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New formulae of squares of some Jacobi
polynomials via hypergeometric functions

W.M. Abd- Elhameed∗ †

Abstract

In this article, a new formula expressing explicitly the squares of Jacobi
polynomials of certain parameters in terms of Jacobi polynomials of ar-
bitrary parameters is derived. The derived formula is given in terms
of ceratin terminating hypergeometric function of the type 4F3(1). In
some cases, this 4F3(1) can be reduced by using some well-known re-
duction formulae in literature such as Watson's and Pfa�-Saalschütz's
identities. In some other cases, this 4F3(1) can be reduced by means of
symbolic computation, and in particular Zeilberger's, Petkovsek's and
van Hoeij's algorithms. Hence, some new squares formulae for Jacobi
polynomials of special parameters can be deduced in reduced forms
which are free of any hypergeometric functions.
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1. Introduction

The Jacobi polynomials are of fundamental importance in theoretical and applied
mathematical analysis. The class of Jacobi polynomials contains six well-known fami-
lies of orthogonal polynomials, they are, ultraspherical, Legendre and the four kinds of
Chebyshev polynomials. The Jacobi polynomials in general and their six special polyno-
mials in particular are extensively employed in obtaining numerical solutions of ordinary,
fractional and partial di�erential equations. In this respect, these polynomials are em-
ployed for the sake of obtaining spectral solutions for various kinds of di�erential equa-
tions. For example, Abd-Elhameed in [1] has employed Legendre polynomials for solving
linear and nonlinear sixth-order two point boundary value problems via an elegant har-
monic numbers operational matrix of derivatives. Also, Chebyshev, ultraspherical and
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Jacobi polynomials are used for solving various kinds of boundary value problems (see,
for example [16, 5, 12]).

The two problems of linearizing products of various orthogonal polynomials and the
connection coe�cients between them are of interest. There are several old and recent
studies in this direction. For example, the two problems concerning linearization and con-
nection coe�cients of ultraspherical and Jacobi polynomials have been studied in several
articles, see for instance [7, 18, 19, 20, 26, 9]. Some other investigations for the problems
of the linearization and connection coe�cients for various orthogonal polynomials can be
found in [10, 11, 3, 2, 4, 15, 23, 28, 29]. Recently, the problems of connection, duplication
and linearization coe�cients of various orthogonal polynomials have been investigated in
the Ph.D. thesis of Tcheutia [30].

To be more precise, and if we consider the two polynomials Fm(x) andGn(x) of degrees
m and n respectively, then the linearization problem requires to �nd the linearization
coe�cients Lm,n,k such that

(1.1) Fm(x)Gn(x) =

m+n∑
k=0

Lm,n,kQk(x),

and {Qk(x)}k≥0 is an arbitrary sequence of orthogonal polynomials.
The following two special problems of (1.1) are of interest:

: (i) Clebsch-Gordan-type problem which requires to �nd the coe�cients ξm,n,k
such that

(1.2) Fm(x)Fn(x) =

m+n∑
k=0

ξm,n,k Fk(x).

: (ii) The connection problem, which requires to �nd the coe�cients γm,k, such
that

Fm(x) =

m∑
k=0

γm,kQk(x).

The principal aim of this article is to establish some new formulae for the squares of
Jacobi polynomials of certain parameters. In particular, we �nd the coe�cients Lm,n,k

in (1.1) for the case corresponds to: m = n, Fm(x) = Gn(x) = P
(α,− 1

2
)

m (x), and Qk(x) =

P
(γ,δ)
k (x).

