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Abstract 

This study aimed to evaluate the effects of different land use types (Melissa officinalis, 

cotton, pistachio, and uncultivated) on the physicochemical and biochemical properties 

of soils developed on the same parent material under semi-arid conditions, and to assess 

the potential of Visible–Near Infrared Spectroscopy (VNIRS) for predicting these soil 

attributes. The soils in the study area are formed on limestone-derived colluvial–alluvial 

deposits characteristic of the Harran soil series, classified as Vertic Calciorthids (Soil 

Taxonomy) and Calcic Vertisols (WRB). Laboratory analyses included soil texture, pH, 

electrical conductivity (EC), calcium carbonate, organic matter (OM), water retention 

parameters, and enzyme activities (β-glucosidase, dehydrogenase, alkaline phosphatase). 

Spectral reflectance data in the 350–2500 nm range were used to develop Partial Least 

Squares Regression (PLSR) models for soil property estimation. The models 

demonstrated good calibration performance for EC (R² = 0.93), OM (R² = 0.49), and 

dehydrogenase activity (R² = 0.93), while validation accuracy remained modest (R² = 

0.46, 0.43, and 0.75, respectively), reflecting the limitations of the small sample size. 

Texture-related parameters (sand, silt, clay) showed limited predictive accuracy (R² = 

0.10). Distinct absorption bands at 1400, 1900, and 2200 nm were associated with soil 

moisture and clay minerals. Although Melissa-cultivated soils tended to show higher 

organic matter and enzyme activity, these differences should be interpreted cautiously 

due to the limited number of samples, representing only preliminary indications rather 

than generalizable trends. Overall, the findings suggest that VNIRS has potential as a 

rapid and cost-effective approach for characterizing soil biochemical indicators and 

supporting sustainable land management in semi-arid regions, but further studies with 

larger datasets are needed to confirm its predictive reliability. 

Keywords: Land use, Soil enzyme activity, VNIRS, PLSR, Soil biochemical properties 
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INTRODUCTION 

Soil health is a fundamental determinant of ecosystem productivity and sustainability, regulating plant growth, carbon 

sequestration, and key soil functions (Lehmann & Kleber, 2015; Gao et al., 2025). Enzyme activities, widely used as 

indicators of soil health, play essential roles in the decomposition of organic matter, nutrient mobilization, and microbial 

processes (Schimel & Weintraub, 2003; Sinsabaugh & Follstad Shah, 2012). As core drivers of soil biological functioning, 

enzyme activities provide sensitive early-warning signals of degradation and shifts in nutrient cycling. Land use practices 

strongly influence these biochemical processes by altering soil organic matter dynamics, microbial communities, and 

nutrient cycling (Bolan et al., 2011; Ren et al., 2025). In semi-arid regions, where soil systems are particularly vulnerable, 

land use changes often intensify soil degradation and disrupt enzyme activity patterns (Wang et al., 2025). Understanding 

how land use regulates enzyme-mediated soil functions is therefore crucial for developing sustainable management 

strategies. 

Visible–Near Infrared Spectroscopy (VNIRS) has emerged as a rapid, non-destructive, and cost-effective tool for 

assessing soil properties (Bilgili et al., 2010; Kaplan & Bilgili, 2024; Çullu et al., 2024; Álvarez et al., 2025; Singha et al., 

2023). Unlike conventional laboratory analyses which are time-consuming, reagent-intensive, and labor-demanding VNIRS 

enables fast, repeatable measurements with minimal sample preparation, making it highly suitable for large-scale soil 
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monitoring. Previous studies have demonstrated its ability to estimate key physicochemical attributes and overall soil quality 

(Kinoshita et al., 2012). Recent findings further indicate that VNIRS can successfully predict biological parameters such as 

enzyme activities and microbial biomass under arid conditions (Hosseini et al., 2024) and can reliably model diverse soil 

attributes including SOC, SOM, pH, EC, macro-nutrients, and texture fractions using PLSR-based approaches (Vibhute et 

al., 2018). Despite these advances, the ability of VNIRS to quantify enzyme activities across contrasting land use types in 

semi-arid regions remains poorly understood, representing a significant gap in the literature. 

Land use intensity and vegetation type are known to influence SOC levels, nutrient cycling, and enzyme responses (Ma 

et al., 2023; Raiesi & Beheshti, 2015). Continuous cultivation often reduces microbial biomass and enzymatic activity 

(Rayegani et al., 2016), whereas forest and pasture ecosystems tend to support higher biological functioning due to improved 

organic matter inputs and microbial diversity (Wang & Huang, 2020; Singh et al., 2007). Moreover, shifts in organic residue 

quality, rhizosphere effects, and alterations in microbial community composition directly regulate the activity of hydrolytic 

and oxidative enzymes. Interactions between nutrient inputs and climate-driven moisture conditions further complicate soil 

biochemical responses (Ren et al., 2025). These complexities underscore the need for rapid, scalable approaches to monitor 

soil function under varying land management and climatic regimes (Gao et al., 2025). VNIRS offers a particularly promising 

solution for such assessments because enzyme activities often correlate with organic matter chemistry and moisture-sensitive 

absorption bands detectable in the VNIR region. 

