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Abstract

This study aimed to evaluate the effects of different land use types (Melissa officinalis,
cotton, pistachio, and uncultivated) on the physicochemical and biochemical properties
of soils developed on the same parent material under semi-arid conditions, and to assess
the potential of Visible-Near Infrared Spectroscopy (VNIRS) for predicting these soil
attributes. The soils in the study area are formed on limestone-derived colluvial-alluvial
deposits characteristic of the Harran soil series, classified as Vertic Calciorthids (Soil
Taxonomy) and Calcic Vertisols (WRB). Laboratory analyses included soil texture, pH,
electrical conductivity (EC), calcium carbonate, organic matter (OM), water retention
parameters, and enzyme activities (B-glucosidase, dehydrogenase, alkaline phosphatase).
Spectral reflectance data in the 350-2500 nm range were used to develop Partial Least
Squares Regression (PLSR) models for soil property estimation. The models
demonstrated good calibration performance for EC (R* = 0.93), OM (R? = 0.49), and
dehydrogenase activity (R? = 0.93), while validation accuracy remained modest (R? =
0.46, 0.43, and 0.75, respectively), reflecting the limitations of the small sample size.
Texture-related parameters (sand, silt, clay) showed limited predictive accuracy (R? =
0.10). Distinct absorption bands at 1400, 1900, and 2200 nm were associated with soil
moisture and clay minerals. Although Melissa-cultivated soils tended to show higher
organic matter and enzyme activity, these differences should be interpreted cautiously
due to the limited number of samples, representing only preliminary indications rather

than generalizable trends. Overall, the findings suggest that VNIRS has potential as a
rapid and cost-effective approach for characterizing soil biochemical indicators and
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INTRODUCTION

Soil health is a fundamental determinant of ecosystem productivity and sustainability, regulating plant growth, carbon
sequestration, and key soil functions (Lehmann & Kleber, 2015; Gao et al., 2025). Enzyme activities, widely used as
indicators of soil health, play essential roles in the decomposition of organic matter, nutrient mobilization, and microbial
processes (Schimel & Weintraub, 2003; Sinsabaugh & Follstad Shah, 2012). As core drivers of soil biological functioning,
enzyme activities provide sensitive early-warning signals of degradation and shifts in nutrient cycling. Land use practices
strongly influence these biochemical processes by altering soil organic matter dynamics, microbial communities, and
nutrient cycling (Bolan et al., 2011; Ren et al., 2025). In semi-arid regions, where soil systems are particularly vulnerable,
land use changes often intensify soil degradation and disrupt enzyme activity patterns (Wang et al., 2025). Understanding
how land use regulates enzyme-mediated soil functions is therefore crucial for developing sustainable management
strategies.

Visible—Near Infrared Spectroscopy (VNIRS) has emerged as a rapid, non-destructive, and cost-effective tool for
assessing soil properties (Bilgili et al., 2010; Kaplan & Bilgili, 2024; Cullu et al., 2024; Alvarez et al., 2025; Singha et al.,
2023). Unlike conventional laboratory analyses which are time-consuming, reagent-intensive, and labor-demanding VNIRS
enables fast, repeatable measurements with minimal sample preparation, making it highly suitable for large-scale soil
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monitoring. Previous studies have demonstrated its ability to estimate key physicochemical attributes and overall soil quality
(Kinoshita et al., 2012). Recent findings further indicate that VNIRS can successfully predict biological parameters such as
enzyme activities and microbial biomass under arid conditions (Hosseini et al., 2024) and can reliably model diverse soil
attributes including SOC, SOM, pH, EC, macro-nutrients, and texture fractions using PLSR-based approaches (Vibhute et
al., 2018). Despite these advances, the ability of VNIRS to quantify enzyme activities across contrasting land use types in
semi-arid regions remains poorly understood, representing a significant gap in the literature.

Land use intensity and vegetation type are known to influence SOC levels, nutrient cycling, and enzyme responses (Ma
et al., 2023; Raiesi & Beheshti, 2015). Continuous cultivation often reduces microbial biomass and enzymatic activity
(Rayegani et al., 2016), whereas forest and pasture ecosystems tend to support higher biological functioning due to improved
organic matter inputs and microbial diversity (Wang & Huang, 2020; Singh et al., 2007). Moreover, shifts in organic residue
quality, rhizosphere effects, and alterations in microbial community composition directly regulate the activity of hydrolytic
and oxidative enzymes. Interactions between nutrient inputs and climate-driven moisture conditions further complicate soil
biochemical responses (Ren et al., 2025). These complexities underscore the need for rapid, scalable approaches to monitor
soil function under varying land management and climatic regimes (Gao et al., 2025). VNIRS offers a particularly promising
solution for such assessments because enzyme activities often correlate with organic matter chemistry and moisture-sensitive
absorption bands detectable in the VNIR region.

