscript T denoting transposition, and A(D) is the 7 x 7 matrix

AV(D) A@(D) A®)(D)
AD)=| AG/(D) AW(D) A®)(D)
AT(D) A®)(D) A®(D)

whose entries are, for [,j = 1,2, 3,

82
Az(;)(D) = pAd; + (A + p) A@)(D) = A(?’)(D) -0,

Ox 0z’ ly Ly
92 0
Al(;%)(D) = (kA — ko)doyj + (ka + kg,)m, Al@ (D) = _537;1’
) B
A9 = kg, AT(D)=0, A®(D)=ki~—, AO(D)=Ar;=FkA,
i 20, 75 (D) 7;(D) 13xj (D) 77

015 being the Kronecker delta.

In what follows, we denote by I'(z) the fundamental solution of the equilibrium system of
thermoelasticity with microtemperatures. The explicit construction of I'(x) can be found in [28,
formulae (52)-(53)]. Here, we just recall that each column of I'(x) satisfies system (2.3) at every
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point z € R? except the origin, in which I'(z) is singular. For more details about the behavior
of I'(x) in a neighborhood of the origin, see [23, Lemma 3.1].

2.2. Thermoelastic potentials. In order to define the thermoelastic potentials and collect some
useful properties for them, we introduce the stress operator P(D, n), that is the 7 x 7 matrix

PM(D,n) 0 —pn
(2.4) P(D,n) = 0 P (D,n) 0
0 kin ko2
of differential operators
1) B 0 0 0
PY(D,n) = pdy; — —— —
0 (D,n) = pdy; n + un; o2, + Any oz,

@, D 9 9
Pl] (D,n) = k6513% + kg‘,n]% + k4n187%

(1,7 = 1,2, 3). Moreover, we also consider the matrix f’(D7 n), defined as

B PU(D, n) 0 0
(2.5) P(D,n) = 0 P@(D,n) 0 .
0 ksn ke

Then, we can define the thermoelastic potentials as follows.
The single-layer thermoelastic potential U[¢], with density v, is given by

26) Ulla) = [ Mo - y)uiide,, =,

The double-layer thermoelastic potential W¢|, with density ¢, is defined as

27) W(g)(z) = / (B(Dy, )T (x — )T o(y)doy, € Q.

Now, we recall some properties of thermoelastic potentials, that we use in what follows. For a
proof of the first result, see [27, Theorem 20].

Theorem 2.1. Let U] be a single-layer thermoelastic potential with density ¢ € [C%* (2)]7, 0 <
o' < a < 1. Then, the following properties hold:
(i) ADD)U] =0in;
(i) Uly] € [CH @) n[C=(Q)];
(iii) the integral

P(D.mULI() = [ [PD. )Tz = e,
is singular for z € ¥;
(iv) {P(D,n)U[]}*(2) = F59(2) + P(D,n)U[](2), 2 € .
Next theorem was proved in [27, Theorem 21].

Theorem 2.2. Let W([¢] be a double-layer thermoelastic potential with density ¢ € [C** (2)]7, 0 <
o < a<1. Then,

() AD)Wg] = 0in ©;

(i) W(g] € [Co () n[C=(Q)]
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(iif) the integral
Wiel(:) = [ (P )l = ) 6(0)der,

is singular for z € ¥;
(iv) {WIG]}*(2) = £10(2) + Wel(2), = € X
W) {P(D,mWII}T(2) = {P(D,n)W[]}"(2), 2 € X.

2.3. On the Dirichlet problem. Here, we summarize the main results contained in [23], where
the Dirichlet problem for the thermoelastic system with microtemperatures (2.1) has been con-
sidered.

First of all, we define the class S? of all functions which can be represented by a single-layer
thermoelastic potential (2.6) with density in [LP(X)]7. In this class, we are interested to solve
the Dirichlet problem

U e SP,
2.8) AD)U =0 inQ,
Ut=Ff ony,

where f € [WLP(2)]7.