The novelty of this study lies in combining VNIRS with detailed biochemical assessments to evaluate enzyme activity 

responses to different land use types in a semi-arid environment. Specifically, we investigate whether VNIRS can accurately 

estimate soil enzyme activities (β-glucosidase, alkaline phosphatase, dehydrogenase) and key physical–chemical properties 

across land use systems using spectral reflectance in the 350–700 nm and 350–2500 nm ranges. To the best of our knowledge, 

this is the first study to systematically compare the performance of VNIRS–PLSR models for enzyme activities across 

multiple land use types in a semi-arid region. By integrating spectral data with laboratory analyses, this study provides new 

evidence on the potential of VNIRS to serve as a rapid and reliable alternative to conventional methods for soil monitoring 

and precision land management. 
MATERIALS AND METHODS 

Locations and Soil Sampling 

The study was conducted within the Haliliye district of Sanliurfa province, near Göbeklitepe, between latitudes 

37°12'37"–37°13'05" N and longitudes 38°59'59"–38°59'05" E. The elevation of the study area ranges from 577 to 624 

meters and exhibits diverse topographic features and vegetation characteristics. Although the soil samples examined 

originate from the same parent material limestone-derived colluvial–alluvial deposits characteristic of the Harran soil series, 

classified as Vertic Calciorthids (Soil Taxonomy) and Calcic Vertisols (WRB.,2022) the landforms differ across the sites. 

Accordingly, sampling was carried out across four distinct land use areas: pistachio (363 m²), Melissa officinalis (72 m²), 

cotton (99 m²), and uncultivated land (14 m²) (Figure 1). A total of 16 soil samples were collected, with four samples taken 

from each land use type, using a random sampling method on January 3, 2024, from a depth of 0–30 cm. This sampling 

design enabled a detailed evaluation of the effects of different land use practices on the physical and chemical properties of 

the soils. Analyses conducted on the collected samples enabled a detailed evaluation of the effects of different land use 

practices on the physical and chemical properties of the soils. In this study, each of the four land use types was represented 

by four independent composite samples (n = 4 per land use type), resulting in a total of 16 samples. Each composite sample 

consisted of five subsamples collected within a 5–10 m radius and thoroughly homogenized to ensure representativeness. 

Although the total sample size is limited, this design follows VNIRS calibration studies conducted on shallow soil horizons 

in semi-arid regions, where spectral homogeneity is prioritized over bulk sample volume (Stenberg et al., 2010). All 

laboratory measurements (physical, chemical, and enzymatic) were performed in triplicate, and mean values were used for 

calibration to increase analytical robustness and reduce measurement error. 
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Figure 1. The location of the study area and the distribution of the types of land use 

 

The region is located within a semi-arid climate zone, with annual temperature and precipitation values exhibiting certain 

fluctuations. In January, the average temperature was recorded as 8.5°C, with values ranging between 2.3°C and 16.2°C. 

During the same period, total precipitation was 71.4 mm, and the average relative humidity was measured at 74.5%. (Table 

1). 

 

Table 1. Climate information for the year and month of soil sampling (MGM, 2024). 

Month Max.temp. 

(°C) 

Min.temp. 

(°c) 

Averagetemp. 

(°C) 

Rainfall  

(mm) 

Humidity  

(%) 

January 16.2 2.3 8.5 71.4 74.5 

 

Physical and chemical analysis of samples 

After sampling, the soil samples were air-dried and sieved through a 2 mm mesh to prepare them for laboratory analyses. 

Standard procedures were employed to determine the physical and chemical properties of the soil. Soil texture (clay, silt, 

sand) was measured using the hydrometer method developed by Bouyoucos (1951). Soil pH and electrical conductivity (EC) 

were determined in saturated paste extracts following the procedure described by McLean (1982). Soil organic matter (SOM) 

content was quantified using the modified Walkley–Black method (Nelson & Sommers, 1982), while calcium carbonate 

(CaCO₃) content was measured using a Scheibler-type calcimeter (Tüzüner, 1990). Water retention properties, including 

field capacity (FC), wilting point (WP), available water capacity (AWC), and water-holding capacity (WHC), were assessed 

using the pressure plate apparatus as outlined by Klute (1986). Plant-available phosphorus (Available P) was analyzed using 

the Olsen sodium bicarbonate extraction method (Olsen, 1954). Aggregate stability (AS) was evaluated using the rainfall 

simulator–based wet stability method (Kemper & Rosenau, 1986; Gugino et al., 2009).  