The rest of the paper is as follows. In Section 2, some mathematical preliminaries
concerning some properties of the classical Jacobi polynomials are presented. Moreover,
some transformation formulae between certain hypergeometric functions and also some
standard formulae of ceratin hypergeometric functions are presented. In Section 3, we
derive in detail a theorem in which a new squares formula of certain Jacobi polynomials is
given in terms of Jacobi polynomials of arbitrary parameters. Moreover, in this section,
and based on applying some standard formulae, some new linearization formulae are
given in explicit forms free of any hypergeometric functions. In Section 4, we describe
how symbolic computation, and in particular, the algorithms of Zeilberger, Petkovsek
and van Hoeij can be utilized for obtaining some reduced linearization formulae of Jacobi
polynomials of particular parameters.
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2. Preliminaries and useful transformations

This section is dedicated to presenting some properties of the classical Jacobi polyno-
mials. Moreover, some important transformation formulae between some types of hyper-
geometric functions and also some standard reduction formulae of certain hypergeometric
functions are displayed.

2.1. Some relevant properties of the classical Jacobi polynomials. The classical
Jacobi polynomials associated with the real parameters (γ> −1, δ > −1) (see, Olver et al.

[25], Andrews et al. [6] and Rainville [27]), are a sequence of polynomials P
(γ,δ)
m (x), x ∈

[−1, 1] (m = 0, 1, 2, ...), each respectively of degree m. From now on, we use the following
normalized Jacobi polynomials introduced by Rahman [26] and used in [14].

(2.1)

R(γ,δ)
m (x) =

P
(γ,δ)
m (x)

P
(γ,δ)
m (1)

=
m!

(γ + 1)m
P (γ,δ)
m (x)

=2F1

(
−m,m+ γ + δ + 1

γ + 1

∣∣∣∣ 1− x
2

)
.

The polynomials R
(γ,δ)
m (x) satisfy the following orthogonality relation:

(2.2)

∫ 1

−1

(1− x)γ(1 + x)δ R(γ,δ)
m (x)R(γ,δ)

n (x) dx =

{
0, m 6= n,

h
(γ,δ)
m , m = n,

where

(2.3) h(γ,δ)
m =

2γ+δ+1 m! Γ(m+ δ + 1) [Γ(γ + 1)]2

(2m+ γ + δ + 1) Γ(m+ γ + δ + 1) Γ(m+ γ + 1)
.

The advantage of using the normalized Jacobi polynomials in (2.1) is that its use yields
directly the following six polynomials as special cases.

C(α)
m (x) = R

(α− 1
2
,α− 1

2
)

m (x), Tm(x) = R
(− 1

2
,− 1

2
)

m (x),

Um(x) = (m+ 1)R
( 1
2
, 1
2
)

m (x), Vm(x) = R
(− 1

2
, 1
2
)

m (x),

Wm(x) = (2m+ 1)R
( 1
2
,− 1

2
)

m (x), Pm(x) = R(0,0)
m (x),

where C
(α)
i (x), Ti(x), Ui(x), Vi(x), Wi(x) and Pi(x) are the ultraspherical, Chebyshev

of the �rst, second, third and fourth kinds, and Legendre polynomials, respectively.
The following identity is also important.

(2.4) R(γ,δ)
m (−x) =

(−1)m Γ(γ + 1) Γ(m+ δ + 1)

Γ(δ + 1) Γ(m+ γ + 1)
R(δ,γ)
m (x).

For more properties on Jacobi polynomials in general and their special polynomials in
particular, one can be referred to the important books of Andrews et al. [6] and Mason
and Handscomb. [24].

2.2. Some Transformation formulae. Recall the following well-known de�nition of
the generalized hypergeometric function

pFq

(
a1, a2 . . . , ap
b1, b2 . . . , bq

∣∣∣∣x) =

∞∑
j=0

(a1)j (a2)j . . . (ap)j
(b1)j (b2)j . . . (bq)j

xj

j!
,

where a1, a2, . . . , ap, b1, b2, . . . , bq, are complex or real parameters, with bi 6= 0, for all
1 ≤ i ≤ q.
The following �ve theorems are of fundamental importance in establishing our results.
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2.1. Theorem. Let m, p, q, r, s, t, u be nonnegative integers. The following transforma-
tion formula holds (see, [17] and [22])

(2.5)

p+r+1Fq+s

(
−m, [ap] , [cr]

