Centralizers and the maximum size of the pairwise noncommuting elements in finite groups

Seyyed Majid Jafarian Amiri* and Hojjat Rostami†

Abstract

In this article, we determine the structure of all nonabelian groups G such that G has the minimum number of the element centralizers among nonabelian groups of the same order. As an application of this result, we obtain the sharp lower bound for $\omega(G)$ in terms of the order of G where $\omega(G)$ is the maximum size of a set of the pairwise noncommuting elements of G.

Keywords: finite group, centralizer, CA-group.

2000 AMS Classification: 20D60

Received: 02.02.2016 Accepted: 14.07.2016 Doi: 10.15672/HJMS.20164519332

1. Introduction and main results

Throughout this paper G will be a finite group and $Z(G)$ will be its center. For a positive integer n, let Z_n and D_{2n} be the cyclic group of order n and the dihedral group of order $2n$, respectively. For a group G, we define $\text{Cent}(G) = \{C_G(x) : x \in G\}$ where $C_G(x)$ is the centralizer of the element x in G. It is clear that G is abelian if and only if $|\text{Cent}(G)| = 1$. Also it is easy to see that there is no group G with $|\text{Cent}(G)| = 2$ or 3.

Starting with Belcastro and Sherman [7], many authors have investigated the influence of $|\text{Cent}(G)|$ on the group G [see [1], [4], [6], [7], [17-21] and [27-29]]. In the present paper, we describe the structures of all groups having minimum number of centralizers among all nonabelian groups of the same order, that is:

*Department of Mathematics, Faculty of Sciences, University of Zanjan, P.O.Box 45371-38791, Zanjan, Iran
Email: sm_jafarian@znu.ac.ir

†Department of Mathematics, Faculty of Sciences, University of Zanjan, P.O.Box 45371-38791, Zanjan, Iran
Email: h.rostami991@gmail.com
1.1. Theorem. Let G be a nonabelian group of order n. If $|\text{Cent}(G)| \leq |\text{Cent}(H)|$ for all nonabelian groups H of order n, then one of the following holds:

1. G is nilpotent, $|\text{Cent}(G)| = p + 2$ and $\frac{\omega_G}{\omega(G)} \cong Z_p \times Z_p$ where p is the smallest prime such that p^3 divides n.
2. G is nonnilpotent, $|\text{Cent}(G)| = p^m + 2$ and $\frac{\omega_G}{\omega(G)} \cong (Z_p)^m \times Z_l$ where $l > 0$ and p^m is the smallest prime-power divisor of n such that $p^m - 1$ and n are not relatively prime.

The following corollary are immediate consequence of Theorem 1.1.

1.2. Corollary. Suppose that n is even and G is a nonabelian group of order n. If $|\text{Cent}(G)| \leq |\text{Cent}(H)|$ for all nonabelian groups H of order n, then $|\text{Cent}(G)| = 4$ or $p + 2$ where p is the smallest odd prime divisor of n and also $\frac{\omega_G}{\omega(G)}$ is isomorphic to one of the following groups:

\[Z_2 \times Z_2, Z_p \times Z_p, D_2p. \]

1.3. Remark. We notice that both conditions (1) and (2) of Theorem 1.1 may happen for some positive integer n. For example there exist two groups G_1 and G_2 of order 54 such that $|\text{Cent}(G_1)| = |\text{Cent}(G_2)| = 5$, $\frac{\omega_G}{\omega(G)} \cong Z_3 \times Z_3$ and $\frac{\omega_G}{\omega(G)} \cong D_6$.

