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Conformal anti-invariant submersions from
cosymplectic manifolds

Mehmet Akif Akyol∗

Abstract

We introduce conformal anti-invariant submersions from cosymplectic
manifolds onto Riemannian manifolds. We give an example of a con-
formal anti-invariant submersion such that characteristic vector �eld ξ
is vertical. We investigate the geometry of foliations which are arisen
from the de�nition of a conformal submersion and show that the total
manifold has certain product structures. Moreover, we examine neces-
sary and su�cient conditions for a conformal anti-invariant submersion
to be totally geodesic and check the harmonicity of such submersions.
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1. Introduction

Immersions and submersions, which are special tools in di�erential geometry, also
play a fundamental role in Riemannian geometry, especially when the involved manifolds
carry an additional structure (such as contact, Hermitian and product structure). In
particular, Riemannian submersions (which we always assume to have connected �bers)
are fundamentally important in several areas of Riemannian geometry. For instance, it
is a classical and important problem in Riemannian geometry to construct Riemannian
manifolds with positive or non-negative sectional curvature.

The theory of Riemannian submersions between Riemannian manifold was initiated
by O'Neill [23] and Gray [17]. In [33], the Riemannian submersions were considered
between almost Hermitian manifolds by Watson under the name of almost Hermitian
submersions. In this case, the Riemannian submersion is also an almost complex mapping
and consequently the vertical and horizontal distributions are invariant with respect to
the almost complex structure of the total manifold of the submersion. The study of anti-
invariant Riemannian submersions from almost Hermitian manifolds were initiated by
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�ahin [27]. In this case, the �bres are anti-invariant with respect to the almost complex
structure of the total manifold. There are many other notions related to anti-invariant
Riemannian submersions, (see also: [16], [19], [26], [28], [29], [30], [31], [32]). Recently,
Murathan and Erken [7] extended this notion to the case when the total manifold is
cosymplectic manifold. There are some other recent paper which involve other structures
such as almost contact [1, 20] and Sasakian [8].

On the other hand, as a generalization of Riemannian submersion, horizontally con-
formal submersions are de�ned as follows [6]: Suppose that (M, gM ) and (B, gB) are
Riemannian manifolds and F : M −→ B is a smooth submersion, then F is called a
horizontally conformal submersion, if there is a positive function λ such that

λ2gM (X,Y ) = gB(F∗X,F∗Y )

for every X,Y ∈ Γ((kerF∗)
⊥). It is obvious that every Riemannian submersion is a

particular horizontally conformal submersion with λ = 1. We note that horizontally
conformal submersions are special horizontally conformal maps which were introduced
independently by Fuglede [12] and Ishihara [18]. We also note that a horizontally con-
formal submersion F : M −→ B is said to be horizontally homothetic if the gradient of
its dilation λ is vertical, i.e.,

(1.1) H(gradλ) = 0

at p ∈ M , where H is the projection on the horizontal space (kerF∗)
⊥. For conformal

submersion, see [6], [14], [24].
One can see that Riemannian submersions are very special maps comparing with

conformal submersions. Although conformal maps do not preserve distance between
points contrary to isometries, they preserve angles between vector �elds. This property
enables one to transfer certain properties of a manifold to another manifold by deforming
such properties.

As a generalization of holomorphic submersions, conformal holomorphic submersions
were studied by Gudmundsson and Wood [15]. They obtained necessary and su�cient
conditions for conformal holomorphic submersions to be a harmonic morphism, see also
[9], [10] and [11] for the harmonicity of conformal holomorphic submersions.

Recently, In [2] we have introduced conformal anti-invariant submersions and [3] con-
formal semi-invariant submersions from almost Hermitian manifolds onto Riemannian
manifolds and investigated the geometry of such submersions. We showed that the ge-
ometry of such submersions are di�erent from anti-invariant Riemannian submersions.
In this paper, we consider conformal anti-invariant submersions from cosymplectic mani-
folds. The paper is organized as follows. In section 2, we present some background about
conformal submersions needed for this paper. In section 3, we mention about cosym-
plectic manifolds. In section 4, we introduce conformal anti-invariant submersions from
cosymplectic manifolds. We give an example of a conformal anti-invariant submersion
such that characteristic vector �eld ξ is vertical. We also investigate the geometry of
foliations which are arisen from the de�nition of a conformal submersion and show that
the total manifold has certain product structures. In the last section, we obtain necessary
and su�cient conditions for a conformal anti-invariant submersion to be totally geodesic
and check the harmonicity of such submersions.

2. Conformal Submersions

In this section, we recall the notion of (horizontally) conformal submersions between
Riemannian manifolds and give a brief review of basic facts of (horizontally) conformal
submersions. Conformal submersions belong to a wide class of conformal maps that we
are going to recall their de�nition, but we will not study such maps in this paper.
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2.1. De�nition. ([6]) Let ϕ : (Mm, g) −→ (Nn, h) be a smooth map between Riemann-
ian manifolds, and let x ∈ M . Then ϕ is called horizontally weakly conformal or semi
conformal at x if either

(i) dϕx = 0, or
(ii) dϕx maps horizontal space Hx = (ker(dϕx))⊥ conformally onto Tϕ(x)N , i.e.,

dϕx is surjective and there exists a number Λ(x) 6= 0 such that

(2.1) h(dϕxX, dϕxY ) = Λ(x)g(X,Y ) (X,Y ∈ Hx).

Note that we can write the last equation more su�ciently as

(ϕ∗h)x |Hx×Hx= Λ(x)gx |Hx×Hx .