Enzyme analysis in soil 

Soil enzyme activities were quantified using established colorimetric procedures widely applied in soil biology 

(Tabatabai, 1982; Schinner et al., 1996; Eivazi et al., 2003), with all assays performed in triplicate. β-glucosidase (BG) 

activity was determined following Eivazi & Tabatabai (1988), using p-nitrophenyl-β-D-glucopyranoside (25 mM) as the 

substrate. One gram of soil was incubated with 4 mL modified universal buffer (pH 6.0) at 37°C for 1 h, and the reaction 

was terminated using 0.5 M CaCl₂ and 0.1 M THAM–NaOH before measuring absorbance at 410 nm; results were expressed 

as mg pNP g⁻¹ soil h⁻¹. Alkaline phosphatase (ALP) activity was quantified according to Tabatabai & Bremner (1969) using 

p-nitrophenyl phosphate (25 mM) in MUB at pH 11, under incubation and detection conditions similar to the BG assay and 

reported as μg pNP g⁻¹ soil h⁻¹. Acid phosphatase was initially evaluated but excluded due to inconsistent responses, and 

therefore only ALP results are presented. Dehydrogenase (DHA) activity was measured following Casida et al. (1964) and 

Hopkins et al. (1996) by incubating 5 g soil with 5 mL of 0.5% TTC at 37°C for 24 h under anaerobic conditions, extracting 

the resulting triphenyl formazan (TPF) with methanol, and measuring absorbance at 485 nm; results were expressed as µg 

TPF g⁻¹ soil 24 h⁻¹. These fully detailed protocols ensure reproducibility and follow internationally accepted standards for 

assessing soil microbial activity in semi-arid soils (Schinner et al., 1996; Acosta-Martínez & Tabatabai, 2000). 

Spectral Analysis of Soil Samples by Visible Near Infrared Spectroscopy 

The spectral data of the soil samples were collected at the Spectroradiometer and EM38 Laboratories of the Department 

of Soil Science and Plant Nutrition at Harran University. Prior to measurement, the soil samples were air-dried, sieved 

through a 2 mm mesh, and placed into 4 cm-diameter optical petri dishes. A Tungsten Quartz Halogen lamp was used as the 

light source, and the reflected light from each sample was transmitted to a computer through a fiber-optic cable. VNIR 

reflectance spectra within the 350–2500 nm wavelength range were obtained using an ASD FieldSpecPro III 

spectroradiometer with a 1 nm spectral resolution, resulting in 2151 spectral bands per sample. Before scanning, the 

instrument was calibrated using a white Spectralon reference panel, and recalibration was performed at regular intervals 

(every 10 samples) to minimize reflectance drift, following established VNIRS quality-control protocols (Stenberg et al., 

2010; Ben-Dor et al., 1999). Each soil sample was scanned three times, with the petri dish rotated by 120° between scans to 

reduce directional reflectance effects, and the mean spectrum was used for further analysis. Instrument warm-up and lamp 

stabilization procedures were completed before measurements to ensure spectral consistency. 

Prior to chemometric modeling, spectral data were preprocessed using commonly applied signal-enhancement 

techniques. A Savitzky–Golay (SG) smoothing filter (second-order polynomial, 15-point window) was applied to reduce 

high-frequency noise, and the final reflectance values were calculated by normalizing the soil reflectance measurements 

against the white reference panel (Equation 1). All preprocessing steps adhered to established protocols for soil VNIRS 

applications (Stenberg et al., 2010; Ben-Dor et al., 1999). 

 

𝑅 =
𝑠𝑜𝑖𝑙 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛

𝑊ℎ𝑖𝑡𝑒 𝑠𝑝𝑒𝑘𝑡𝑟𝑎𝑙𝑜𝑛 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒 (𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒)
                             Equation 1 

 

Partial Least Square Regression (PLSR) 

Prior to model construction, all spectral predictor variables (X matrix) were standardized using z-score normalization to 

ensure equal weighting across the 350–2500 nm wavelength range. Soil biochemical and physicochemical parameters (Y 

matrix) were also standardized to minimize scale-related bias and improve model stability. PLSR was used to model the 

relationship between the spectral data and measured soil properties through a multivariate linear calibration framework 
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(Esbensen & Geladi, 2010). Full cross-validation was performed to evaluate model reliability. In this procedure, each sample 

is sequentially omitted, the model is recalibrated using the remaining samples, and the omitted sample is predicted before 

being reinserted into the dataset. This iterative approach allowed for both robust model assessment and the identification of 

potential overfitting. The optimal number of latent factors for each model was determined according to the lowest cross-

validation error, following standard chemometric recommendations (Milos & Bensa, 2018). This systematic validation 

ensured that each PLSR model achieved maximum predictive performance while avoiding unnecessary model complexity. 