The novelty of this study lies in combining VNIRS with detailed biochemical assessments to evaluate enzyme activity
responses to different land use types in a semi-arid environment. Specifically, we investigate whether VNIRS can accurately
estimate soil enzyme activities (B-glucosidase, alkaline phosphatase, dehydrogenase) and key physical-chemical properties
across land use systems using spectral reflectance in the 350—700 nm and 350-2500 nm ranges. To the best of our knowledge,
this is the first study to systematically compare the performance of VNIRS—PLSR models for enzyme activities across
multiple land use types in a semi-arid region. By integrating spectral data with laboratory analyses, this study provides new
evidence on the potential of VNIRS to serve as a rapid and reliable alternative to conventional methods for soil monitoring
and precision land management.

MATERIALS AND METHODS

Locations and Soil Sampling

The study was conducted within the Haliliye district of Sanliurfa province, near Gobeklitepe, between latitudes
37°12'37"-37°13'05" N and longitudes 38°59'59"-38°59'05" E. The elevation of the study area ranges from 577 to 624
meters and exhibits diverse topographic features and vegetation characteristics. Although the soil samples examined
originate from the same parent material limestone-derived colluvial-alluvial deposits characteristic of the Harran soil series,
classified as Vertic Calciorthids (Soil Taxonomy) and Calcic Vertisols (WRB.,2022) the landforms differ across the sites.
Accordingly, sampling was carried out across four distinct land use areas: pistachio (363 m?), Melissa officinalis (72 m?),
cotton (99 m?), and uncultivated land (14 m?) (Figure 1). A total of 16 soil samples were collected, with four samples taken
from each land use type, using a random sampling method on January 3, 2024, from a depth of 0-30 cm. This sampling
design enabled a detailed evaluation of the effects of different land use practices on the physical and chemical properties of
the soils. Analyses conducted on the collected samples enabled a detailed evaluation of the effects of different land use
practices on the physical and chemical properties of the soils. In this study, each of the four land use types was represented
by four independent composite samples (n = 4 per land use type), resulting in a total of 16 samples. Each composite sample
consisted of five subsamples collected within a 5-10 m radius and thoroughly homogenized to ensure representativeness.
Although the total sample size is limited, this design follows VNIRS calibration studies conducted on shallow soil horizons
in semi-arid regions, where spectral homogeneity is prioritized over bulk sample volume (Stenberg et al., 2010). All
laboratory measurements (physical, chemical, and enzymatic) were performed in triplicate, and mean values were used for
calibration to increase analytical robustness and reduce measurement error.

Uncultivated
Pistachio

Cotton

Melissa
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Figure 1. The location of the study area and the distribution of the types of land use

The region is located within a semi-arid climate zone, with annual temperature and precipitation values exhibiting certain
fluctuations. In January, the average temperature was recorded as 8.5°C, with values ranging between 2.3°C and 16.2°C.
During the same period, total precipitation was 71.4 mm, and the average relative humidity was measured at 74.5%. (Table

1.

Table 1. Climate information for the year and month of soil sampling (MGM, 2024).

Month Max.temp. Min.temp. Averagetemp. Rainfall Humidity
O (°0) O (mm) (%)
January 16.2 2.3 8.5 71.4 74.5

Physical and chemical analysis of samples

After sampling, the soil samples were air-dried and sieved through a 2 mm mesh to prepare them for laboratory analyses.
Standard procedures were employed to determine the physical and chemical properties of the soil. Soil texture (clay, silt,
sand) was measured using the hydrometer method developed by Bouyoucos (1951). Soil pH and electrical conductivity (EC)
were determined in saturated paste extracts following the procedure described by McLean (1982). Soil organic matter (SOM)
content was quantified using the modified Walkley—Black method (Nelson & Sommers, 1982), while calcium carbonate
(CaCO0:s) content was measured using a Scheibler-type calcimeter (Tiiziiner, 1990). Water retention properties, including
field capacity (FC), wilting point (WP), available water capacity (AWC), and water-holding capacity (WHC), were assessed
using the pressure plate apparatus as outlined by Klute (1986). Plant-available phosphorus (Available P) was analyzed using
the Olsen sodium bicarbonate extraction method (Olsen, 1954). Aggregate stability (AS) was evaluated using the rainfall
simulator—based wet stability method (Kemper & Rosenau, 1986; Gugino et al., 2009).