[bq] , [ds]

∣∣∣∣ y z) =

m∑
j=0

(
m

j

)
(ap)j (αt)j y

j

(bq)j (βu)j (j + µ)j
×

p+t+1Fq+u+1

(
j −m, [j + ap] , [j + αt]

2 j + µ+ 1, [j + bq] , [j + βu]

∣∣∣∣ y)×
r+u+2Fs+t

(
−j, j + µ, [cr] , [βu]

[ds] , [αt]

∣∣∣∣ z) .
2.2. Theorem. The following transformation formula holds (see, [8])

(2.6)

2F1

(
a, b

a+ b− 1
2

∣∣∣∣ y) 2F1

(
a, b

a+ b+ 1
2

∣∣∣∣ y) =

3F2

(
2 a, 2 b, a+ b

2 a+ 2 b− 1, a+ b+ 1
2

∣∣∣∣ y) .
2.3. Theorem. Pfa�-Saalschütz identity (see, [25])
For every nonnegative integer m, and for a2 + b2 = a1 + b1 + 1−m, one has

(2.7) 3F2

(
−m,a1, b1
a2, b2

∣∣∣∣ 1) =
(a2 − a1)m (a2 − b1)m
(a2)m (a2 − a1 − b1)m

.

2.4. Theorem. Watson's identity (see, [32])

(2.8)

3F2

(
−m,m+ 2 a+ 2 b− 1, a

2 a, a+ b

∣∣∣∣ 1)

=


m! Γ(a+ m

2
) Γ(b+ m

2
) Γ(2 a) Γ(a+ b)(

m
2

)
! Γ(a+ b+ m

2
) Γ(2 a+m) Γ(a) Γ(b)

, m even,

0, m odd.

2.5. Theorem. The following identity (Clausen's identity) holds (see, [27])

(2.9) 3F2

(
2 a, 2 b, a+ b

2 a+ 2 b, a+ b+ 1
2

∣∣∣∣ y) =

[
2F1

(
a, b

a+ b+ 1
2

∣∣∣∣ y)]2 .
3. Squares formulae of certain Jacobi polynomials

This section is devoted to establishing new linearization formulae of products of partic-
ular Jacobi polynomials. We will state and prove a new theorem, in which a new formula
of squares of certain Jacobi polynomials is expressed in terms of Jacobi polynomials of
arbitrary parameters.

3.1. Theorem. For every nonnegative integer n, the following linearization formula
holds:

(3.1)

(
R

(α,− 1
2
)

n (x)

)2

=

2n∑
j=0

(
2n
j

) (
α+ 1

2

)
j

(γ + 1)j(2n+ 2α+ 1)j

(α+ 1)j (2α+ 1)j (j + γ + δ + 1)j
×

4F3

(
j − 2n, j + α+ 1

2
, j + 2α+ 2n+ 1, j + γ + 1

j + α+ 1, j + 2α+ 1, 2j + γ + δ + 2

∣∣∣∣ 1) R
(γ,δ)
j (x).
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Proof. Making use of the Gauss hypergeometric representation of the orthogonal poly-

nomials R
(α,− 1

2
)

n (x), one can write

(3.2)

(
R

(α,− 1
2
)

n (x)

)2

=

[
2F1

(
−n, n+ α+ 1

2

α+ 1,

∣∣∣∣ 1− x
2

)]2
,

and in virtue of the Clausen's identity (2.9), relation (3.2) can be turned into

(3.3)

(
R

(α,− 1
2
)

n (x)

)2

= 3F2

(
−2n, 2n+ 2α+ 1, α+ 1

2

2α+ 1, α+ 1

∣∣∣∣ 1− x
2

)
.