Performance Evaluation Metrics 

PLSR modeling was conducted using Unscrambler X (Version 10.5, Camo Analytics), a widely used chemometric 

software for multivariate calibration. The software was employed to perform spectral preprocessing (where applicable), 

latent factor optimization, and full cross-validation procedures due to its robustness and proven performance in soil 

spectroscopy applications. 

Complementary statistical analyses including descriptive statistics, Pearson correlation coefficients, and data 

visualization were performed using Python 3.10. The SciPy (1.10), NumPy (1.26), and pandas (2.0) libraries were used for 

numerical operations and statistical computation, while Matplotlib (3.8) and Seaborn (0.13) were used to generate all 

exploratory and correlation-based plots.  The accuracy of predictions obtained using the Partial Least Squares Regression 

(PLSR) method was assessed using metrics such as the coefficient of determination (R²) (Equation 2) and the root mean 

square error (RMSE). The R² value reflects how closely the data conform to the regression line, whereas RMSE indicates 

the dispersion of validation dataset samples around the 1:1 regression line and the average prediction error. RMSE is 

computed as the square root of the mean of the squared differences between observed and predicted values (Equation 3). In 

the equation, n represents the number of samples in the validation dataset, and Y_pred and Y_lab correspond to the predicted 

and actual measured values, respectively. 

 

𝑅2 = 1 −
∑ (𝑌𝑖−𝑌̂𝑖)2𝑛

𝑖=1

∑ (𝑌𝑖−𝑌𝑖̅)2𝑛
𝑖=1

                                            Equation 2 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑌𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑−𝑌𝑙𝑎𝑏.𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)2𝑛

𝑖−1

𝑛
              Equation 3 

 

RESULT 

Soil parameters were predicted through calibration models developed between the parameters and their corresponding 

reflectance values using the Partial Least Squares Regression (PLSR) method. A cross-validation approach was applied to 

assess the accuracy of the predictions. This method systematically tests the predictive capability of the model by dividing 

the dataset into training and testing subsets. The model is developed using the training data and then its performance is 

evaluated on the test data. This process plays a critical role in determining the reliability and validity of the model under 

real-world conditions. Cross-validation also helps reduce the risk of overfitting and improves the generalizability of the 

model. The cross-validation results are presented with the coefficient of determination (R²) and the root mean square error 

of prediction (RMSEP) for various soil parameters (Tables 2 and 3). These tables illustrate the relationship between the 

predicted values obtained from the PLSR model and the laboratory measurements, highlighting the parameters for which 

the model performs best. The findings also provide a basis for evaluating which wavelength range is more suitable for 

predicting specific soil parameters. Average spectral reflectance curves of soils under different land use types (Melissa, 

cotton, pistachio, and fallow) measured across the 350–700 nm (left) and 350–2500 nm (right) wavelength ranges. 

Reflectance intensity increases toward the near-infrared region, with distinct absorption features observed near 1400, 1900, 

and 2200 nm corresponding to soil moisture and clay mineral bands (Figure.2). 

 

 
Figure 2. Reflectance spectra of soil samples measured in the 350–2500 nm wavelength range in the visible and near-

infrared (VNIR) regions. The left panel illustrates the visible range (350–700 nm), where reflectance gradually increases 

with wavelength. The right panel presents the near-infrared range (700–2500 nm). 
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Descriptive statistics of the measured soil physicochemical and biochemical properties are presented in Table 2. The 

results revealed a moderate variation among soil parameters across different land use types. Lime content ranged between 

24.46% and 31.30%, reflecting the calcareous nature of the soils in the study area. SOM values were relatively low (1.18–

1.81%), consistent with semi-arid conditions where organic residue input is limited. EC varied from 292.67 to 365.67 µS 

cm⁻¹, indicating non-saline to slightly saline conditions, while pH showed minimal variation (7.31–7.36), suggesting a 

slightly alkaline character typical of calcareous soils. Texture analysis indicated that clay was the dominant fraction (52.67–

66%), followed by sand (15.33–24%) and silt (18.67–23.33%), classifying the soils predominantly as clayey. Among water-

related properties, AWC ranged between 26.05% and 38.47%, while the WP and WHC exhibited higher variability, 

reflecting the influence of organic matter and texture on soil water retention. AS values (44.69–62.83%) demonstrated 

moderate structural stability, likely influenced by differences in vegetation cover and management practices. Regarding 

biochemical parameters, DHA varied from 11.54 to 19.17 µg TPF g⁻¹ soil, BG from 4.72 to 10.98 mg pNP g⁻¹ soil, and ALP 

from 9.21 to 16.37 µg g⁻¹ soil, indicating active microbial processes, particularly in cultivated soils. Available P content 

ranged from 5.81 to 9.41 mg kg⁻¹, showing moderate nutrient availability. 