Enzyme analysis in soil

Soil enzyme activities were quantified using established colorimetric procedures widely applied in soil biology
(Tabatabai, 1982; Schinner et al., 1996; Eivazi et al., 2003), with all assays performed in triplicate. B-glucosidase (BG)
activity was determined following Eivazi & Tabatabai (1988), using p-nitrophenyl-pB-D-glucopyranoside (25 mM) as the
substrate. One gram of soil was incubated with 4 mL modified universal buffer (pH 6.0) at 37°C for 1 h, and the reaction
was terminated using 0.5 M CaClz and 0.1 M THAM-NaOH before measuring absorbance at 410 nm; results were expressed
as mg pNP g ! soil h!. Alkaline phosphatase (ALP) activity was quantified according to Tabatabai & Bremner (1969) using
p-nitrophenyl phosphate (25 mM) in MUB at pH 11, under incubation and detection conditions similar to the BG assay and
reported as pg pNP g ! soil h™'. Acid phosphatase was initially evaluated but excluded due to inconsistent responses, and
therefore only ALP results are presented. Dehydrogenase (DHA) activity was measured following Casida et al. (1964) and
Hopkins et al. (1996) by incubating 5 g soil with 5 mL of 0.5% TTC at 37°C for 24 h under anaerobic conditions, extracting
the resulting triphenyl formazan (TPF) with methanol, and measuring absorbance at 485 nm; results were expressed as pug
TPF g' soil 24 h™'. These fully detailed protocols ensure reproducibility and follow internationally accepted standards for
assessing soil microbial activity in semi-arid soils (Schinner et al., 1996; Acosta-Martinez & Tabatabai, 2000).

Spectral Analysis of Soil Samples by Visible Near Infrared Spectroscopy

The spectral data of the soil samples were collected at the Spectroradiometer and EM38 Laboratories of the Department
of Soil Science and Plant Nutrition at Harran University. Prior to measurement, the soil samples were air-dried, sieved
through a 2 mm mesh, and placed into 4 cm-diameter optical petri dishes. A Tungsten Quartz Halogen lamp was used as the
light source, and the reflected light from each sample was transmitted to a computer through a fiber-optic cable. VNIR
reflectance spectra within the 350-2500 nm wavelength range were obtained using an ASD FieldSpecPro III
spectroradiometer with a 1 nm spectral resolution, resulting in 2151 spectral bands per sample. Before scanning, the
instrument was calibrated using a white Spectralon reference panel, and recalibration was performed at regular intervals
(every 10 samples) to minimize reflectance drift, following established VNIRS quality-control protocols (Stenberg et al.,
2010; Ben-Dor et al., 1999). Each soil sample was scanned three times, with the petri dish rotated by 120° between scans to
reduce directional reflectance effects, and the mean spectrum was used for further analysis. Instrument warm-up and lamp
stabilization procedures were completed before measurements to ensure spectral consistency.

Prior to chemometric modeling, spectral data were preprocessed using commonly applied signal-enhancement
techniques. A Savitzky—Golay (SG) smoothing filter (second-order polynomial, 15-point window) was applied to reduce
high-frequency noise, and the final reflectance values were calculated by normalizing the soil reflectance measurements
against the white reference panel (Equation 1). All preprocessing steps adhered to established protocols for soil VNIRS
applications (Stenberg et al., 2010; Ben-Dor et al., 1999).

soilreflection .
R = f Equation 1

" White spektralon reflectance (reference)

Partial Least Square Regression (PLSR)

Prior to model construction, all spectral predictor variables (X matrix) were standardized using z-score normalization to
ensure equal weighting across the 350-2500 nm wavelength range. Soil biochemical and physicochemical parameters (Y
matrix) were also standardized to minimize scale-related bias and improve model stability. PLSR was used to model the
relationship between the spectral data and measured soil properties through a multivariate linear calibration framework
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(Esbensen & Geladi, 2010). Full cross-validation was performed to evaluate model reliability. In this procedure, each sample
is sequentially omitted, the model is recalibrated using the remaining samples, and the omitted sample is predicted before
being reinserted into the dataset. This iterative approach allowed for both robust model assessment and the identification of
potential overfitting. The optimal number of latent factors for each model was determined according to the lowest cross-
validation error, following standard chemometric recommendations (Milos & Bensa, 2018). This systematic validation
ensured that each PLSR model achieved maximum predictive performance while avoiding unnecessary model complexity.