A point x is of type (i) in De�nition if and only if it is a critical point of ϕ; we shall call a
point of type (ii) a regular point. At a critical point, dϕx has rank 0; at a regular point,
dϕx has rank n and ϕ is submersion. The number Λ(x) is called the square dilation (of ϕ

at x); it is necessarily non-negative; its square root λ(x) =
√

Λ(x) is called the dilation
(of ϕ at x). The map ϕ is called horizontally weakly conformal or semi conformal (on
M) if it is horizontally weakly conformal at every point of M . It is clear that if ϕ has no
critical points, then we call it a (horizontally) conformal submersion.

Next, we recall the following de�nition from [14]. Let π : M −→ N be a submersion.
A vector �eld E on M is said to be projectable if there exists a vector �eld Ě on N ,
such that dπ(Ex) = Ěπ(x) for all x ∈M . In this case E and Ě are called π− related. A
horizontal vector �eld Y on (M, g) is called basic, if it is projectable. It is well known
fact, that is Ž is a vector �eld on N , then there exists a unique basic vector �eld Z on
M , such that Z and Ž are π− related. The vector �eld Z is called the horizontal lift of
Ž.

The fundamental tensors of a submersion were introduced in [23]. They play a similar
role to that of the second fundamental form of an immersion. More precisely, O'Neill's
tensors T and A de�ned for vector �elds E,F on M by

(2.2) AEF = V∇HEHF + H∇HEVF

(2.3) TEF = H∇VEVF + V∇VEHF

where V and H are the vertical and horizontal projections (see [13]). On the other hand,
from (2.2) and (2.3), we have

(2.4) ∇VW = TVW + ∇̂VW
(2.5) ∇VX = H∇VX + TVX

(2.6) ∇XV = AXV + V∇XV
(2.7) ∇XY = H∇XY +AXY

for X,Y ∈ Γ((kerF∗)
⊥) and V,W ∈ Γ(kerF∗), where ∇̂VW = V∇VW . If X is basic,

then H∇VX = AXV . It is easily seen that for x ∈ M , X ∈ Hx and V ∈ Vx the linear
operators TV , AX : TxM −→ TxM are skew-symmetric, that is

g(TV E,G) = −g(E, TVG) and g(AXE,G) = −g(E,AXG)

for all E,G ∈ TxM . We also see that the restriction of T to the vertical distribution
T |kerπ∗×kerπ∗ is exactly the second fundamental form of the �bres of π. Since TV skew-
symmetric we get: π has totally geodesic �bres if and only if T ≡ 0. For the special case
when π is horizontally conformal we have the following:

2.2. Proposition. ([14]) Let π : (Mm, g) −→ (Nn, h) be a horizontally conformal sub-
mersion with dilation λ and X,Y be horizontal vectors, then

(2.8) AXY =
1

2
{V[X,Y ]− λ2g(X,Y )gradV(

1

λ2
)}.



180

We see that the skew-symmetric part of A |(kerπ∗)⊥×(kerπ∗)⊥ measures the obstruction
integrability of the horizontal distribution kerπ∗.

We recall the notion of harmonic maps between Riemannian manifolds. Let (M, gM )
and (N, gN ) be Riemannian manifolds and suppose that π : M −→ N is a smooth
map between them. Then the di�erential of π∗ of π can be viewed a section of the
bundle Hom(TM, π−1TN) −→M , where π−1TN is the pullback bundle which has �bres
(π−1TN)p =Tπ(p)N , p ∈ M . Hom(TM, π−1TN) has a connection ∇ induced from the

Levi-Civita connection ∇M and the pullback connection. Then the second fundamental
form of π is given by

(2.9) (∇π∗)(X,Y ) = ∇πXπ∗Y − π∗(∇MX Y )

for X,Y ∈ Γ(TM), where ∇π is the pullback connection. It is known that the second
fundamental form is symmetric. We recall the following lemma from [6].

2.3. Lemma. Suppose that π : M −→ N is a horizontally conformal submersion. Then,
for any horizontal vector �elds X,Y and vertical vector �elds V,W we have

(i) (∇π∗)(X,Y ) = X(lnλ)π∗Y + Y (lnλ)π∗X − g(X,Y )π∗(grad lnλ);
(ii) (∇π∗)(V,W ) = −π∗(TVW );
(iii) (∇π∗)(X,V ) = −π∗(∇MX V ) = −π∗(AXV ).

Let g be a Riemannian metric tensor on the manifold M = M1×M2 and assume that
the canonical foliations DM1 and DM2 intersect perpendicularly everywhere. Then g is
the metric tensor of a usual product of Riemannian manifolds if and only if DM1 and
DM2 are totally geodesic foliations [25].

3. Cosymplectic Manifolds

A (2m + 1)-dimensional C∞-manifold M said to have an almost contact structure if
there exist on M a tensor �eld ϕ of type (1,1), a vector �eld ξ and 1-form η satisfying:

(3.1) ϕ2 = −I + η ⊗ ξ, ϕξ = 0, ηoϕ = 0, η(ξ) = 1.

There always exists a Riemannian metric g on an almost contact manifold M satisfying
the following conditions

(3.2) g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ), η(X) = g(X, ξ)

where X,Y are vector �elds on M.
An almost contact structure (ϕ, ξ, η) is said to be normal if the almost complex struc-

ture J on the product manifold M × R is given by

J(X, f
d

dt
) = (ϕX − fξ, η(X)

d

dt
),

where f is a C∞-function onM ×R has no torsion i.e., J is integrable. The condition for
normality in terms of ϕ, ξ and η is [ϕ,ϕ]+2dη⊗ξ = 0 onM, where [ϕ,ϕ] is the Nijenhuis
tensor of ϕ. Finally, the fundamental two-form Φ is de�ned Φ(X,Y ) = g(X,ϕY ).