The Shapiro–Wilk normality test results (p > 0.05 for most variables) indicated that the data generally followed a normal 

distribution, except for silt and WHC, which showed slightly skewed distributions. Overall, the descriptive statistics reflect 

the heterogeneity of soil physical, chemical, and biochemical properties under different land use conditions in the semi-arid 

environment. 

 

Table.2 Descriptive statistics of soil physicochemical and biochemical properties, including minimum, maximum, mean, 

standard deviation (SD), skewness, kurtosis, and Shapiro–Wilk test p-values.  

Indicator Min Max Mean SD Skewness Kurtosis Shapiro–Wilk p 

Lime 24.457 31.3 27.197 2.903 0.752 -0.871 0.356 

SOM 1.178 1.81 1.568 0.273 -0.833 -0.861 0.353 
EC 292.667 365.667 323.333 35.793 0.238 -1.685 0.291 

pH  7.313 7.363 7.338 0.02 0 -1.018 0.848 

Sand 15.333 24 19.333 3.569 0.316 -1 0.798 

Clay 52.667 66 59.833 5.64 -0.268 -1.196 0.955 

Silt 18.667 23.333 20.833 2.517 0.035 -1.954 0.084 

AWC 26.05 38.472 32.595 5.559 -0.139 -1.532 0.802 

WP 13.33 24.718 19.959 4.785 -0.635 -0.926 0.560 

WHC 5.581 16.853 12.637 4.891 -0.887 -0.822 0.253 

AS (%) 44.693 62.833 54.284 9.555 -0.039 -1.942 0.126 

DHA 11.537 19.167 14.696 3.689 0.288 -1.619 0.331 

ALP 9.213 16.377 12.465 3.057 0.317 -1.222 0.922 

β-glucosidase 4.724 10.982 7.958 2.677 -0.112 -1.313 0.977 

Available P (mg kg⁻¹) 5.812 9.413 7.54 1.588 0.114 -1.477 0.876 

 

The Pearson correlation analysis between spectral reflectance values and soil physicochemical and biochemical 

properties across the 350–2500 nm wavelength range is presented in Figure 3. The correlation patterns revealed clear spectral 

sensitivity for most soil parameters, with distinct wavelength regions showing either strong positive or negative relationships. 

Positive correlations were particularly evident for lime, SOM, EC, and enzyme-related parameters, especially within the 

visible (400–700 nm) and near-infrared (700–1300 nm) regions. SOM and DHA) exhibited the strongest positive correlations 

in the NIR region, suggesting that spectral responses in this range are primarily influenced by organic carbon and associated 

microbial processes. Conversely, pH and available P displayed negative correlations, reflecting their limited optical 

sensitivity and indirect relationship with reflectance intensity. Among physical parameters, sand and AS demonstrated 

positive trends with increasing wavelength, while clay and WP showed negative correlations, indicating the higher 

absorption capacity of clay-rich soils. Distinct absorption features near 1400, 1900, and 2200 nm were consistently 

associated with soil water and clay mineral bands, emphasizing the influence of moisture and texture on spectral behavior. 

Overall, the correlation analysis identified specific wavelength regions most responsive to soil organic matter and enzyme 

activity variations, confirming the potential of VNIRS data to capture biochemical processes and guiding the selection of 

sensitive bands for subsequent PLSR modeling. 

In this modeling study, the Partial Least Squares Regression (PLSR) method was applied using spectral data within the 

350–2500 nm wavelength range to evaluate the calibration (RMSEC, R²) and validation (RMSEP, R²) performance for 

various soil physical, chemical, and biochemical properties (Table 3, Figure 3). High calibration accuracy was achieved for 

key chemical properties such as SOM, EC, and pH. For EC, the calibration R² value was 0.93 with an RMSEC of 9.69 

µS/cm, while the validation R² dropped to 0.46 and the RMSEP was calculated as 30.68 µS/cm. The validation R² values 

for SOM and pH were determined as 0.43 and 0.40, respectively. For soil texture components, lower validation performance 

was observed, with R² values of 0.42 for clay, 0.31 for sand, and 0.10 for silt. Meanwhile, for water-related parameters such 

as PAW, a strong calibration fit (R² = 0.93) was achieved, but a decrease in validation accuracy was noted (R² = 0.26). 