Following the approach in [3], we apply the exterior differential d to both sides of the inte-
gral system of equations of the first kind obtained imposing the boundary condition, and we
achieve the singular integral system

(2.9) /d (2= ploy)do, = df(z),  z€%,
where the unknown is the vector (¢, ..., ¢7) of scalar functions and the datum is the vector
(dfy,...,df7) of 1-forms.

A crucial step is to prove that the operator S : [LP(X)]” — [L](2)]” can be reduced on the
left, that is that there exists a continuous linear operator S’ : [L}(X)]” [LP(E)] such that

S'S = I + T, where I stands for the identity operator on [LP(X)]" and T : [LP(2)]” — [LP(2)]”
is a compact operator. The construction of S’ is made in [23, Proposition 4.4].

From one of the main properties of reducible operators, it follows that for system (2.9),
briefly S¢ = df, the Fredholm alternative theorem holds (see, e.g. [13, 25]). Then, S¢ = df
is always solvable since df satisfies the corresponding compatibility conditions, which are
(vi,dfi) = 0 for every v € [LY(2)]", p + ¢ = pq, such that each component ~; of 7 is a weakly
closed 1-form. This leads to the main result [23, Theorem 5.6], that we mention below for the
reader convenience.

Theorem 2.3. The Dirichlet problem (2.8) admits a unique solution U € SP. In particular, the density
¢ of U can be written as ¢ = ¢g + b, where 1y is the density of a single-layer thermoelastic potential
which is constant on 3 and ¢ solves the singular integral system

/Edm [Fm(y — I)] ¢Oj(y)day = dfz(SC), 7= 1, ey 7, a.e. xr € X.

Note that every constant function belongs to S? (see [23, Lemma 5.5]). As quoted in the
introduction, this formulation is different from that one obtained in [27], where a double-layer
thermoelastic approach has been used, and shows the effectiveness of the single-layer method
also in the context of thermoelasticity with microtemperatures.
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3. BOUNDARY INTEGRAL OPERATORS

Let K : [LP(X)]" — [LP(¥)]7 and K* : [LY(X)]" — [LYX)]” (p + ¢ = pq) be the boundary
integral operators defined by

(3.10) Ko(z) = / [B(Dy )T (2 — )| d(y)do,, =€
and
(3.11) K*(z) = / (P(D.n)T(z — )b(y)do,, =€ %,

where P(D,n) and ]S(D, n) are the boundary differential operators defined by (2.4) and (2.5),
respectively.
The operators K and K* are adjoint with respect to the duality

< ’(/J7K¢ >=< K*¢7¢ >,

where < f, g > is the bilinear form

/Efgda/zjilfjgjdo.

Moreover, the operators K and K* are singular, as stated in Theorems 2.1 and 2.2. Further, K
and K* are Fredholm operators and hence the index is equal to zero (see [27, Theorem 24]). For
the definition of Fredholm operator see, e.g. [12, Chapter 5].

In what follows, we are interested in the kernels of the operators +17 + K and +17 + K*. It
is known that (see [27, p. 746])

(3.12) ker (%HK) — {0} and ker (%I+K*> = {0}.

On the contrary, the kernels of the operators —4 I+ K and — 31 + K* are not trivial. To describe
them, let us denote by H the space of solutions of the homogeneous second problem

h e [CH@Q) N[C*Q)

(3.13) A(D)h =0 in Q,
{P(D,n)h}*t =0 ony.
As shown in [23, Lemma 5.2], the space H is not trivial and contains vector functions h =
(u,w,0)T of the form
(3.14) u(z) =a+bAzx+coerr, w(z) =0, 0(z) = cq, x €,

with a, b € R? arbitrary constant vectors, ¢; € R an arbitrary constant, and ¢y = 8/(3\ + 2pu).
Then, we have the following result.