An almost contact metric structure (ϕ, ξ, η, g) is said to be cosymplectic, if it is normal
and both Φ and η are closed ([4], [5], [21]), and the structure equation of a cosymplectic
manifold is given by

(3.3) (∇Xϕ)Y = 0

for any X,Y tangent to M, where ∇ denotes the Riemannian connection of the metric g
on M. Moreover, for cosymplectic manifold

(3.4) ∇Xξ = 0.
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The canonical example of cosymplectic manifold is given by the product B2n×R Kaehler
manifold B2n(J, g) with the R real line. Now we will introduce a well known coymplectic
manifold example of R2n+1.

3.1. Example. ([22], [7]) We consider R2n+1 with Cartesian coordinates (xi, yi, z)(i =
1, ..., n) and its usual contact form

η = dz.

The characteristic vector �eld ξ is given by ∂
∂z

and its Riemannian metric g and tensor
�eld ϕ are given by

g =

n∑
i=1

((dxi)
2 + (dyi)

2) + (dz)2, ϕ =

 0 δij 0
−δij 0 0

0 0 0

 , i = 1, ..., n.

This gives a cosymplectic manifold on R2n+1. The vector �elds ei = ∂
∂yi

, en+i = ∂
∂xi

, ξ

form a ϕ-basis for the cosymplectic structure. On the other hand, it can be shown that
R2n+1(ϕ, ξ, η, g) is a cosymplectic manifold.

4. Conformal anti-invariant submersions from cosymplectic mani-

folds

In this section, we de�ne conformal anti-invariant submersions from cosymplectic man-
ifolds onto Riemannian manifolds and investigate the integrability of distributions and
obtain a necessary and su�cient condition for such submersions to be totally geodesic
map. We also investigate the harmonicity of such submersions.

4.1. De�nition. Let M(ϕ, ξ, η, gM ) be a cosymplectic manifold and (N, gN ) be a Rie-
mannian manifold. A horizontally conformal submersion F : M −→ N is called a
conformal anti-invariant submersion if kerF∗ is anti-invariant with respect to ϕ, i.e.,
ϕ(kerF∗) ⊂ (kerF∗)

⊥.

Now, we assume that F : M(ϕ, ξ, η, gM ) −→ (N, gN ) be a conformal anti-invariant
submersion from a cosymplectic manifoldM(ϕ, ξ, η, gM ) to a Riemannian manifold (N, gN ).
First of all, from De�nition 4.1, we have ϕ(kerF∗)

⊥ ∩ kerF∗ 6= 0. We denote the comple-
mentary orthogonal distribution to ϕ(kerF∗) in (kerF∗)

⊥ by µ. Then we have

(4.1) (kerF∗)
⊥ = ϕ(kerF∗)⊕ µ.

It is easy to see that µ is an invariant distribution of (kerF∗)
⊥, under the endomorphism

ϕ. Thus, for X ∈ Γ((kerF∗)
⊥), we have

(4.2) ϕX = BX + CX,

where BX ∈ Γ(kerF∗) and CX ∈ Γ(µ). On the other hand, since F∗((kerF∗)
⊥) = TN

and F is a conformal submersion, using (4.2) we derive 1
λ2 gN (F∗ϕV, F∗CX) = 0 for any

X ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗), which implies that

(4.3) TN = F∗(ϕkerF∗)⊕ F∗(µ).

The proof of the following result is exactly same the proof of Theorem 1([7]), therefore
we omit its proof.

4.2. Theorem. Let M(ϕ, ξ, η, gM ) be a cosymplectic manifold of dimension 2m + 1
and (N, gN ) be a Riemannian manifold of dimension n. Let F : M(ϕ, ξ, η, gM ) −→
N be a conformal anti-invariant submersion such that ϕkerF∗ = (kerF∗)

⊥. Then the
characteristic vector �eld ξ is vertical and m = n.

4.3. Remark. In this paper, we suppose that the characteristic vector �eld ξ is vertical.
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Now we give the following examples.

4.4. Example. Every anti-invariant Riemannian submersion from cosymplectic manifold
onto Riemannian manifold is a conformal anti-invariant submersion from cosymplectic
manifold onto Riemannian manifold with λ = I, where I is the identity function [7].

4.5. Example. R5 has got a cosymplectic structure as in Example 1.
Consider the following submersion given by

F : R5 −→ R2

(x1, x2, y1, y2, z) ( e
x1 sin y2√

2
, e

x1 cos y2√
2

).

Then it follows that

kerF∗ = span{Z1 = ∂x2, Z2 = ∂y1, Z3 = ξ = ∂z}

and

(kerF∗)
⊥ = span{H1 =

ex1 sin y2√
2

∂x1 +
ex1 cos y2√

2
∂y2,

H2 =
ex1 cos y2√

2
∂x1 −

ex1 sin y2√
2

∂y2}.

Then by direct computations ϕZ1 =
√

2(e−x1 sin y2H1 + e−x1 cos y2H2),

ϕZ2 =
√

2(−e−x1 cos y2H1+e−x1 sin y2H2) and ϕZ3 = 0 imply that ϕ(kerF∗) = (kerF∗)
⊥.

Also by direct computations, we get

F∗H1 =
(ex1)2

2
∂z1, F∗H2 =

(ex1)2

2
∂z2.

Hence, we have

g2(F∗H1, F∗H1) =
(ex1)2

2
g1(H1, H1), g2(F∗H2, F∗H2) =

(ex1)2

2
g1(H2, H2),

where g1 and g2 denote the standard metrics (inner products) of R5 and R2. Thus F is

a conformal anti-invariant submersion with λ = ex1√
2
.

For any X ∈ Γ((kerF∗)
⊥) and U ∈ Γ(kerF∗), from (3.1) and (4.2) we easily have

BCX = 0, η(BX) = 0, C
2X = −X − ϕBX,

C
3X + CX = 0, CϕU = 0, BϕU = −U + η(U)ξ.