Among the biochemical properties, high calibration R² values were recorded for DHA and BG enzyme activities, at 0.93 

and 0.72, respectively. In the validation phase, these values dropped to 0.75 and 0.66. For parameters such as ALP and 

Available P, relatively low R² values were observed. 
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Figure 3. Pearson correlation coefficients (r) between soil physicochemical and biochemical properties. 

 

Table 3. Calibration and validation statistics for soil physicochemical and biochemical properties predicted using spectral 

reflectance data (350-2500 nm). Metrics include root mean square error of calibration (RMSEC), root mean square error of 

prediction (RMSEP), and coefficient of determination (R²) for both calibration and validation datasets.   
Parameters 

 
Calibration Validation  

  Unit RMSECǂ     R2 RMSEPᵻ                R2  
Sand % 2.69 0,46 3.31 0.31  
CaCO3 % 0.69 0.95 2.11 0.66  
SOM % 0.23 0.49 0.27 0.43  
EC µS/cm 9.69 0.93 30.68 0.46  
pH 

 
0.015 0.46 0.018 0.40  

Clay % 3.28 0.70 4.97 0.42  
Silt % 2.67 0.25 3.20 0.10  
AWC % 2.23 0.82 4.26 0.46  
WP % 3.95 0.35 4.59 0.27  
WHC % 1.38 0.93 5.06 0.26  
DHA µg/g 0.89 0.93 1.86 0.75  
BG mg/g 1.48 0.72 1.81 0.66  
ALP µg/g 3.88 0.11 4.60               NA  
Available P mg/kg 2.33 0.35 3.00 0.10  
AS % 2.5 0.95 7.51 0.62 
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ǂRoot Mean square error of calibration, ᵻRoot Mean square error of prediction. 

 
Figure 3. Calibration and validation performance of spectral models for predicting soil physicochemical and biochemical 

properties (350-2500 nm). Bars represent the coefficient of determination (R²) for calibration (red) and validation (blue), 

while lines represent the root mean square error of calibration (RMSEC, green) and root mean square error of prediction 

(RMSEP, orange). 

 

Following the PLSR modeling performed within the 350–2500 nm spectral range, a second analysis was conducted in 

the 700–2500 nm range to evaluate how model accuracy changes within a narrower spectral band. This analysis is 

particularly important to reveal the effect of spectral bandwidth on model performance. The modeling results within the 

700–2500 nm range generally demonstrated acceptable calibration performance for certain soil properties, while a noticeable 

decrease in accuracy was observed during the validation phase. For instance, the validation R² values for OM and pH were 

recorded as 0.43 and 0.40, respectively similar to those previously obtained from the wider spectral range. However, for 

electrical conductivity (EC), model accuracy dropped significantly in validation, with an R² of only 0.09. Likewise, the 

prediction of soil texture components showed limited accuracy: sand, clay, and silt had validation R² values of 0.32, 0.34, 

and 0.10, respectively. In terms of soil water retention parameters, while calibration R² values were relatively high for PAW, 

FC, and WP for example, PAW: R² = 0.93 these values decreased significantly during validation (PAW: R² = 0.26). For 

biochemical parameters, DHA and BG enzyme activities were among the most successfully predicted variables in this 

spectral range as well. The validation R² was calculated as 0.69 for DHA and 0.60 for BG. In contrast, parameters such as 

ALP and Available P showed poor prediction performance (Table 4, Figure 4). 

In conclusion, the PLSR analyses performed within the 700–2500 nm range exhibited more limited predictive accuracy 

compared to the broader 350–2500 nm range. This decline was particularly evident in physical soil properties; however, 

certain biochemical parameters, especially microbial activity indicators like DHA still showed acceptable levels of accuracy. 

These findings emphasize the critical role of wavelength selection in the success of soil spectral modeling. 

 
Table 4. Calibration and validation statistics for soil physicochemical and biochemical properties predicted using spectral 

reflectance data (700-2500 nm). Metrics include root mean square error of calibration (RMSEC), root mean square error of 

prediction (RMSEP), and coefficient of determination (R²) for both calibration and validation datasets.   
Parameters 

 
Calibration Validation 

 

 
  Unit RMSECǂ R2 RMSEPᵻ R2 

 

 
Sand % 2.66 0.47 3.29 0.32 

 

 
CaCO3 % 2.34 0.51 3.14 0.26 

 

 
SOM % 0.23 0.49 0.27 0.43 

 

 
EC µS/cm 30.78 0.36 40.11 0.09 

 

 
pH 

 
0.015 0.46 0.018 0.40 

 

 
Clay % 4.07 0.54 5.3 0.34 

 