Performance Evaluation Metrics

PLSR modeling was conducted using Unscrambler X (Version 10.5, Camo Analytics), a widely used chemometric
software for multivariate calibration. The software was employed to perform spectral preprocessing (where applicable),
latent factor optimization, and full cross-validation procedures due to its robustness and proven performance in soil
spectroscopy applications.

Complementary statistical analyses including descriptive statistics, Pearson correlation coefficients, and data
visualization were performed using Python 3.10. The SciPy (1.10), NumPy (1.26), and pandas (2.0) libraries were used for
numerical operations and statistical computation, while Matplotlib (3.8) and Seaborn (0.13) were used to generate all
exploratory and correlation-based plots. The accuracy of predictions obtained using the Partial Least Squares Regression
(PLSR) method was assessed using metrics such as the coefficient of determination (R?) (Equation 2) and the root mean
square error (RMSE). The R? value reflects how closely the data conform to the regression line, whereas RMSE indicates
the dispersion of validation dataset samples around the 1:1 regression line and the average prediction error. RMSE is
computed as the square root of the mean of the squared differences between observed and predicted values (Equation 3). In
the equation, n represents the number of samples in the validation dataset, and Y_pred and Y_lab correspond to the predicted
and actual measured values, respectively.

noyi—7:)2
R?=1- % Equation 2
i=1\iTh
n i - 2
RMSE = \/21—1(Y€5t‘mat9dn Ylab.observed) Equation 3
RESULT

Soil parameters were predicted through calibration models developed between the parameters and their corresponding
reflectance values using the Partial Least Squares Regression (PLSR) method. A cross-validation approach was applied to
assess the accuracy of the predictions. This method systematically tests the predictive capability of the model by dividing
the dataset into training and testing subsets. The model is developed using the training data and then its performance is
evaluated on the test data. This process plays a critical role in determining the reliability and validity of the model under
real-world conditions. Cross-validation also helps reduce the risk of overfitting and improves the generalizability of the
model. The cross-validation results are presented with the coefficient of determination (R?) and the root mean square error
of prediction (RMSEP) for various soil parameters (Tables 2 and 3). These tables illustrate the relationship between the
predicted values obtained from the PLSR model and the laboratory measurements, highlighting the parameters for which
the model performs best. The findings also provide a basis for evaluating which wavelength range is more suitable for
predicting specific soil parameters. Average spectral reflectance curves of soils under different land use types (Melissa,
cotton, pistachio, and fallow) measured across the 350-700 nm (left) and 350-2500 nm (right) wavelength ranges.
Reflectance intensity increases toward the near-infrared region, with distinct absorption features observed near 1400, 1900,
and 2200 nm corresponding to soil moisture and clay mineral bands (Figure.2).

0.225¢
0.200+

0.175¢

Reflectance
=] © ©
[ - -
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& wu o

\

350 400 450 500 550 600 650 700 500 750 1000 1250 1500 1750 2000 2250 2500
Wavelength (nm)
Figure 2. Reflectance spectra of soil samples measured in the 350-2500 nm wavelength range in the visible and near-
infrared (VNIR) regions. The left panel illustrates the visible range (350—700 nm), where reflectance gradually increases
with wavelength. The right panel presents the near-infrared range (700-2500 nm).
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Descriptive statistics of the measured soil physicochemical and biochemical properties are presented in Table 2. The
results revealed a moderate variation among soil parameters across different land use types. Lime content ranged between
24.46% and 31.30%, reflecting the calcareous nature of the soils in the study area. SOM values were relatively low (1.18—
1.81%), consistent with semi-arid conditions where organic residue input is limited. EC varied from 292.67 to 365.67 uS
cm™!, indicating non-saline to slightly saline conditions, while pH showed minimal variation (7.31-7.36), suggesting a
slightly alkaline character typical of calcareous soils. Texture analysis indicated that clay was the dominant fraction (52.67—
66%), followed by sand (15.33—-24%) and silt (18.67-23.33%), classifying the soils predominantly as clayey. Among water-
related properties, AWC ranged between 26.05% and 38.47%, while the WP and WHC exhibited higher variability,
reflecting the influence of organic matter and texture on soil water retention. AS values (44.69-62.83%) demonstrated
moderate structural stability, likely influenced by differences in vegetation cover and management practices. Regarding
biochemical parameters, DHA varied from 11.54 to 19.17 pg TPF g! soil, BG from 4.72 to 10.98 mg pNP g! soil, and ALP
from 9.21 to 16.37 pg g™' soil, indicating active microbial processes, particularly in cultivated soils. Available P content
ranged from 5.81 to 9.41 mg kg!, showing moderate nutrient availability.