If Theorem 2.1 is applied to the right hand side of (3.3), with the following choices:

p = q = 2, r = s = u = 0, t = 1, [cr] = [ds] = [βu] = ∅, y = 1, z = 1−x
2
,

and if we choose the remaining parameters suitably, then the following transformation
formula holds:

3F2

(
−2n, 2n+ 2α+ 1, α+ 1

2

2α+ 1, α+ 1

∣∣∣∣ 1− x
2

)
=

2n∑
j=0

(
2n
j

) (
α+ 1

2

)
j

(γ + 1)j(2n+ 2α+ 1)j

(α+ 1)j (2α+ 1)j (j + γ + δ + 1)j
×

4F3

(
j − 2n, j + α+ 1

2
, j + 2α+ 2n+ 1, j + γ + 1

j + α+ 1, j + 2α+ 1, 2j + γ + δ + 2

∣∣∣∣ 1)×
2F1

(
−j, j + γ + δ + 1

γ + 1,

∣∣∣∣ 1− x
2

)
,

and this in turn leads to the following linearization formula:(
R

(α,− 1
2
)

n (x)

)2

=

2n∑
j=0

(
2n
j

) (
α+ 1

2

)
j

(γ + 1)j(2n+ 2α+ 1)j

(α+ 1)j (2α+ 1)j (j + γ + δ + 1)j
×

4F3

(
j − 2n, j + α+ 1

2
, j + 2α+ 2n+ 1, j + γ + 1

j + α+ 1, j + 2α+ 1, 2j + γ + δ + 2

∣∣∣∣ 1) R
(γ,δ)
j (x).

Theorem 3.1 is proved. �

3.2. Corollary. If we set γ = α and δ = −1
2

in formula (3.1), then the following
linearization formula is obtained:

(3.4)

(
R

(α,− 1
2
)

n (x)

)2

=

2n∑
j=0

(
2n
j

)
(j + 1)2n−j

(
α+ 1

2

)
j

(
j − 2n− α+ 1

2

)
2n−j(

j + α+ 1
2

)
j

(2α+ 1)j
(
2j + α+ 3

2

)
2n−j

×

(2n+ 2α+ 1)j
(−2(n+ α))2n−j

R
(α,− 1

2
)

j (x).

Proof. The substitution by γ = α and δ = − 1
2
into relation (3.1) yields

(3.5)

(
R

(α,− 1
2
)

n (x)

)2

=

2n∑
j=0

(
2n
j

) (
α+ 1

2

)
j

(2n+ 2α+ 1)j(
j + α+ 1

2

)
j

(2α+ 1)j
×

3F2

(
j − 2n, j + α+ 1

2
, j + 2α+ 2n+ 1

2j + α+ 3
2
, j + 2α+ 1

∣∣∣∣∣ 1
)
R

(α,− 1
2
)

j (x).
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The 3F2(1) in (3.5) is balanced, and it can be summed by means of Pfa�-Saalschütz
identity (2.7) to give

3F2

(
j − 2n, j + α+ 1

2
, j + 2α+ 2n+ 1

2j + α+ 3
2
, j + 2α+ 1

∣∣∣∣∣ 1
)

=

(j + 1)2n−j
(
j − 2n− α+ 1

2

)
2n−j(

2j + α+ 3
2

)
2n−j (−2(n+ α))2n−j

.

The last reduction formula turns formula (3.5) to the following simpli�ed linearization
formula (

R
(α,− 1

2
)

n (x)

)2

=

2n∑
j=0

(
2n
j

)
(j + 1)2n−j

(
α+ 1

2

)
j

(
j − 2n− α+ 1

2

)
2n−j(

j + α+ 1
2

)
j

(2α+ 1)j
(
2j + α+ 3

2

)
2n−j

×

(2n+ 2α+ 1)j
(−2(n+ α))2n−j

R
(α,− 1

2
)

j (x).

Corollary 3.2 is proved. �

3.3. Corollary. The two formulae expressing explicitly the squares of Chebyshev poly-
nomials of fourth and third kinds in terms of their original polynomials can be obtained
as special cases of (3.4).