There are interesting relations between centralizers and pairwise noncommuting elements in groups (see Proposition 2.5 and Lemma 2.6 of [1]). Let G be a finite nonabelian group and let X be a subset of pairwise noncommuting elements of G such that $|X| \geq |Y|$ for any other set of pairwise noncommuting elements Y in G. Then the subset X is said to have the maximum size, and this size is denoted by $\omega(G)$. Also $\omega(G)$ is the maximum clique size in the noncommuting graph of a finite group G. The noncommuting graph of a group G is defined as a graph whose $G \setminus Z(G)$ is the set of vertices and two vertices are joined if and only if they do not commute. By a famous result of Neumann [22] answering a question of Erdős, the finiteness of $\omega(G)$ is equivalent to the finiteness of the factor group $\frac{G}{\omega(G)}$ which follows that $|\text{Cent}(G)|$ is finite. Also, if G has a finite number of centralisers, then it is easy to see that $\omega(G)$ is finite. Various attempts have been made to find $\omega(G)$ for some groups G. Pyber [24] has proved that there exists a constant c such that $\frac{\omega_G}{\omega(G)} \leq c\omega(G)$. Chin [13] has obtained upper and lower bounds of $\omega(G)$ for extra-special groups G of odd order. Isaacs has shown that $\omega(G) = 2m + 1$ for any extra-special group G of order 2^{2m+1} (see page 40 of [11]). Brown in [9] and [10] has investigated $\omega(S_n)$ where S_n is the symmetric group on n letters. Also Bertram, Ballester-Bolinches and Cossey gave lower bounds for the maximum size of non-commuting sets for certain solvable groups [5]. Recently authors [17, 20] have determined all groups G with $\omega(G) = 5$ and obtained $\omega(G)$ for certain groups. Known upper bounds for this invariant were recently used to prove an important result in modular representation theory ([13]). In this article we determine the structure of nonabelian groups G of order n such that $\omega(G) \leq \omega(H)$ for all nonabelian groups H of order n.

1.4. Theorem. Let G be a nonabelian group of order n. If $\omega(G) \leq \omega(H)$ for all nonabelian groups H of order n, then one of the following holds:

1. G is nilpotent, $\omega(G) = p + 1$ and $\frac{\omega_G}{\omega(G)} \cong Z_p \times Z_p$ where p is the smallest prime such that p^3 divides n.
2. G is nonnilpotent, $\omega(G) = p^m + 1$ and $\frac{\omega_G}{\omega(G)} \cong (Z_p)^m \times Z_l$ where $l > 0$ and p^m is the smallest prime-power divisor of n such that $p^m - 1$ and n are not relatively prime.

Throughout this paper we will use usual notation which can be found in [25] and [15].
2. Proofs of the main results

The following lemmas are useful in the proof of the main theorem.

2.1. Lemma. Let \(G, G_1, \ldots, G_n \) be finite groups. Then

1. If \(H \leq G \), then \(|\text{Cent}(H)| \leq |\text{Cent}(G)|\);
2. If \(G = \prod_{i=1}^{n} G_i \), then \(|\text{Cent}(G)| = \prod_{i=1}^{n} |\text{Cent}(G_i)|\).

Proof. The proof is clear. \(\square \)

In Lemma 2.7 of [4], it was shown that if \(p \) is a prime, then \(|\text{Cent}(G)| \geq p + 2\) for all nonabelian \(p \)-groups \(G \) and the equality holds if and only if \(\frac{G}{\text{Z}(G)} \cong \mathbb{Z}_p \times \mathbb{Z}_p \). In the following we generalize this result for all nilpotent groups.

2.2. Lemma. Let \(G \) be a nilpotent group and \(p \) be a prime divisor of \(|G|\) such that a Sylow \(p \)-subgroup of \(G \) is nonabelian. Then \(|\text{Cent}(G)| \geq p + 2\) with equality if and only if \(\frac{G}{\text{Z}(G)} \cong \mathbb{Z}_p \times \mathbb{Z}_p \).

Proof. Suppose that \(P \) is a Sylow \(p \)-subgroup of \(G \). Then we have \(|\text{Cent}(G)| \geq |\text{Cent}(P)| \geq p + 2\) by Lemma 2.1.1 and Lemma 2.7 of [4], as wanted.