4.6. Lemma. Let F be a conformal anti-invariant submersion from a cosymplectic man-
ifold M(ϕ, ξ, η, gM ) onto a Riemannian manifold (N, gN ). Then we have

(4.4) gM (CY, ϕV ) = 0,

(4.5) gM (∇XCY, ϕV ) = −gM (CY, ϕAXV ),

(4.6) TV ξ = 0,

(4.7) AXξ = 0

for any X,Y ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗).

Proof. For Y ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗), using (3.2), we have

gM (CY, ϕV )=gM (ϕY −BY, ϕV )=gM (ϕY, ϕV )=gM (Y, V )− η(Y )η(V )=gM (Y, V )=0,
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due to BY, ξ ∈ Γ(kerF∗) and ϕV ∈ Γ((kerF∗)
⊥). Di�erentiating (4.4) with respect to

X and using (2.6), we get

gM (∇XCY, ϕV ) = −gM (CY,∇XϕV )

= −gM (CY, (∇Xϕ)V )− gM (CY, ϕ(∇XV ))

= −gM (CY, ϕ(∇XV ))

= −gM (CY, ϕAXV )− gM (CY, ϕV∇XV )

= −gM (CY, ϕAXV )

due to ϕV∇XV ∈ Γ(ϕkerF∗). By virtue of (2.5) and (3.4), we get (4.6). Using (2.6) and
(3.4) we obtain (4.7). Our assertion is complete. �

4.7. Theorem. Let M(ϕ, ξ, η, gM ) be a cosymplectic manifold of dimension 2m+ 1 and
(N, gN ) be a Riemannian manifold of dimension n. Let F : M(ϕ, ξ, η, gM ) −→ N be a
conformal anti-invariant submersion. Then the �bres are not proper totally umbilical.

Proof. It is very similar to the proof of Theorem 4.10 ([7]), so we omit it. �

We now study the integrability of the distribution (kerF∗)
⊥ and then we investigate

the geometry of leaves of kerF∗ and (kerF∗)
⊥. We note that it is known that the

distribution kerF∗ is integrable.

4.8. Theorem. Let F be a conformal anti-invariant submersion from a cosymplectic
manifold M(ϕ, ξ, η, gM ) onto a Riemannian manifold (N, gN ). Then the following asser-
tions are equivalent to each other;

(a) (kerF∗)
⊥ is integrable,

(b)
1

λ2
gN (∇FY F∗CX −∇FXF∗CY, F∗ϕV ) = gM (AXBY −AY BX − CY (lnλ)X

+ CX(lnλ)Y − 2gM (CX,Y )Hgrad lnλ, ϕV )

for X,Y ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗).

Proof. For Y ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗), we see from De�nition 4.1, ϕV ∈

Γ((kerF∗)
⊥) and ϕY ∈ Γ(kerF∗ ⊕ µ). For X,Y ∈ Γ((kerF∗)

⊥) and ξ ∈ Γ(kerF∗),
from (3.4) we have gM ([X,Y ], ξ) = gM (∇XY, ξ) − gM (∇YX, ξ) = −gM (X,∇Y ξ) +
gM (Y,∇Xξ) = 0. Thus this case is trivial. Thus using (3.2) and (3.3), we note that
for X ∈ Γ((kerF∗)

⊥),

gM ([X,Y ], V ) = gM (∇XY, V )− gM (∇YX,V )

= gM (∇XϕY, ϕV )− gM (∇Y ϕX,ϕV ).

Then from (4.2), we get

gM ([X,Y ], V ) = gM (∇XBY, ϕV ) + gM (∇XCY, ϕV )− gM (∇Y BX,ϕV )

− gM (∇Y CX,ϕV ).

Since F is a conformal submersion, using (2.6) we arrive at

gM ([X,Y ], V ) = gM (AXBY −AYBX,ϕV ) +
1

λ2
gN (F∗(∇XCY ), F∗ϕV )

− 1

λ2
gN (F∗(∇Y CX), F∗ϕV ).
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Thus, from (2.9) and Lemma 2.3 we derive

gM ([X,Y ], V ) = gM (AXBY −AY BX,ϕV )− gM (Hgrad lnλ,X)gM (CY, ϕV )

−gM (Hgrad lnλ,CY )gM (X,ϕV )+gM (X,CY )gM (Hgrad lnλ, ϕV )

+
1

λ2
gN (∇FXF∗CY, F∗ϕV ) + gM (Hgrad lnλ, Y )gM (CX,ϕV )

+gM (Hgrad lnλ,CX)gM (Y, ϕV )−gM (Y,CX)gM (Hgrad lnλ, ϕV )

− 1

λ2
gN (∇FY F∗CX,F∗ϕV ).

Moreover, using (4.4), we obtain

gM ([X,Y ], V ) = gM (AXBY −AYBX − CY (lnλ)X + CX(lnλ)Y(4.8)

−2gM (CX,Y )Hgrad lnλ, ϕV )− 1

λ2
gN (∇FY F∗CX−∇FXF∗CY, F∗ϕV )

which proves (a)⇔ (b). �

From Theorem 4.8 we deduce the following which shows that a conformal anti-invariant
submersion with integrable (kerF∗)

⊥ turns out to be a horizontally homothetic submer-
sion.

4.9. Theorem. Let F be a conformal anti-invariant submersion from a cosymplectic
manifold M(ϕ, ξ, η, gM ) onto a Riemannian manifold (N, gN ). Then any two conditions
below imply the third;

(i) (kerF∗)
⊥ is integrable

(ii) F is a horizontally homothetic submersion

(iii) gN (∇FY F∗CX −∇FXF∗CY, F∗ϕV ) = λ2gM (AXBY −AY BX,ϕV )

for X,Y ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗).