(3.6) W 2
n(x) =

2n∑
j=0

Wj(x),

(3.7) V 2
n (x) =

2n∑
j=0

(−1)j Vj(x).

3.4. Corollary. The two formulae (3.6) and (3.7) are in complete agreement with those
obtained in [13], but they are derived here di�erently.

3.5. Corollary. If we set α = − 1
2
and δ = γ = β − 1

2
, in formulae (3.1), then the

following linearization formula is obtained:

(3.8)

T 2
n(x) =

1

2
+

(−1)n (Γ(β + 1))2

2 Γ(−n+ β + 1) Γ(n+ β + 1)
+

π Γ(β + 1)

(2n− 1)! Γ(β + 1
2
)
×

2n∑
j=1

2−2β−j+2n−1
(
2n
j

)
(β + j) Γ(j + 2β) Γ

(
j
2

+ n
)

Γ
(
1
2
(j − 2n+ 1)

)
Γ
(
j
2
− n+ β + 1

)
Γ
(
j
2

+ n+ β + 1
) C(β)

j (x).

Proof. First, with the aid of the Legendre's duplication formula

Γ(2z)

Γ(z)
=

22 z−1Γ(z + 1
2
)

√
π

,

it is not di�cult to see that

(3.9) lim
α→−1

2

(α+ 1
2
)k

(2α+ 1)k
=

{
1 k = 0,
1
2

k ≥ 1.

If we set α = − 1
2
and δ = γ = β − 1

2
in (3.1), and if we take into account the limit in

(3.9), then we get
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(3.10)

T 2
n(x) =

1

2
+

1

2

2n∑
j=0

(
2n
j

)
(2n)j

(
β + 1

2

)
j(

1
2

)
j

(j + 2β)j
×

3F2

(
j − 2n, j + 2n, β + j + 1

2

j + 1
2
, 2β + 2j + 1

∣∣∣∣ 1) C
(β)
j (x).

Making use of Watson's identity (2.8), the 3F2(1) in (3.10) reduces to

3F2

(
j − 2n, j + 2n, β + j + 1

2

j + 1
2
, 2β + 2j + 1

∣∣∣∣ 1)

=


√
π Γ(β + 1) Γ

(
j + 1

2

)
Γ(j + β + 1)

Γ
(
j−2n+1

2

)
Γ
(
j+1
2

+ n
)

Γ
(
j
2
− n+ β + 1

)
Γ
(
j
2

+ n+ β + 1
) , j even,

0, j odd.

With the aid of the last reduction formula, and after performing some manipulations,
linearization formula (3.10) is turned into

T 2
n(x) =

1

2
+

(−1)n (Γ(β + 1))2

2 Γ(−n+ β + 1) Γ(n+ β + 1)
+

π Γ(β + 1)

(2n− 1)! Γ(β + 1
2
)
×

2n∑
j=1

2−2β−j+2n−1
(
2n
j

)
(β + j) Γ(j + 2β) Γ

(
j
2

+ n
)

Γ
(
1
2
(j − 2n+ 1)

)
Γ
(
j
2
− n+ β + 1

)
Γ
(
j
2

+ n+ β + 1
) C(β)

j (x).

Corollary 3.5 is proved. �

3.6. Remark. It is worthy to note here that formula (3.8) leads to the same relation
obtained by (Sanchez [28], formula 21, page 265), taking into account the identity

C(α)
n (x) =

n!

(2α)n
C̄(α)
n (x),

where C̄
(α)
n (x) is the Gegenbauer polynomial of degree n which used in Ref. [28].

3.7. Corollary. If we set α = δ = − 1
2
in formulae (3.1), then the following linearization

formula is obtained:

(3.11)
T 2
n(x) =

1

2
+

1

2

2n∑
j=0

(−1)j
(
2n
j

)
(2n)j(γ + 1)j

(
j − 2n+ γ + 3

2

)
2n−j(

1
2

)
j

(
j + γ + 1

2

)
j

(
2j + γ + 3

2

)
2n−j

×

R
(γ,− 1

2
)

j (x).