Proposition 3.1. Let K and K* be as in (3.10) and (3.11), respectively. The homogeneous boundary
integral systems

(3.15) (— %I+K)qb:0 on s,
(-31+K)p=0 onx

admit seven linearly independent solutions, forming a complete system.
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In particular, the family {¢V), ..., ¢V} defined on ¥ by

<z><1 (2) = (1,0,0,0,0,0,0), ¢ (z) = (0,1,0,0,0,0,0),
( ) (0 07 130 0 0 0) ¢(4)(z) = (Oa 72372%0,07070);
(3.16) (5 ©
¢ (2) = (z3,0,—21,0,0,0,0), ¢%(2) = (—22,21,0,0,0,0,0),
(7)< ) (0021,0022,0023,0 O 0 1)

with co = B/(3X\ + 2p), is a basis for ker(— 11 + K).

Proof. As quoted before, vector functions of type (3.14) are solution of the problem (3.13). From
this, it follows that the functions on Q2

¢<1>( ) =(1,0,0,0,0,0,0), #?(z) = (0,1,0,0,0,0,0),
( ) = (0, 0,1,0 0,0,0), oW (z) = (0, —x3,22,0,0,0,0),
®)(z) = (23,0, —21,0,0,0,0), ¢ (2) = (=x2,71,0,0,0,0,0),
¢(7)( ) (Co.’L’l,COmg,Col‘g,O 0 0 1)

with ¢g = 5/(3\ + 2p), are linearly independent solutions of (3.13). In particular, we have that
{P(D,n)¢?}T(z) = 0 for z € . Thanks to the Somigliana formula in the equilibrium theory
of thermoelasticity with microtemperatures (see [27, Theorem 17]), we get ¢/ (z) = W[¢’](x)
for x € Q. Then, for x — z € X, using the jump relations for the double-layer thermoelastic
potential (see Theorem 2.2), we get {¢7}*(z) = 1¢7(z) + W[¢’](z), and hence the functions
(3.16) form a set of linearly independent solutions of the boundary integral equation (3.15).
The rest of the proof proceeds as in [23, Lemma 5.2]. O

We conclude this section defining the following space
(3.17) H={hx : heH}
that we use in the next result.

Proposition 3.2. We have that
ker(—iI + K)=H.

Proof. Let ¢ € ker(—3I + K) and consider the double-layer thermoelastic potential W[¢] de-
fined by (2.7). Then {W[¢]}~ = 0 on X and, by virtue of the uniqueness of the exterior
first problem (see [27, Theorem 8]), we have that W[¢] = 0 in R? \ Q. On the other hand
{P(D,n)W|[¢]}~(z) = 0, and hence {P(D,n)W|[¢]}*(z) = 0 on ¥ too, because of Theorem 2.2,
(v). In other words, W{¢] is a solution of the problem (3.13). Finally, taking Theorem 2.2, (iv),
into account, ¢ = {W[g]}+(2) — {W][é]}~(2) = {W][p]}T(2), and hence ¢ € H.

Conversely, let ¢ € H, that is ¢ = 5, for some h € H. Then, by applying [27, Theorem 16],
we have that

[P0 @ = ) oo, =0« € R\,
)

Letting now = — z € &, we get —2¢(z) + K(¢)(z) = 0for z € &, thatis ¢ € ker(—1I + K). O

4. SECOND PROBLEM

Let us define the class D? of all functions which can be expressed by means of a double-layer
thermoelastic potentials (2.7) with density in [W!?(%)]7, and consider the second problem in
this class, i.e.

W e Dr,
(4.18) A(D)W =0 in Q,
{P(D,n)W}* =g on¥x,
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where P(D,n) is the stress operator defined by (2.4). The datum g is assumed to be in [L?(X)]”
and to satisfy the following conditions

(4.19) / ghdo = 0, for every h € H,
b

where H is given by (3.17). Note that, because of Proposition 3.2, conditions (4.19) can be
rewritten as

/ gdWdo =0, forevery j=1,...,7,
b

where ¢) are given by (3.16). First, we prove the following lemma.