The Shapiro—Wilk normality test results (p > 0.05 for most variables) indicated that the data generally followed a normal
distribution, except for silt and WHC, which showed slightly skewed distributions. Overall, the descriptive statistics reflect
the heterogeneity of soil physical, chemical, and biochemical properties under different land use conditions in the semi-arid
environment.

Table.2 Descriptive statistics of soil physicochemical and biochemical properties, including minimum, maximum, mean,
standard deviation (SD), skewness, kurtosis, and Shapiro—Wilk test p-values.

Indicator Min Max Mean SD Skewness Kurtosis Shapiro-Wilk p
Lime 24.457 313 27.197 2.903 0.752 -0.871 0.356
SOM 1.178 1.81 1.568 0.273 -0.833 -0.861 0.353
EC 292.667 365.667 323.333 35.793  0.238 -1.685 0.291
pH 7.313 7.363 7.338 0.02 0 -1.018 0.848
Sand 15.333 24 19.333 3.569 0.316 -1 0.798
Clay 52.667 66 59.833 5.64 -0.268 -1.196 0.955
Silt 18.667 23.333 20.833 2.517 0.035 -1.954 0.084
AWC 26.05 38.472 32.595 5.559 -0.139 -1.532 0.802
WP 13.33 24.718 19.959 4.785 -0.635 -0.926 0.560
WHC 5.581 16.853 12.637 4.891 -0.887 -0.822 0.253
AS (%) 44.693 62.833 54.284 9.555 -0.039 -1.942 0.126
DHA 11.537 19.167 14.696 3.689 0.288 -1.619 0.331
ALP 9.213 16.377 12.465 3.057 0.317 -1.222 0.922
B-glucosidase 4.724 10.982 7.958 2.677 -0.112 -1.313 0.977
Available P (mg kg™) 5.812 9.413 7.54 1.588 0.114 -1.477 0.876

The Pearson correlation analysis between spectral reflectance values and soil physicochemical and biochemical
properties across the 350-2500 nm wavelength range is presented in Figure 3. The correlation patterns revealed clear spectral
sensitivity for most soil parameters, with distinct wavelength regions showing either strong positive or negative relationships.
Positive correlations were particularly evident for lime, SOM, EC, and enzyme-related parameters, especially within the
visible (400—700 nm) and near-infrared (700—1300 nm) regions. SOM and DHA) exhibited the strongest positive correlations
in the NIR region, suggesting that spectral responses in this range are primarily influenced by organic carbon and associated
microbial processes. Conversely, pH and available P displayed negative correlations, reflecting their limited optical
sensitivity and indirect relationship with reflectance intensity. Among physical parameters, sand and AS demonstrated
positive trends with increasing wavelength, while clay and WP showed negative correlations, indicating the higher
absorption capacity of clay-rich soils. Distinct absorption features near 1400, 1900, and 2200 nm were consistently
associated with soil water and clay mineral bands, emphasizing the influence of moisture and texture on spectral behavior.
Overall, the correlation analysis identified specific wavelength regions most responsive to soil organic matter and enzyme
activity variations, confirming the potential of VNIRS data to capture biochemical processes and guiding the selection of
sensitive bands for subsequent PLSR modeling.

In this modeling study, the Partial Least Squares Regression (PLSR) method was applied using spectral data within the
350-2500 nm wavelength range to evaluate the calibration (RMSEC, R?) and validation (RMSEP, R?) performance for
various soil physical, chemical, and biochemical properties (Table 3, Figure 3). High calibration accuracy was achieved for
key chemical properties such as SOM, EC, and pH. For EC, the calibration R? value was 0.93 with an RMSEC of 9.69
uS/cm, while the validation R? dropped to 0.46 and the RMSEP was calculated as 30.68 puS/cm. The validation R? values
for SOM and pH were determined as 0.43 and 0.40, respectively. For soil texture components, lower validation performance
was observed, with R2 values of 0.42 for clay, 0.31 for sand, and 0.10 for silt. Meanwhile, for water-related parameters such
as PAW, a strong calibration fit (R? = 0.93) was achieved, but a decrease in validation accuracy was noted (R? = 0.26).
Among the biochemical properties, high calibration R? values were recorded for DHA and BG enzyme activities, at 0.93
and 0.72, respectively. In the validation phase, these values dropped to 0.75 and 0.66. For parameters such as ALP and
Available P, relatively low R? values were observed.
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Figure 3. Pearson correlation coefficients (r) between soil physicochemical and biochemical properties.
Table 3. Calibration and validation statistics for soil physicochemical and biochemical properties predicted using spectral

reflectance data (350-2500 nm). Metrics include root mean square error of calibration (RMSEC), root mean square error of
prediction (RMSEP), and coefficient of determination (R?) for both calibration and validation datasets.