Proof. The substitution by α = δ = − 1
2
into relation (3.1) yields

(3.12)

T 2
n(x) =

1

2
+

1

2

2n∑
j=0

(
2n
j

)
(2n)j(γ + 1)j(

1
2

)
j

(
j + γ + 1

2

)
j

×

3F2

(
j − 2n, j + 2n, j + γ + 1

j + 1
2
, 2j + γ + 3

2

∣∣∣∣ 1) R
(γ,− 1

2
)

j (x).

The 3F2(1) in (3.12) can be reduced by means of Pfa�-Saalschütz identity (2.7) to the
form

3F2

(
j − 2n, j + 2n, j + γ + 1

j + 1
2
, 2j + γ + 3

2

∣∣∣∣ 1) =
(−1)j

(
j − 2n+ γ + 3

2

)
2n−j(

2j + γ + 3
2

)
2n−j

,
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and this in turn yields the following linearization formula

T 2
n(x) =

1

2
+

1

2

2n∑
j=0

(−1)j
(
2n
j

)
(2n)j(γ + 1)j

(
j − 2n+ γ + 3

2

)
2n−j(

1
2

)
j

(
j + γ + 1

2

)
j

(
2j + γ + 3

2

)
2n−j

×

R
(γ,− 1

2
)

j (x).

�

4. Use of Computer algebra algorithms in developing some other

new linearization formulae

In this section, we are interested in developing some other new squares formulae of
certain parameters Jacobi polynomials. To be more precise, the 4F3(1) in relation (3.1)
can be reduced in some cases by making use of some standard reduction formulae such
as Pfa�-Saalschütz's and Watson's identities, however in other cases this reduction is not
available. So, we resorted to some computer algebra algorithms to reduce this 4F3(1) of
certain choices of the involved parameters in formula (3.1).

4.1. Corollary. If we set α = − 1
2
, δ = 1

2
in formula (3.1), then the following lineariza-

tion formula is obtained:

(4.1)

T 2
n(x) =

1

2
+

1

4

2n∑
j=0

(−1)j
(
2n
j

)
Γ
(
γ + 3

2

)
(2n)j(γ + 1)j

(2j + 1)
(
1
2

)
j

(
j + γ + 3

2

)
j

(
2j + γ + 5

2

)
2n−j

×(
2γ + 2j(2γ + 2j + 3)− 16n2 + 3

)
Γ
(
j − 2n+ γ + 5

2

) R
(γ, 1

2
)

j (x).

Proof. Substituting α = − 1
2
, δ = 1

2
into relation (3.1) leads to the linearization formula

(4.2)

T 2
n(x) =

1

2
+

1

2

2n∑
j=0

(
2n
j

)
(2n)j(γ + 1)j(

1
2

)
j

(
j + γ + 3

2

)
j

×

3F2

(
j − 2n, j + 2n, j + γ + 1

j + 1
2
, 2j + γ + 5

2

∣∣∣∣ 1) R
(γ, 1

2
)

j (x).

For the sake of reducing the 3F2(1) in (4.2), we employ computer algebra. First, set

Mi,n,γ = 3F2

(
−i, 4n− i, γ − i+ 2n+ 1
−i+ 2n+ 1

2
, γ − 2i+ 4n+ 5

2

∣∣∣∣ 1) .
If we apply the algorithm of Zeilberger, we obtain the following recurrence relation of
order one which is satis�ed by Mi,n,γ :

(4.3)

(2γ − 2i+ 5)(2i− 4n− 3)
(
−4 i2 + 2 i(2 γ + 8n+ 3)− (2γ + 3)(4n+ 1)