Now, assume that \(|\text{Cent}(G)| = p + 2\). Since \(G \) is nilpotent, each Sylow \(q \)-subgroup of \(G \) is abelian for each prime divisor \(q \neq p \) of \(|G|\) by Lemma 2.1.2. Consequently \(\frac{G}{\text{Z}(G)} \cong \mathbb{Z}_p \times \mathbb{Z}_p \) which is isomorphic to \(\mathbb{Z}_p \times \mathbb{Z}_p \) by Lemma 2.7 of [4]. The converse holds similarly. \(\square \)

Recall that a minimal nonnilpotent group is a nonnilpotent group whose proper subgroups are all nilpotent. In 1924, O. Schmidt [26] studied such groups. The following result plays an important role in the proof of Theorem 1.1.

2.3. Lemma. Let \(G \) be a minimal nonnilpotent group. Then \(\frac{G}{\text{Z}(G)} \) is Frobenius such that the Frobenius kernel is elementary abelian and the Frobenius complement is of prime order.

Proof. By Theorem 9.1.9 of [25], we have \(G = PQ \) where \(P \) is a unique Sylow \(p \)-subgroup of \(G \) and \(Q \) is a cyclic Sylow \(q \)-subgroup of \(G \) for some distinct primes \(p \) and \(q \). Also by Exercise 9.1.11 of [25], the Frattini subgroups of \(P \) and \(Q \) are contained in \(\text{Z}(G) \). It follows that \(\frac{P \text{Z}(G)}{\text{Z}(G)} \) is elementary and \(\frac{Q \text{Z}(G)}{\text{Z}(G)} \) is of order \(q \). Since all Sylow subgroups of \(\frac{G}{\text{Z}(G)} \) are abelian, Theorem 10.1.7 of [25] gives that \((\frac{G}{\text{Z}(G)})' \cap \text{Z}(\frac{G}{\text{Z}(G)}) = \{1\} \). Since \(P = [P, Q] \), we have \(\frac{P \text{Z}(G)}{\text{Z}(G)} \leq \frac{G \text{Z}(G)}{\text{Z}(G)} \) and so \(\text{Z}(\frac{G}{\text{Z}(G)}) \) is a \(q \)-group. On the other hand since \(G \) is not nilpotent, \(\text{Z}(\frac{G}{\text{Z}(G)}) = \{1\} \). Now it is easy to see that \(\frac{G}{\text{Z}(G)} \) is a Frobenius group. \(\square \)

2.4. Proposition. Let \(\frac{G}{\text{Z}(G)} = \frac{K}{\text{Z}(G)} \rtimes \frac{H}{\text{Z}(G)} \) be a Frobenius group such that \(H \) is abelian. If \(\text{Z}(G) < \text{Z}(K) \), then \(|\text{Cent}(G)| = |\text{Cent}(K)| + |\text{K}/\text{Z}(G)| + 1\) and if \(\text{Z}(G) = \text{Z}(K) \), then \(|\text{Cent}(G)| = |\text{Cent}(K)| + |\text{K}/\text{Z}(G)|\). Also \(\omega(G) = \omega(K) + |\text{K}/\text{Z}(G)|\).

Proof. See Proposition 3.1 of [18] and its proof. \(\square \)

Recall that a group \(G \) is a CA-group if the centralizer of every noncentral element of \(G \) is abelian. R. Schmidt [26] determined all CA-groups (see Theorem A of [14]). Now we are ready to prove the main result.

Proof of Theorem 1.1.