Proof. From (4.8), we have

gM ([X,Y ], V ) = gM (AXBY −AY BX − CY (lnλ)X + CX(lnλ)Y(4.9)

−2gM (CX,Y )Hgrad lnλ, ϕV )− 1

λ2
gN (∇FY F∗CX−∇FXF∗CY, F∗ϕV )

for X,Y ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗). Now, if we have (i) and (iii), then we arrive

at

− gM (Hgrad lnλ,CY )gM (X,ϕV ) + gM (Hgrad lnλ,CX)gM (Y, ϕV )(4.10)

− 2gM (CX,Y )gM (Hgrad lnλ, ϕV ) = 0.

If we take V = ξ in (4.10) for ξ ∈ Γ(kerF∗), using (3.1), we get

− gM (Hgrad lnλ,CY )gM (X,ϕξ) + gM (Hgrad lnλ,CX)gM (Y, ϕξ)

− 2gM (CX,Y )gM (Hgrad lnλ, ϕξ) = 0.

Now, taking Y = ϕV in (4.10) for V ∈ Γ(kerF∗), using (3.2) and (4.4), we get

gM (Hgrad lnλ,CX)gM (ϕV, ϕV ) = 0.

Hence λ is a constant on Γ(µ). On the other hand, taking Y = CX in (4.10) for X ∈ Γ(µ)
and using (4.4) we derive

− gM (Hgrad lnλ,C2X)gM (X,ϕV ) + gM (Hgrad lnλ,CX)gM (CX,ϕV )

− 2gM (CX,CX)gM (Hgrad lnλ, ϕV ) = 0,

thus, we arrive at
2gM (CX,CX)gM (Hgrad lnλ, ϕV ) = 0.
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From above equation, λ is a constant on Γ(ϕkerF∗). Similarly, one can obtain the other
assertions. �

4.10. Remark. If ϕ(kerF∗) = (kerF∗)
⊥ then we get C = 0, and moreover (4.3) implies

that TN = F∗(ϕkerF∗).

Hence we have the following result.

4.11. Corollary. Let F be a conformal anti-invariant submersion from a cosymplectic
manifoldM(ϕ, ξ, η, gM ) onto a Riemannian manifold (N, gN ) with ϕ(kerF∗) = (kerF∗)

⊥.
Then the following assertions are equivalent to each other;

(i) (kerF∗)
⊥ is integrable.

(ii) (∇F∗)(X,ϕY ) = (∇F∗)(Y, ϕX)
(iii) AXϕY = AY ϕX

for X,Y ∈ Γ((kerF∗)
⊥).

For the geometry of leaves of the horizontal distribution, we have the following theo-
rem.

4.12. Theorem. Let F be a conformal anti-invariant submersion from a cosymplec-
tic manifold M(ϕ, ξ, η, gM ) onto a Riemannian manifold (N, gN ). Then the following
assertions are equivalent to each other;

(i) (kerF∗)
⊥ de�nes a totally geodesic foliation on M .

(ii) − 1

λ2
gN (∇FXF∗CY, F∗ϕV ) = gM (AXBY − CY (lnλ)X,ϕV )

+ gM (Hgrad lnλ, ϕV )gM (X,CY )

for X,Y ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗).

Proof. From (3.2) and (3.3) we obtain

gM (∇XY, V ) = gM (∇XϕY, ϕV )

for X,Y ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗). If we take V = ξ in above equation for

ξ ∈ Γ(kerF∗), then from (3.4) we have gM (∇XY, ξ) = −gM (Y,∇Xξ) = 0. Thus this case
is trivial. Now, Using (2.6), (2.7), (4.1) and (4.2), we get

gM (∇XY, V ) = gM (AXBY,ϕV ) + gM (H∇XCY, ϕV ).

Since F is a conformal submersion, using (2.9) and Lemma (2.3) we arrive at

gM (∇XY, V ) = gM (AXBY,ϕV )− 1

λ2
gM (Hgrad lnλ,X)gN (F∗CY, F∗ϕV )

− 1

λ2
gM (Hgrad lnλ,CY )gN (F∗X,F∗ϕV )

+
1

λ2
gM (X,CY )gN (F∗(Hgrad lnλ), F∗ϕV )

+
1

λ2
gN (∇FXF∗CY, F∗ϕV ).

Moreover, using De�niton 4.1 and (4.4) we obtain

gM (∇XY, V )=gM (AXBY −CY (lnλ)X,ϕV )+gM (Hgrad lnλ, ϕV )gM (X,CY )(4.11)

+
1

λ2
gN (∇FXF∗CY, F∗ϕV )

which proves (i)⇔ (ii). �

From Theorem 4.12, we also deduce the following characterization.
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4.13. Theorem. Let F be a conformal anti-invariant submersion from a cosymplectic
manifold M(ϕ, ξ, η, gM ) onto a Riemannian manifold (N, gN ). Then any two conditions
below imply the third;

(i) (kerF∗)
⊥ de�nes a totally geodesic foliation on M .

(ii) F is a horizontally homothetic submersion.

(iii) gN (∇FXF∗CY, F∗ϕV ) = λ2gM (AXϕV,BY )

for X,Y ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗).

Proof. For X,Y ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗), from (4.11), we have

gM (∇XY, V )=gM (AXBY −CY (lnλ)X,ϕV )+gM (Hgrad lnλ, ϕV )gM (X,CY )(4.12)

+
1

λ2
gN (∇FXF∗CY, F∗ϕV ).