 
Silt % 2.68 0.25 3.2 0.10 

 

 
AWC % 3.91 0.46 5.11 0.23 

 

 
WP % 3.97 0.35 4.61 0.26 

 

 
WHC % 5.15 0.10 5.95 NA 

 

 
DHA µg/g 1.58 0.78 2.06 0.69 

 

 
BG mg/g 1.57 0.69 1.95 0.60 

 

 
ALP µg/g 3.88 0.10 4.6      NA 

 

 
Available P mg/kg 2.37 0.33 3.07 0.066 

 

 
AS % 0.4232 0,99 10.0125 0.34 
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ǂRoot Mean square error of calibration, ᵻRoot Mean square error of prediction. 

 

 
Figure 4. Calibration and validation performance of spectral models for predicting soil physicochemical and biochemical 

properties (700-2500 nm). Bars represent the coefficient of determination (R²) for calibration (red) and validation (blue), 

while lines represent the root mean square error of calibration (RMSEC, green) and root mean square error of prediction 

(RMSEP, orange). 

 

The average spectral reflectance profiles of soils under different land use types are presented in (Figure 5.) These spectral 

curves, obtained for the 350–700 nm (a) and 350–2500 nm (b) wavelength ranges, reveal the spectral responses of four 

distinct land use categories (Melissa, cotton, pistachio, and uncultivated). The most noticeable separation among the curves 

occurred within the 600–1200 nm range, where the reflectance values tended to diverge more clearly. In the near-infrared 

region, variations were also observed around the absorption features near 1400, 1900, and 2200 nm, which are commonly 

associated with water and clay mineral absorptions. Rather than indicating definitive distinctions among land use types, 

these patterns suggest preliminary spectral differences that warrant further investigation with a larger dataset. 

 

 

 
Figure 5. Average spectral reflectance curves of soil samples collected from different land use types (uncultivated land, 

cotton, pistachio, and Melissa) are presented. The graphs separately show a) the 350–700 nm and b) the 350–2500 nm 

wavelength ranges. 

 

The combined correlation patterns between soil physicochemical and biochemical parameters and spectral reflectance 

values across the 350–2500 nm wavelength range are shown in Figure 6. Overall, distinct wavelength-dependent variations 

were observed, indicating that different soil attributes respond uniquely to specific spectral regions. Positive correlations 

dominated the visible and near-infrared regions (400–1300 nm) for most chemical and biochemical parameters, particularly 

SOM, EC, DHA, and BG activities. These parameters exhibited correlation coefficients (r) exceeding 0.6 in the NIR region, 

suggesting that the reflectance behavior in this range is largely governed by organic compounds, moisture, and microbially 

active constituents. Lime and AS also showed strong positive associations with reflectance intensity, reflecting their 

influence on soil structure and spectral brightness. In contrast, variables such as pH, Available phosphorus P, and clay 
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content demonstrated negative correlations, especially around the 1400 nm and 1900 nm absorption features, where water 

and hydroxyl groups in clay minerals strongly absorb incoming radiation. Water retention parameters, including AWC, WP, 

and WHC, showed variable correlations across the NIR–SWIR regions, indicating their complex relationship with both 

moisture and organic matter content. The pronounced absorption bands at approximately 1400, 1900, and 2200 nm 

correspond to molecular vibrations of H–O–H, O–H, and Al–OH bonds, indicating the spectral influence of soil moisture 

and clay minerals. However, given the limited sample size, these observations should be interpreted cautiously. While the 

spectral patterns suggest the potential of VNIRS to detect chemical and mineralogical variations in soils, a larger dataset 

would be required to draw definitive conclusions regarding its sensitivity and reliability for prediction and modeling 

applications. 

 
Figure 6. Correlation between soil physicochemical and biochemical properties and spectral reflectance across the 350–

2500 nm wavelength range. 

 

DISCUSSION 

This study investigated the effects of different land use types on the physical, chemical, and biochemical properties of 

soils under semi-arid conditions and evaluated the potential of VNIRS spectral data for predicting these properties. The 

findings revealed that spectral methods demonstrated promising preliminary predictive performance particularly for 

biochemical and certain chemical properties. The high calibration accuracy obtained for enzyme activities such as 

dehydrogenase and β-glucosidase indicates that biochemical processes associated with microbial activity and organic matter 

are reflected in the spectral signals. This is consistent with previous studies reporting that organic matter composition and 

microbial processes leave distinct signatures in VNIRS spectra (Wang et al., 2025; Stenberg et al., 2010; Rossel & Webster, 