Parameters Calibration Validation
Unit RMSEC! R? RMSEP: R?
Sand % 2.69 0,46 3.31 0.31
CaCoO; % 0.69 0.95 2.11 0.66
SOM % 0.23 0.49 0.27 0.43
EC uS/cm 9.69 0.93 30.68 0.46
pH 0.015 0.46 0.018 0.40
Clay % 3.28 0.70 497 0.42
Silt % 2.67 0.25 3.20 0.10
AWC % 2.23 0.82 4.26 0.46
WP % 3.95 0.35 4.59 0.27
WHC % 1.38 0.93 5.06 0.26
DHA ng/g 0.89 0.93 1.86 0.75
BG mg/g 1.48 0.72 1.81 0.66
ALP ng/s 3.88 0.11 4.60 NA
Available P mg/kg 2.33 0.35 3.00 0.10
AS % 2.5 0.95 7.51 0.62
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‘Root Mean square error of calibration, 'Root Mean square error of prediction.
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RMSE

Parameters

Figure 3. Calibration and validation performance of spectral models for predicting soil physicochemical and biochemical

properties (350-2500 nm). Bars represent the coefficient of determination (R?) for calibration (red) and validation (blue),

while lines represent the root mean square error of calibration (RMSEC, green) and root mean square error of prediction
(RMSEP, orange).

Following the PLSR modeling performed within the 350-2500 nm spectral range, a second analysis was conducted in
the 7002500 nm range to evaluate how model accuracy changes within a narrower spectral band. This analysis is
particularly important to reveal the effect of spectral bandwidth on model performance. The modeling results within the
700-2500 nm range generally demonstrated acceptable calibration performance for certain soil properties, while a noticeable
decrease in accuracy was observed during the validation phase. For instance, the validation R? values for OM and pH were
recorded as 0.43 and 0.40, respectively similar to those previously obtained from the wider spectral range. However, for
electrical conductivity (EC), model accuracy dropped significantly in validation, with an R? of only 0.09. Likewise, the
prediction of soil texture components showed limited accuracy: sand, clay, and silt had validation R? values of 0.32, 0.34,
and 0.10, respectively. In terms of soil water retention parameters, while calibration R? values were relatively high for PAW,
FC, and WP for example, PAW: R? = 0.93 these values decreased significantly during validation (PAW: R? = 0.26). For
biochemical parameters, DHA and BG enzyme activities were among the most successfully predicted variables in this
spectral range as well. The validation R? was calculated as 0.69 for DHA and 0.60 for BG. In contrast, parameters such as
ALP and Available P showed poor prediction performance (Table 4, Figure 4).

In conclusion, the PLSR analyses performed within the 700-2500 nm range exhibited more limited predictive accuracy
compared to the broader 350-2500 nm range. This decline was particularly evident in physical soil properties; however,
certain biochemical parameters, especially microbial activity indicators like DHA still showed acceptable levels of accuracy.
These findings emphasize the critical role of wavelength selection in the success of soil spectral modeling.

Table 4. Calibration and validation statistics for soil physicochemical and biochemical properties predicted using spectral
reflectance data (700-2500 nm). Metrics include root mean square error of calibration (RMSEC), root mean square error of
prediction (RMSEP), and coefficient of determination (R?) for both calibration and validation datasets.

Parameters Calibration Validation

Unit RMSEC! R? RMSEP! R?
Sand % 2.66 0.47 3.29 0.32
CaCoOs; % 2.34 0.51 3.14 0.26
SOM % 0.23 0.49 0.27 0.43
EC puS/cm 30.78 0.36 40.11 0.09
pH 0.015 0.46 0.018 0.40
Clay % 4.07 0.54 5.3 0.34
Silt % 2.68 0.25 3.2 0.10
AWC % 391 0.46 5.11 0.23
WP % 3.97 0.35 4.61 0.26
WHC % 5.15 0.10 5.95 NA
DHA ng/g 1.58 0.78 2.06 0.69
BG mg/g 1.57 0.69 1.95 0.60
ALP pgl/g 3.88 0.10 4.6 NA
Available P mg/kg 2.37 0.33 3.07 0.066
AS % 0.4232 0,99 10.0125 0.34
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‘Root Mean square error of calibration, ‘Root Mean square error of prediction.