Now, if we have (i) and (iii), then we obtain

(4.13) −gM (Hgrad lnλ,CY )gM (X,ϕV ) + gM (Hgrad lnλ, ϕV )gM (X,CY ) = 0.

If we take V = ξ in (4.13) for ξ ∈ Γ(kerF∗), using (3.1), we get

−gM (Hgrad lnλ,CY )gM (X,ϕξ) + gM (Hgrad lnλ, ϕξ)gM (X,CY ) = 0.

Now, taking X = CY in (4.13) and using (4.4), we get

gM (Hgrad lnλ, ϕV )gM (CY,CY ) = 0.

Thus, λ is a constant on Γ(ϕkerF∗). On the other hand, taking X = ϕV in (4.13) and
using (4.4) we derive

gM (Hgrad lnλ,CY )gM (ϕV, ϕV ) = 0.

From above equation, λ is a constant on Γ(µ). Similarly, one can obtain the other
assertions. �

In particular, if ϕ(kerF∗) = (kerF∗)
⊥ then we have the following result.

4.14. Corollary. Let F be a conformal anti-invariant submersion from a cosymplectic
manifoldM(ϕ, ξ, η, gM ) onto a Riemannian manifold (N, gN ) with ϕ(kerF∗) = (kerF∗)

⊥.
Then the following assertions are equivalent to each other;

(i) (kerF∗)
⊥ de�nes a totally geodesic foliation on M .

(ii) AXϕY = 0
(iii) (∇F∗)(X,ϕY ) = 0

for X,Y ∈ Γ((kerF∗)
⊥).

In the sequel we are going to investigate the geometry of leaves of the distribution
kerF∗.

4.15. Theorem. Let F be a conformal anti-invariant submersion from a cosymplec-
tic manifold M(ϕ, ξ, η, gM ) onto a Riemannian manifold (N, gN ). Then the following
assertions are equivalent to each other;

(i) kerF∗ de�nes a totally geodesic foliation on M .

(ii) − 1

λ2
gN (∇FϕWF∗ϕV, F∗ϕCX) = gM (TV ϕW,BX)

+ gM (Hgradlnλ,CX)gM (V,W )

for V,W ∈ Γ(kerF∗) and X ∈ Γ((kerF∗)
⊥).
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Proof. For X ∈ Γ((kerF∗)
⊥) and V,W ∈ Γ(kerF∗), gM (W, ξ) = 0 implies that from (3.4)

gM (∇VW, ξ) = −gM (W,∇V ξ) = 0. If we take W = ξ for ξ ∈ Γ(kerF∗), then from (3.4)
we have gM (∇V ξ,X) = 0. Thus this case is trivial. Thus using (3.2) and (3.3) we have

gM (∇VW,X) = gM (ϕ∇VW,ϕX) + η(∇VW )η(X)

= gM (∇V ϕW,ϕX).

Using (2.4) and (4.2) we have

gM (∇VW,X) = gM (TV ϕW,BX) + gM (H∇V ϕW,CX).

Since ∇ is torsion free and [V, ϕW ] ∈ Γ(kerF∗) we obtain

gM (∇VW,X) = gM (TV ϕW,BX) + gM (H∇ϕWV,CX).

Using (2.7) and (3.3) we have

gM (∇VW,X) = gM (TV ϕW,BX) + gM (ϕ∇ϕWV, ϕCX)

= gM (TV ϕW,BX) + gM (∇ϕWϕV, ϕCX),

here we have used that µ is invariant. Since F is a conformal submersion, using (2.9)
and Lemma 2.3 (i) we obtain

gM (∇VW,X) = gM (TV ϕW,BX)− 1

λ2
gM (Hgrad lnλ, ϕW )gN (F∗ϕV, F∗ϕCX)

− 1

λ2
gM (Hgrad lnλ, ϕV )gN (F∗ϕW,F∗ϕCX)

+ gM (ϕW,ϕV )
1

λ2
gN (F∗(Hgrad lnλ), F∗ϕCX)

+
1

λ2
gN (∇FϕWF∗ϕV, F∗ϕCX).

Moreover, using De�nition 4.1 and (4.4), we obtain

gM (∇VW,X) = gM (TV ϕW,BX)+gM (ϕW,ϕV )gM (Hgrad lnλ, ϕCX)

+
1

λ2
gN (∇FϕWF∗ϕV, F∗ϕCX)

which proves (i)⇔ (ii). �

From Theorem 4.15, we deduce the following result.

4.16. Theorem. Let F be a conformal anti-invariant submersion from a cosymplectic
manifold M(ϕ, ξ, η, gM ) onto a Riemannian manifold (N, gN ). Then any two conditions
below imply the third;

(i) kerF∗ de�nes a totally geodesic foliation on M.
(ii) λ is a constant on Γ(µ).
(iii) gN (∇FϕWF∗ϕV, F∗ϕCX) = λ2gM (TV BX,ϕW )

for V,W ∈ Γ(kerF∗) and X ∈ Γ((kerF∗)
⊥).

Proof. For V,W ∈ Γ(kerF∗) and X ∈ Γ((kerF∗)
⊥), from Theorem (4.15) we have

gM (∇VW,X) = gM (TV ϕW,BX)+gM (ϕW,ϕV )gM (Hgrad lnλ, ϕCX)

+
1

λ2
gN (∇FϕWF∗ϕV, F∗ϕCX).

Now, if we have (i) and (iii), then we obtain

gM (ϕW,ϕV )gM (Hgradlnλ, ϕCX) = 0.

If we take W = ξ in above equation for ξ ∈ Γ(kerF∗), using (3.1), we get

gM (ϕξ, ϕV )gM (Hgradlnλ, ϕCX) = 0.
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Hence, λ is a constant on Γ(ϕµ). Similarly, one can obtain the other assertions. �

In particular, if ϕ(kerF∗) = (kerF∗)
⊥ then we have the following result.