Suppose that \(G \) is a nilpotent group. Since \(G \) is not abelian, a Sylow \(q \)-subgroup of \(G \) is not abelian for some prime \(q \). It follows from Lemma 2.2 that \(|\text{Cent}(G)| \geq q + 2\).
But there exists a nonabelian group $H := Q \times Z_2^p$ of order n where Q is a nonabelian group of order q^m and we see that $|\text{Cent}(H)| = q + 2$. Since G has the minimum number of the element centralizer, we must have $|\text{Cent}(G)| = p + 2$ and p must be the smallest prime such that p^s divides n. Also $\frac{G}{\text{Z}(G)} \cong Z_p \times Z_p$ by Lemma 2.2, as wanted.

Now, assume that G is a nilpotent group of order n. Then there exist two prime divisors q and r of n such that q divides $r^k - 1$ for some positive integer k by Corollary 1 of [23]. We claim that if p^m is the smallest prime-power divisor of n such that $gcd(p^m - 1, n) \neq 1$, then $|\text{Cent}(G)| \geq p^m + 2$.

Since G is finite and nilpotent, G contains a minimal nonnilpotent subgroup M. It follows from Lemma 2.3 that $\frac{M}{\text{Z}(M)}$ is Frobenius with the kernel $\frac{K}{\text{Z}(M)}$ and the complement $\frac{H}{\text{Z}(M)}$. Note that $|\frac{K}{\text{Z}(M)}| = p_1$ and $|\frac{H}{\text{Z}(M)}| = p_2$ for some primes p_1 and p_2 such that $p_2 | p_1 - 1$. It follows from Proposition 2.4 that $|\text{Cent}(M)| \geq |\frac{K}{\text{Z}(M)}| + 2 = p_1 + 2$. Since M is a subgroup of G, we have $|\text{Cent}(G)| \geq |\text{Cent}(M)| \geq p_1 + 2$ which is equal or greater than $p^m + 2$ by hypothesis. This proves the claim. Now we want to find the structure of nonnilpotent groups G for which the equality occurs.

Assume that $|\text{Cent}(G)| = p^m + 2$. We shall prove that $\frac{G}{\text{Z}(G)} \cong (Z_p)^m \times Z_4$ for some positive integer t. By hypothesis and the previous paragraph, there is a subgroup G of M such that $\frac{M}{\text{Z}(M)}$ is Frobenius with the kernel $\frac{K}{\text{Z}(M)}$ of order p^m and the Frobenius complement $\frac{H}{\text{Z}(M)}$, which is cyclic of prime order. Since $|\frac{K}{\text{Z}(M)}| + |\text{Cent}(K)| \leq |\text{Cent}(G)|$ by Proposition 2.4 and $|\text{Cent}(M)| \leq |\text{Cent}(G)| = p^m + 2$, we have $|\text{Cent}(M)| = p^m + 2$ and $|\text{Cent}(K)| = 1$. It follows that K is abelian and so M is a CA-group by Theorem A (II) of [14]. Next, we show that G is a CA-group.

Since M is a CA-group, we have $p^m + 1$ is the maximum size of a set of pairwise non-commuting elements of M by Lemma 2.6 of [1] and so the maximum size of a set of pairwise non-commuting elements of G is at least $p^m + 1$. Since $|\text{Cent}(G)| = p^m + 2$, the maximum size of a set of pairwise non-commuting elements of G must be $p^m + 1$. Therefore G is a CA-group by Lemma 2.6 of [1]. Now we apply Theorem A of [14].