BN R2 Cal WM R2 Val —#— RMSEC —#— RMSEP

RMSE

Parameters

Figure 4. Calibration and validation performance of spectral models for predicting soil physicochemical and biochemical
properties (700-2500 nm). Bars represent the coefficient of determination (R?) for calibration (red) and validation (blue),
while lines represent the root mean square error of calibration (RMSEC, green) and root mean square error of prediction

(RMSEP, orange).

The average spectral reflectance profiles of soils under different land use types are presented in (Figure 5.) These spectral
curves, obtained for the 350-700 nm (a) and 350-2500 nm (b) wavelength ranges, reveal the spectral responses of four
distinct land use categories (Melissa, cotton, pistachio, and uncultivated). The most noticeable separation among the curves
occurred within the 600—1200 nm range, where the reflectance values tended to diverge more clearly. In the near-infrared
region, variations were also observed around the absorption features near 1400, 1900, and 2200 nm, which are commonly
associated with water and clay mineral absorptions. Rather than indicating definitive distinctions among land use types,
these patterns suggest preliminary spectral differences that warrant further investigation with a larger dataset.
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Figure 5. Average spectral reflectance curves of soil samples collected from different land use types (uncultivated land,
cotton, pistachio, and Melissa) are presented. The graphs separately show a) the 350—700 nm and b) the 350-2500 nm
wavelength ranges.

The combined correlation patterns between soil physicochemical and biochemical parameters and spectral reflectance
values across the 3502500 nm wavelength range are shown in Figure 6. Overall, distinct wavelength-dependent variations
were observed, indicating that different soil attributes respond uniquely to specific spectral regions. Positive correlations
dominated the visible and near-infrared regions (400—1300 nm) for most chemical and biochemical parameters, particularly
SOM, EC, DHA, and BG activities. These parameters exhibited correlation coefficients (r) exceeding 0.6 in the NIR region,
suggesting that the reflectance behavior in this range is largely governed by organic compounds, moisture, and microbially
active constituents. Lime and AS also showed strong positive associations with reflectance intensity, reflecting their
influence on soil structure and spectral brightness. In contrast, variables such as pH, Available phosphorus P, and clay
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content demonstrated negative correlations, especially around the 1400 nm and 1900 nm absorption features, where water
and hydroxyl groups in clay minerals strongly absorb incoming radiation. Water retention parameters, including AWC, WP,
and WHC, showed variable correlations across the NIR-SWIR regions, indicating their complex relationship with both
moisture and organic matter content. The pronounced absorption bands at approximately 1400, 1900, and 2200 nm
correspond to molecular vibrations of H-O-H, O—H, and AI-OH bonds, indicating the spectral influence of soil moisture
and clay minerals. However, given the limited sample size, these observations should be interpreted cautiously. While the
spectral patterns suggest the potential of VNIRS to detect chemical and mineralogical variations in soils, a larger dataset
would be required to draw definitive conclusions regarding its sensitivity and reliability for prediction and modeling
applications.

0.8

Variables
—— Lime
SOM
EC
pH
Sand
Clay
— Silt
WHC
-— — WP
AWC
— DG
ALP
BG
AvailableP
AS(%)

Correlation

500 1000 1500 2000 2500

Wavelength (nm)
Figure 6. Correlation between soil physicochemical and biochemical properties and spectral reflectance across the 350—
2500 nm wavelength range.