4.17. Corollary. Let F be a conformal anti-invariant submersion from a cosymplectic
manifoldM(ϕ, ξ, η, gM ) onto a Riemannian manifold (N, gN ) with (kerF∗)

⊥ = ϕ(kerF∗).
Then the following assertions are equivalent to each other;

(i) kerF∗ de�nes a totally geodesic foliation on M .
(ii) TV ϕW = 0

for V,W ∈ Γ(kerF∗) and X ∈ Γ((kerF∗)
⊥).

Using [25], Theorem 4.12 and Theorem 4.15 we will give the following decomposition
theorem for conformal anti-invariant submersions.

4.18. Theorem. Let F : M(ϕ, gM , ξ, η) −→ (N, gN ) be a conformal anti-invariant sub-
mersion, where M(ϕ, ξ, η, gM ) is a cosymplectic manifold and (N, gN ) is a Riemannian

manifold. Then the total space M is a locally product manifold of the leaves of (kerF∗)
⊥,

and kerF∗ i.e., M = M(kerF∗)⊥ ×MkerF∗ , if

− 1

λ2
gN (∇FXF∗CY, F∗ϕV ) = gM (AXBY − CY (lnλ)X,ϕV )

+ gM (Hgrad lnλ, ϕV )gM (X,CY )

and

− 1

λ2
gN (∇FϕWF∗ϕV, F∗ϕCX) = gM (TV ϕW,BX)

+ gM (Hgradlnλ,CX)gM (V,W )

for V,W ∈ Γ(kerF∗) and X,Y ∈ Γ((kerF∗)
⊥), where M(kerF∗)⊥ and M(kerF∗) are inte-

gral manifolds of the distributions (kerF∗)
⊥ and (kerF∗). Conversely, if M is a locally

product manifold of the form M(kerF∗)⊥ ×M(kerF∗) then we have

1

λ2
gN (∇FXF∗CY, F∗ϕV ) = CY (lnλ)gM (X,ϕV )

− gM (Hgrad lnλ, ϕV )gM (X,CY )

and

− 1

λ2
gN (∇FϕWF∗ϕV, F∗ϕCX) = gM (Hgradlnλ,CX)gM (V,W ).

From Corollary 4.14 and Corollary 4.17, we have the following theorem.

4.19. Theorem. Let F : M(ϕ, ξ, η, gM ) −→ (N, gN ) be a conformal anti-invariant sub-

mersion with ϕkerF∗ = (kerF∗)
⊥, where M(ϕ, ξ, η, gM ) is a cosymplectic manifold and

(N, gN ) is a Riemannian manifold. Then the total space M is a locally product manifold

if TV ϕW = 0 and AXϕY = 0 for X,Y ∈ Γ((kerF∗)
⊥) and V,W ∈ Γ(kerF∗).

5. Totally Geodesicness and Harmonicity of The conformal anti-

invariant submersions

In this section, we shall examine the totally geodesicness and harmonicity of a con-
formal anti-invariant submersion. First we give a necessary and su�cient condition for
a conformal anti-invariant submersion to be totally geodesic map. Recall that a smooth
map F between two Riemannian manifolds is called totally geodesic if ∇F∗ = 0 [6].
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5.1. Theorem. Let F : M(ϕ, ξ, η, gM ) −→ (N, gN ) be a conformal anti-invariant sub-
mersion, where M(ϕ, ξ, η, gM ) is a cosymplectic manifold and (N, gN ) is a Riemannian
manifold. Then F is a totally geodesic map if and only if

−∇FXF∗Y2 = F∗(ϕ(AXϕY1 + V∇XBY2 +AXCY2)

+ C(H∇XϕY1 +AXBY2 + H∇XCY2))(5.1)

and

TUϕY1+∇̂UBY2+TUCY2 = 0, TUBY2+H∇UϕY1+H∇UCY2 ∈ Γ(ϕkerF∗)(5.2)

for any X ∈ Γ((kerF∗)
⊥), U ∈ Γ(kerF∗) and Y = Y1 + Y2 ∈ Γ(TM), where Y1 ∈

Γ(kerF∗) and Y2 ∈ Γ((kerF∗)
⊥).

Proof. By virtue of (2.9) and (3.3) we have

(∇F∗)(X,Y ) = ∇FXF∗Y − F∗(∇XY )

= ∇FXF∗Y + F∗(ϕ∇XϕY )

for any X ∈ Γ((kerF∗)
⊥) and Y ∈ Γ(TM). Then from (2.6), (2.7) and (4.2) we get

(∇F∗)(X,Y ) = ∇FXF∗Y + F∗(ϕAXϕY1 + BH∇XϕY1 + CH∇XϕY1 + BAXBY2

+ CAXBY2 + ϕV∇XBY2 + ϕAXCY2 + BH∇XCY2 + CH∇XCY2)

for any Y = Y1 +Y2 ∈ Γ(TM), where Y1 ∈ Γ(kerF∗) and Y2 ∈ Γ((kerF∗)
⊥). Thus taking

into account the vertical parts, we �nd

(∇F∗)(X,Y ) = ∇FXF∗Y2 + F∗(ϕ(AXϕY1 + V∇XBY2 +AXCY2)

+ C(H∇XϕY1 +AXBY2 + H∇XCY2)).

Thus (∇F∗)(X,Y ) = 0 if and only if the equation (5.1) is satis�ed.
Now, for any U ∈ Γ(kerF∗) and Y ∈ Γ(TM), from (2.9) and (3.3) we have

(∇F∗)(U, Y ) = ∇FUF∗Y − F∗(∇UY )

= F∗(ϕ∇UϕY ).