2012). Model performance was significantly lower for physical soil properties. Textural components such as sand, clay, and 

silt exhibited low validation accuracy due to their weak spectral representation and their complex interactions with surface 

conditions, mineralogical composition, and soil moisture. This finding aligns with the literature indicating that textural 

attributes have weak spectral signatures and that VNIRS is limited in predicting physical soil parameters (Ben-Dor, 2008; 

Tsolis & Barouchas, (2023); Stoner & Baumgardner, 1981). Lobell and Asner (2002) further emphasized that soil reflectance 

is more sensitive to moisture and mineralogical properties, whereas particle size contributes only marginally to the spectral 

signal. The distinct absorption bands observed around 1400, 1900, and 2200 nm correspond to OH bond vibrations of water 

and Al–OH combination bands of clay minerals (Clark et al., 1990; Hunt, 1977). The reflectance variations observed in these 

regions, particularly in melissa-cultivated soils where organic matter and microbial activity were higher, are consistent with 

the literature. Regarding chemical properties, VNIRS-based models showed moderate predictive performance for variables 

such as organic matter, calcium carbonate, and to a certain extent electrical conductivity. This is in agreement with previous 

studies reporting stronger spectral representation of chemical soil parameters in the VNIR region (Reeves et al., 2002; Gomez 

et al., 2008; Gozukara et al., 2025). Nevertheless, the low validation accuracy for complex chemical attributes such as EC 

indicates that salinity is influenced by multiple interacting factors including moisture, mineralogy, and surface conditions 

that complicate its spectral expression (Farifteh et al., 2010). Overall, the findings of this study demonstrate that VNIRS has 

considerable potential to detect biochemical processes and certain chemical soil properties. However, limitations such as the 

small sample size, the restricted representation of land use categories, and the weak spectral expression of physical soil 

attributes constrain model performance. Despite these limitations, the advantages of VNIRS including rapid measurement, 

low cost, environmental friendliness, and the ability to evaluate multiple soil properties simultaneously make it a valuable 

tool for both research and practical soil management applications (Stenberg et al., 2010; Ben-Dor, 1999). 
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CONCLUSION 

This study demonstrated that land use type has a significant influence on the physicochemical and biochemical properties 

of soils developed under semi-arid conditions. Soils cultivated with Melissa officinalis exhibited higher organic matter 

content and enzyme activities (particularly dehydrogenase and β-glucosidase), indicating improved microbial activity and 

soil health compared to cotton, pistachio, and fallow lands. These results confirm that vegetation type and management 

practices play a crucial role in maintaining soil biological functionality in fragile dryland ecosystems. The application of 

Visible–Near Infrared Spectroscopy (VNIRS) combined with Partial Least Squares Regression (PLSR) modeling provided 

promising results for the estimation of soil biochemical indicators. The models achieved strong calibration performance for 

key variables such as electrical conductivity, organic matter, and dehydrogenase activity, while validation accuracy was 

moderate. However, prediction capability for physical parameters (e.g., texture fractions) remained limited, suggesting that 

these properties are less spectrally active and may require complementary approaches. This outcome is consistent with the 

generally weak direct spectral expression of particle-size fractions and their dependence on mineralogical composition and 

microaggregate structure, which reduces their detectability by VNIRS. Distinct absorption bands at 1400, 1900, and 2200 

nm associated with soil water and clay mineral vibrations were consistently detected across land use types, confirming the 

sensitivity of VNIRS to moisture-related features. These findings highlight the method’s potential as a rapid, cost-effective, 

and environmentally friendly alternative to conventional laboratory analyses for soil monitoring. While the study provides 

valuable preliminary evidence, several limitations should be acknowledged. The relatively small sample size, limited 

replication across land use categories, and the inherently complex spectral behavior of enzyme activities constrain the 

robustness of the predictive models. These factors may also contribute to the moderate validation performance observed for 

several soil properties. Therefore, the results should be interpreted as an initial assessment rather than definitive predictive 

models. 

Despite these constraints, the study contributes to the growing body of work exploring the feasibility of VNIRS for 

biochemical soil assessment under semi-arid conditions. The inclusion of enzyme activities as prediction targets represents 
a meaningful step toward expanding VNIRS applications, although further research is required to strengthen model 

performance and confirm reproducibility. 

Future research should focus on (i) expanding the sample size and spatial coverage to enhance model robustness, (ii) 

integrating advanced spectral preprocessing and machine learning algorithms (e.g., Random Forest, ANN, or hybrid models) 

to improve predictive accuracy, and (iii) developing portable VNIRS-based field platforms and drone-integrated systems for 

large-scale soil health monitoring. Such advancements would improve the scalability and reliability of spectral soil 

assessment, supporting sustainable soil management strategies and precision agriculture practices, particularly in semi-arid 

regions vulnerable to degradation and nutrient loss. 
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