DISCUSSION

This study investigated the effects of different land use types on the physical, chemical, and biochemical properties of
soils under semi-arid conditions and evaluated the potential of VNIRS spectral data for predicting these properties. The
findings revealed that spectral methods demonstrated promising preliminary predictive performance particularly for
biochemical and certain chemical properties. The high calibration accuracy obtained for enzyme activities such as
dehydrogenase and B-glucosidase indicates that biochemical processes associated with microbial activity and organic matter
are reflected in the spectral signals. This is consistent with previous studies reporting that organic matter composition and
microbial processes leave distinct signatures in VNIRS spectra (Wang et al., 2025; Stenberg et al., 2010; Rossel & Webster,
2012). Model performance was significantly lower for physical soil properties. Textural components such as sand, clay, and
silt exhibited low validation accuracy due to their weak spectral representation and their complex interactions with surface
conditions, mineralogical composition, and soil moisture. This finding aligns with the literature indicating that textural
attributes have weak spectral signatures and that VNIRS is limited in predicting physical soil parameters (Ben-Dor, 2008;
Tsolis & Barouchas, (2023); Stoner & Baumgardner, 1981). Lobell and Asner (2002) further emphasized that soil reflectance
is more sensitive to moisture and mineralogical properties, whereas particle size contributes only marginally to the spectral
signal. The distinct absorption bands observed around 1400, 1900, and 2200 nm correspond to OH bond vibrations of water
and Al-OH combination bands of clay minerals (Clark et al., 1990; Hunt, 1977). The reflectance variations observed in these
regions, particularly in melissa-cultivated soils where organic matter and microbial activity were higher, are consistent with
the literature. Regarding chemical properties, VNIRS-based models showed moderate predictive performance for variables
such as organic matter, calcium carbonate, and to a certain extent electrical conductivity. This is in agreement with previous
studies reporting stronger spectral representation of chemical soil parameters in the VNIR region (Reeves et al., 2002; Gomez
et al., 2008; Gozukara et al., 2025). Nevertheless, the low validation accuracy for complex chemical attributes such as EC
indicates that salinity is influenced by multiple interacting factors including moisture, mineralogy, and surface conditions
that complicate its spectral expression (Farifteh et al., 2010). Overall, the findings of this study demonstrate that VNIRS has
considerable potential to detect biochemical processes and certain chemical soil properties. However, limitations such as the
small sample size, the restricted representation of land use categories, and the weak spectral expression of physical soil
attributes constrain model performance. Despite these limitations, the advantages of VNIRS including rapid measurement,
low cost, environmental friendliness, and the ability to evaluate multiple soil properties simultaneously make it a valuable
tool for both research and practical soil management applications (Stenberg et al., 2010; Ben-Dor, 1999).
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CONCLUSION

This study demonstrated that land use type has a significant influence on the physicochemical and biochemical properties
of soils developed under semi-arid conditions. Soils cultivated with Melissa officinalis exhibited higher organic matter
content and enzyme activities (particularly dehydrogenase and B-glucosidase), indicating improved microbial activity and
soil health compared to cotton, pistachio, and fallow lands. These results confirm that vegetation type and management
practices play a crucial role in maintaining soil biological functionality in fragile dryland ecosystems. The application of
Visible—Near Infrared Spectroscopy (VNIRS) combined with Partial Least Squares Regression (PLSR) modeling provided
promising results for the estimation of soil biochemical indicators. The models achieved strong calibration performance for
key variables such as electrical conductivity, organic matter, and dehydrogenase activity, while validation accuracy was
moderate. However, prediction capability for physical parameters (e.g., texture fractions) remained limited, suggesting that
these properties are less spectrally active and may require complementary approaches. This outcome is consistent with the
generally weak direct spectral expression of particle-size fractions and their dependence on mineralogical composition and
microaggregate structure, which reduces their detectability by VNIRS. Distinct absorption bands at 1400, 1900, and 2200
nm associated with soil water and clay mineral vibrations were consistently detected across land use types, confirming the
sensitivity of VNIRS to moisture-related features. These findings highlight the method’s potential as a rapid, cost-effective,
and environmentally friendly alternative to conventional laboratory analyses for soil monitoring. While the study provides
valuable preliminary evidence, several limitations should be acknowledged. The relatively small sample size, limited
replication across land use categories, and the inherently complex spectral behavior of enzyme activities constrain the
robustness of the predictive models. These factors may also contribute to the moderate validation performance observed for
several soil properties. Therefore, the results should be interpreted as an initial assessment rather than definitive predictive
models.

Despite these constraints, the study contributes to the growing body of work exploring the feasibility of VNIRS for
biochemical soil assessment under semi-arid conditions. The inclusion of enzyme activities as prediction targets represents
a meaningful step toward expanding VNIRS applications, although further research is required to strengthen model
performance and confirm reproducibility.

Future research should focus on (i) expanding the sample size and spatial coverage to enhance model robustness, (ii)
integrating advanced spectral preprocessing and machine learning algorithms (e.g., Random Forest, ANN, or hybrid models)
to improve predictive accuracy, and (iii) developing portable VNIRS-based field platforms and drone-integrated systems for
large-scale soil health monitoring. Such advancements would improve the scalability and reliability of spectral soil
assessment, supporting sustainable soil management strategies and precision agriculture practices, particularly in semi-arid
regions vulnerable to degradation and nutrient loss.
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