Then from (2.4), (2.5) and (4.2) we get

(∇F∗)(U, Y ) = F∗(ϕTUϕY1 + BH∇UϕY1 + CH∇UϕY1 + BTUBY2

+ CTUBY2 + ϕ∇̂UBY2 + ϕTUCY2 + BH∇UCY2 + CH∇UCY2)

for any Y = Y1 +Y2 ∈ Γ(TM), where Y1 ∈ Γ(kerF∗) and Y2 ∈ Γ((kerF∗)
⊥). Thus taking

into account the vertical parts, we �nd

(∇F∗)(U, Y ) = F∗(ϕ(TUϕY1 + ∇̂UBY2 + TUCY2)

+ C(TUBY2 + H∇UϕY1 + H∇UCY2)).

Thus (∇F∗)(U, Y ) = 0 if and only if the equation (5.2) is satis�ed. Hence proof is
complete. �

The following corollary comes from [4, Lemma 4.5.1, page 119], therefore we omit its
proof.

5.2. Corollary. Let F be a conformal anti-invariant submersion from a cosymplectic
manifold M(ϕ, ξ, η, gM ) to a Riemannian manifold (N, gN ). F totally geodesic map if
and only if

(a) TUϕV = 0 and H∇UϕV ∈ Γ(ϕkerF∗),
(b) F is a horizontally homotetic map,
(c) AZϕV = 0 and H∇ZϕV ∈ Γ(ϕkerF )
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for X,Y, Z ∈ Γ((kerF∗)
⊥) and U, V ∈ Γ(kerF∗).

Now, we examine the harmonicity of the conformal anti-invariant submersions. We
know that a smooth map F is harmonic if and only if trace(∇π∗) = 0 [6]. First, we give
the following Lemma.

5.3. Theorem. Let F : M2(m+r)+1(ϕ, ξ, η, gM ) −→ (Nm+2r, gN ) be a conformal anti-
invariant submersion with dim(µ) = 2r and dim(kerF∗) = m + 1, where M(ϕ, ξ, η, gM )
is a cosymplectic manifold and (N, gN ) is a Riemannian manifold. Then the tension �eld
τ of F is

τ(F ) = −mF∗(µkerF∗) + (2−m− 2r)F∗(grad lnλ)(5.3)

where µkerF∗ is the mean curvature vector �eld of the distribution of kerF∗.

Proof. Let {e1, ..., em, ϕe1, ..., ϕem, ξ, µ1, ..., µr, ϕµ1, ..., ϕµr} be orthonormal basis of Γ(TM)
such that {e1, ..., em, ξ} be orthonormal basis of Γ(kerF∗), {ϕe1, ..., ϕem} be orthonormal
basis of Γ(ϕkerF∗) and {µ1, ..., µr, ϕµ1, ..., ϕµr} be orthonormal basis of Γ(µ). Then the
trace of second fundamental form (restriction to kerF∗ × kerF∗) is given by

tracekerF∗∇F∗ =

m∑
i=1

(∇F∗)(ei, ei) + (∇F∗)(ξ, ξ).

Then using (2.9) and (4.6) we obtain

tracekerF∗∇F∗ = −mF∗(µkerF∗)− F∗(Tξξ).(5.4)

= −mF∗(µkerF∗).

In a similar way, we have

trace(kerF∗)
⊥
∇F∗ =

m∑
i=1

(∇F∗)(ϕei, ϕei) +

2r∑
i=1

(∇F∗)(µi, µi).

Using Lemma 2.3 we arrive at

trace(kerF∗)
⊥
∇F∗ =

m∑
i=1

2gM (grad lnλ, ϕei)F∗ϕei −mF∗(grad lnλ)

+

2r∑
i=1

2gM (grad lnλ, µi)F∗µi − 2rF∗(grad lnλ).

Since F is a conformal anti-invariant submersion, for p ∈ M and 1≤ i ≤m, 1≤h≤r
{ 1
λ(p)

F∗p(ϕei),
1

λ(p)
F∗p(µh)} is an orthonormal basis of TF (p)N we derive

trace(kerF∗)
⊥
∇F∗=

m∑
i=1

2gN (F∗(grad lnλ),
1

λ
F∗ϕei)

1

λ
F∗ϕei−mF∗(grad lnλ)

+

2r∑
i=1

2gN (F∗(grad lnλ),
1

λ
F∗µi)

1

λ
F∗µi − 2rF∗(grad lnλ)

= (2−m− 2r)F∗(grad lnλ).(5.5)

Then proof follows from (5.4) and (5.5). �

From Theorem 5.3 we deduce that:

5.4. Theorem. Let F : M2(m+r)+1(ϕ, ξ, η, gM ) −→ (N (m+2r), gN ) be a conformal anti-
invariant submersion, where M(ϕ, ξ, η, gM ) is a cosymplectic manifold and (N, gN ) is a
Riemannian manifold. Then any two conditions below imply the third:
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(i) F is harmonic
(ii) The �bres are minimal
(iii) F is a horizontally homothetic map.

Proof. From (5.3), we have

τ(F ) = −mF∗(µkerF∗) + (2−m− 2r)F∗(grad lnλ).

Now, if we have (i) and (iii) then the �bres are minimal. Similarly, one can obtain the
other assertions. �

We also have the following result.

5.5. Corollary. Let F : M2(m+r)+1(ϕ, ξ, η, gM ) −→ (N (m+2r), gN ) be a conformal anti-

invariant submersion, where M (2(m+r)+1)(ϕ, ξ, η, gM ) is a cosymplectic manifold and

(N (m+2r), gN ) is a Riemannian manifold. F is harmonic if and only if the �bres are
minimal and F is a horizontally homothetic map.
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