Note, first, that if 8 divides $|G| = n$, then by hypothesis $|\text{Cent}(G)| \leq |\text{Cent}(D_8 \times Z_2^p)| = 4$ and so $|\text{Cent}(G)| = 4$. Therefore $\frac{G}{\text{Z}(G)} \cong Z_2 \times Z_2$ by Fact 3 of [7] and so G is nilpotent, a contradiction. Hence 8 does not divide n and so $|\text{Cent}(G)| \geq 5$ by Fact 4 of [7]. Also if 6 divides n, then $|\text{Cent}(G)| \leq |\text{Cent}(D_6 \times Z_2^p)| = 5$ which implies $|\text{Cent}(G)| = 5$. Therefore $\frac{G}{\text{Z}(G)} \cong D_6$ by Fact [7] and so we have the result. Thus we may assume that 6 does not divide n. Now since G is not nilpotent, G satisfies (I), (II) or (III) of Theorem A of [14]. Therefore G has an abelian subgroup A of prime index r or $\frac{G}{\text{Z}(G)} = \frac{K}{\text{Z}(G)} \times \frac{A}{\text{Z}(G)}$ is a Frobenius group with the Frobenius kernel $\frac{K}{\text{Z}(G)}$ and the Frobenius complement $\frac{A}{\text{Z}(G)}$. In the first case, we have $|G'| = p^m$ by Theorem 2.3 of [6] and so $\frac{G}{\text{Z}(G)} = p^m r$ by Lemma 4 (page 303) of [8]. Consequently $\frac{G}{\text{Z}(G)} = \frac{A}{\text{Z}(G)} \times \frac{K}{\text{Z}(G)}$ where $|\frac{K}{\text{Z}(G)}| = r$ and $|\frac{A}{\text{Z}(G)}| = p^m$. By the property of p^m, the number of Sylow r-subgroup of $\frac{G}{\text{Z}(G)}$ is p^m and so $\frac{G}{\text{Z}(G)}$ is Frobenius. Again by the property of p^m, $\frac{A}{\text{Z}(G)}$ is characteristically simple which implies that it is elementary, as wanted.

In the second case, it follows from (II)-(III) of Theorem A of [14] that T is abelian and K is abelian or $K = QZ(G)$ where Q is a normal Sylow q-subgroup of G for some prime q. If K is abelian, then $Z(G) < Z(K)$ and so $|\text{Cent}(G)| = |\frac{K}{\text{Z}(G)}| + 2$ by Proposition 2.4. Therefore $|\frac{K}{\text{Z}(G)}| = p^m$. By the property of p^m, $\frac{K}{\text{Z}(G)}$ is elementary. On the other hand $\frac{T}{\text{Z}(G)}$ is cyclic by Corollary 6.17 of [15] and so we have the result.

If $K = QZ(G)$, then $|\frac{K}{\text{Z}(G)}| = q^n$ and since $\frac{G}{\text{Z}(G)}$ is Frobenius, we have $|\frac{T}{\text{Z}(G)}|$ divides $q^n - 1$. It follows that $p^m \leq q^n$ by hypothesis. On the other hand $p^m + 2 = |\text{Cent}(G)| \geq$
|\frac{|K|}{|Z(K)|}| + 2 by Proposition 2.4 and this implies that $p^m = q^n$. It follows from Proposition 2.4 that $|\text{Cent}(K)| = 1$ and K is abelian. The rest of the proof is similar to the previous case.

Proof of Theorem 1.4

The proof is similar to the previous theorem. If G is nilpotent, then $\omega(G) \geq p + 1$ where p is the smallest prime such that p^3 divides $|G|$ and the equality holds if and only if $G/Z(G) \cong Z_p \times Z_p$.

Now suppose that G is non-nilpotent. Then G contains a minimal non-nilpotent subgroup M and so $\frac{M}{Z(M)} = \frac{K}{Z(K)} \times \frac{H}{Z(M)}$ is Frobenius such that $|\frac{K}{Z(K)}| = p^m$ and $|\frac{H}{Z(M)}| = p_2$ by Lemma 2.3. Since H is abelian and has at least p^m conjugates in G, say $H = H_1, H_2, \ldots, H_{p^m}$, we see $\{x_1, \ldots, x_{p^m}\}$ is a subset of pairwise noncommuting elements of M where $x_i \in H_i \setminus \{1\}$. It follows that $\omega(G) \geq p^m + 1 \geq p^m + 1$. The remainder of the proof is similar to Theorem 1.1.

Acknowledgment. The authors would like to thank the referee for his/her careful reading and valuable comments.

References