)
×

(2γ − 2i+ 8n+ 5) Mi−1,n,γ + (2i− 4n− 1)(2γ − 4i+ 8n+ 5)×

(2γ − 4i+ 8n+ 7)
(
−6γ − 4i2 + 2i(2γ + 8n+ 7)− 4n (2γ + 7)− 13

)
×

Mi,n,γ = 0,

with the initial value: M0,n,γ = 1.
The exact solution of (4.3) is given by

3F2

(
−i, 4n− i, γ − i+ 2n+ 1
−i+ 2n+ 1

2
, γ − 2i+ 4n+ 5

2

∣∣∣∣ 1)
=

(−1)i+1
(
−i+ γ + 5

2

)
i−1

(
4i2 − 2i(2γ + 8n+ 3) + (2γ + 3)(4n+ 1)

)
2(2i− 4n− 1)

(
−2i+ 4n+ γ + 5

2

)
i
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and therefore the 3F2(1) in (4.2) can be written in the following reduced form

(4.4)

3F2

(
j − 2n, j + 2n, γ + j + 1

j + 1
2
, γ + 2j + 5

2

∣∣∣∣ 1)
=

(−1)j Γ
(
γ + 3

2

) (
2 γ + 2 j(2 γ + 2 j + 3)− 16n2 + 3

)
2(2j + 1)Γ

(
j − 2n+ γ + 5

2

) (
2j + γ + 5

2

)
2n−j

.

Now, the linearization formula (4.2) can be put in the following more simpler one:

T 2
n(x) =

1

2
+

1

4

2n∑
j=0

(−1)j
(
2n
j

)
Γ
(
γ + 3

2

)
(2n)j(γ + 1)j

(2j + 1)
(
1
2

)
j

(
j + γ + 3

2

)
j

(
2j + γ + 5

2

)
2n−j

×(
2γ + 2j(2γ + 2j + 3)− 16n2 + 3

)
Γ
(
j − 2n+ γ + 5

2

) R
(γ, 1

2
)

j (x).

This completes the proof of Corollary 4.1. �

Now, the following two important formulae can be directly deduced as special cases
of formula (4.1).

4.2. Corollary. If we set γ = 1
2
, and γ = − 1

2
, in the linearization formula (4.1),

respectively, then the following two linearization formulae are obtained:

T 2
n(x) =

1

4
(2− U2n−2(x) + U2n(x)),(4.5)

T 2
n(x) =

1

4
(2 + V2n−1(x) + V2n(x)).(4.6)

4.3. Remark. Noting the identity: Vj(x) = (−1)jWj(x), it is easy to deduce the
following linearization formula from (4.6).

(4.7) T 2
n(x) =

1

4
(2−W2n−1(x) +W2n(x)).

4.4. Remark. We note that the three formulae of the squares of Tn(x) in (4.5), (4.6)
and (4.7) can also follow from their trigonometric representations.

4.5. Corollary. For the case α = − 1
2
, δ = γ + 1, the following linearization formula is

obtained:

(4.8)

T 2
n(x) =

1

2
+

√
π n Γ

(
γ + 3

2

)
22γ+2 Γ(γ + 1)

×

{ n∑
m=0

(−1)m+n(m+ n− 1)! Γ(2m+ 2 γ + 2)

(2m)! (n−m)! Γ
(
m− n+ γ + 3

2

)
Γ
(
m+ n+ γ + 3

2

) R
(γ,γ+1)
2m (x)

+

n−1∑
m=0

(−1)m+n+1 (m+ n)! Γ(2m+ 2γ + 3)

(2m+ 1)! (n−m− 1)! Γ
(
m− n+ γ + 5

2

)
Γ
(
m+ n+ γ + 5

2

) ×
R

(γ,γ+1)
2m+1 (x)

}
.