Lemma 4.1. Consider U € SP with density 1 and W € DP with density U, i.e.

(4.20) WU (z) = /Z [P(D,, )T (z — ) U] (y)doy, = €Q.

Then, we have
(4.21) {P(D,n)W[U]}T = —izﬂ + K2 aeony,

where K* is the boundary integral operator defined by (3.11).
Proof. We begin by noting that
(4.22) WIU(z) = Ul)() + U[P(D,n)U]J(x), @€

Indeed, let 1, be a sequence of polynomials such that 1, — v in [L?(3)]” and consider

U] (z) = / @ - y)u(y)do, z€Q.

Thanks to the Somigliana formula in the equilibrium theory of thermoelasticity with microtem-
peratures (see [27, Theorem 17]), for x € €2, we have

Ulnl(z) = /Z[JS(Dy,n)FT(x — )T U[n](y)do, — / [(z = y)P(Dy, n)U[¢n](y)doy.

P

Therefore, letting n — 400, we gain formula (4.22).
On the other hand (see Theorem 2.1),

(4.23) {P(D,n)U[]}" (2) = —%w(z) + P(D,n)U[y](z) a.e.z € X.
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Then, on account of (4.22) and (4.23), for a.e. z € ¥ we obtain
{P(D, WU} (2)
={P(D,n)U]}*(2) + {U[P(D,n)U[Y]]}* (2)

— (- 59) + POMUIE) ) + (-3 PRV )+ POUPO.0UIE) )

— - 0 + PO - 5 (~596) + POUIE)

+P(Dz,n)/ZF(z —y{P(Dy, U} (y)do,

1

— - 1) + PO + PO) [ 16 = 9) (5000 + PO ) doy

1

— Zt/}(z) + /2 P(D.,n)T'(z —vy) /2 P(Dy,n)T(y — z)¢(x)doydoy,
= - 16() + K24(2),

that is the claim. O

Theorem 4.4. The second BVP (4.18)-(4.19) is always solvable.
In particular, a solution can be represented by means of a double-layer thermoelastic potential WU [¢]]
as in (4.20), where 1 € [LP(X)]" solves the singular integral system

(4.24) —fV+ K =g,
K* being given by (3.11) and g € [LP(X)]" satisfying conditions (4.19).

Proof. Let W|[¢] be a double-layer thermoelastic potential with density ¢ € [W!?(X)]”. Con-
sider the Dirichlet problem (2.8) with the datum ¢. Thanks to Theorem 2.3, ¢ can be represented
as a single-layer thermoelastic potential, which means that there exists ¢ € [LP(X)]”, such that
¢ = Uy]. Hence, W{¢] is equal to the double-layer thermoelastic potential W [U[¢]] as is (4.20).
By imposing the boundary condition to W[U[¢]], and using formula (4.21), we have that the
density ¢ must satisfy the singular integral system (4.24). Then, the claim is equivalent to
demonstrating that (4.24) is always solvable. In fact, we shall show that the system (4.24) is
solvable if, and only if, g satisfies conditions (4.19).

First of all, we observe that the operator on the left-hand side of (4.24) can be factored as
follows:

UK = (3 KY) (34 K).

Let us assume that g satisfies conditions (4.19). In other words, g is orthogonal to the elements
of the space H which is equal to ker (—31 + K) (see Proposition 3.2). Therefore, the system

(-3l +E")v=g
admits a solution, that we refer to us vy. Now, consider the system
(T+K") 6 = 0.
Since ker(11 + K) = {0} (see (3.12)), this system is always solvable. Accordingly, we have

proven that the system (4.24) is always solvable.
Conversely, let 1) be a solution of (4.24). Hence, 1 solves

(-iI+K*) (31 +K*) ¢y =g.
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In particular, g belongs to the range of the operator —31 + K*, and hence g is orthogonal to
ker(—%[ + K). From Proposition 3.2, it follows that g fulfills conditions (4.19). O
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