Proof. If we substitute by α = −1
2
, δ = γ + 1, then the linearization formula (3.1) is

turned into

(4.9)

T 2
n(x) =

1

2
+

1

2

2n∑
j=0

(
2n
j

)
(2n)j(γ + 1)j(

1
2

)
j

(j + 2γ + 2)j
×

3F2

(
j − 2n, j + 2n, j + γ + 1

j + 1
2
, 2j + 2γ + 3

∣∣∣∣ 1) R
(γ,γ+1)
j (x).
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Now, if we set

Mi,n,γ =3F2

(
−i, 4n− i, γ − i+ 2n+ 1

−i+ 2n+ 1
2
, 2γ − 2i+ 4n+ 3

∣∣∣∣ 1) ,
then with the aid of Zeilberger's algorithm (see for instance, Koepf [21]), via the Maple
software, and in particular, sumrecursion command, it can be shown that the following
recurrence relation of order two is satis�ed by Mi,n,γ :

(4.10)

(1− i)(2γ − i+ 4)(i− 4n− 1) (2 γ − 2i+ 4n+ 3) (2 γ − i+ 4n+ 4)×

Mi−2,n,γ +
(
−2 γ − 2 i2 + 4 γi+ 8n (−γ + i− 2) + 8 i− 16n2 − 3

)
×

(−2 i+ 4n+ 3)(2 γ − 2 i+ 4n+ 5)Mi−1,n + (2 i− 4n− 3)×

(2 i− 4n− 1)(2 γ − 2 i+ 4n+ 3)(2 γ − 2 i+ 4n+ 5)2 Mi,n,γ = 0,

with the initial values

M0,n,γ = 1, M1,n,γ =
1

4n+ 2 γ + 1
.

The exact solution of the recurrence relation (4.10) is:

(4.11) Mi,n,γ =



(−1)
i
2 i!

(
3−i
2

+ γ
)

i
2

2i ( i
2
)!
(
−i+ 2n+ 1

2

)
i
2

(
−i+ 2n+ γ + 3

2

)
i
2

, i even,

(−1)
i−1
2 (i+ 1)!

(
4−i
2

+ γ
)

i−1
2

2i+1 ( i+1
2

)!
(
−i+ 2n+ 1

2

)
i−1
2

(
−i+ 2n+ γ + 3

2

)
i+1
2

, i odd,

and therefore the 3F2(1) in (4.9) has the following reduction formula

(4.12)

3F2

(
j − 2n, j + 2n, j + γ + 1
j + 1

2
, 2j + 2γ + 3

∣∣∣∣ 1) =

(−1)n−
j
2 (2n− j)!

(
1
2
(j − 2n+ 3) + γ

)
n− j

2

22n−j
(
n− j

2

)
!
(
j + 1

2

)
n− j

2

(
j + γ + 3

2

)
n− j

2

, j even,

(−1)n−( j−3
2

)(−j + 2n+ 1)!
(
j
2
− n+ γ + 2

)
− j

2
+n− 1

2

22n−j+1
(
− j

2
+ n+ 1

2

)
!
(
j + 1

2

)
− j

2
+n− 1

2

(
j + γ + 3

2

)
− j

2
+n+ 1

2

, j odd.

The last reduction formula enables one to write the linearization formula (4.9) in the
form

T 2
n(x) =

1

2
+

√
π n Γ

(
γ + 3

2

)
22γ+2 Γ(γ + 1)

×

{ n∑
m=0

(−1)m+n(m+ n− 1)! Γ(2m+ 2 γ + 2)

(2m)! (n−m)! Γ
(
m− n+ γ + 3

2

)
Γ
(
m+ n+ γ + 3

2

)R(γ,γ+1)
2m (x)

+

n−1∑
m=0

(−1)m+n+1 (m+ n)! Γ(2m+ 2γ + 3)

(2m+ 1)! (n−m− 1)! Γ
(
m− n+ γ + 5

2

)
Γ
(
m+ n+ γ + 5

2

) ×
R

(γ,γ+1)
2m+1 (x)

}
.

Corollary 4.5 is now proved. �

4.6. Remark. It is worthy to note here that the exact solution (4.11) of the recurrence
relation (4.10) can be obtained with the aid of any suitable symbolic algorithm. The



175

algorithms of Petkovsek (see, Koepf [21]), or the improved version of van Hoeij [31] may
be employed for this purpose.
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