Centralizers and the maximum size of the pairwise noncommuting elements in finite groups

Seyyed Majid Jafarian Amiri* and Hojjat Rostami ${ }^{\dagger}$

Abstract

In this article, we determine the structure of all nonabelian groups G such that G has the minimum number of the element centralizers among nonabelian groups of the same order. As an application of this result, we obtain the sharp lower bound for $\omega(G)$ in terms of the order of G where $\omega(G)$ is the maximum size of a set of the pairwise noncommuting elements of G.

Keywords: finite group, centralizer, $C A$-group.
2000 AMS Classification: 20D60

Received: 02.02.2016 Accepted: 14.07.2016 Doi: 10.15672/HJMS.20164519332

1. Introduction and main results

Throughout this paper G will be a finite group and $Z(G)$ will be its center. For a positive integer n, let Z_{n} and $D_{2 n}$ be the cyclic group of order n and the dihedral group of order $2 n$, respectively. For a group G, we define $\operatorname{Cent}(G)=\left\{C_{G}(x): x \in G\right\}$ where $C_{G}(x)$ is the centralizer of the element x in G. It is clear that G is abelian if and only if $|\operatorname{Cent}(G)|=1$. Also it is easy to see that there is no group G with $|\operatorname{Cent}(G)|=2$ or 3 . Starting with Belcastro and Sherman [7], many authors have investigated the influence of $|\operatorname{Cent}(G)|$ on the group G (see [1], [4], [6], [7], [17-21] and [27-29]). In the present paper, we describe the structures of all groups having minimum number of centralizers among all nonabelian groups of the same order, that is:

[^0]1.1. Theorem. Let G be a nonabelian group of order n. If $|\operatorname{Cent}(G)| \leq|\operatorname{Cent}(H)|$ for all nonabelian groups H of order n, then one of the following holds:
(1) G is nilpotent, $|\operatorname{Cent}(G)|=p+2$ and $\frac{G}{Z(G)} \cong Z_{p} \times Z_{p}$ where p is the smallest prime such that p^{3} divides n.
(2) G is nonnilpotent, $|\operatorname{Cent}(G)|=p^{m}+2$ and $\frac{G}{Z(G)} \cong\left(Z_{p}\right)^{m} \rtimes Z_{l}$ where $l>0$ and p^{m} is the smallest prime-power divisor of n such that $p^{m}-1$ and n are not relatively prime.

The following corollary are immediate consequence of Theorem 1.1.
1.2. Corollary. Suppose that n is even and G is a nonabelian group of order n. If $|\operatorname{Cent}(G)| \leq|\operatorname{Cent}(H)|$ for all nonabelian groups H of order n, then $|\operatorname{Cent}(G)|=4$ or $p+2$ where p is the smallest odd prime divisor of n and also $\frac{G}{Z(G)}$ is isomorphic to one of the following groups:

$$
Z_{2} \times Z_{2}, Z_{p} \times Z_{p}, D_{2 p} .
$$

1.3. Remark. We notice that both conditions (1) and (2) of Theorem 1.1 may happen for some positive integer n. For example there exist two groups G_{1} and G_{2} of order 54 such that $\left|\operatorname{Cent}\left(G_{1}\right)\right|=\left|\operatorname{Cent}\left(G_{2}\right)\right|=5, \frac{G_{1}}{Z\left(G_{1}\right)} \cong Z_{3} \times Z_{3}$ and $\frac{G_{2}}{Z\left(G_{2}\right)} \cong D_{6}$.

There are interesting relations between centralizers and pairwise noncommuting elements in groups (see Proposition 2.5 and Lemma 2.6 of [1]). Let G be a finite nonabelian group and let X be a subset of pairwise noncommuting elements of G such that $|X| \geq|Y|$ for any other set of pairwise noncommuting elements Y in G. Then the subset X is said to have the maximum size, and this size is denoted by $\omega(G)$. Also $\omega(G)$ is the maximum clique size in the noncommuting graph of a finite group G. The noncommuting graph of a group G is defined as a graph whose $G \backslash Z(G)$ is the set of vertices and two vertices are joined if and only if they do not commute. By a famous result of Neumann [22] answering a question of Erdős, the finiteness of $\omega(G)$ is equivalent to the finiteness of the factor group $\frac{G}{Z(G)}$ which follows that $|\operatorname{Cent}(G)|$ is finite. Also, if G has a finite number of centralisers, then it is easy to see that $\omega(G)$ is finite. Various attempts have been made to find $\omega(G)$ for some groups G. Pyber [24] has proved that there exists a constant c such that $\left|\frac{G}{Z(G)}\right| \leq c^{\omega(G)}$. Chin [13] has obtained upper and lower bounds of $\omega(G)$ for extra-special groups G of odd order. Isaacs has shown that $\omega(G)=2 m+1$ for any extraspecial group G of order $2^{2 m+1}$ (see page 40 of [11]). Brown in [9] and [10] has investigated $\omega\left(S_{n}\right)$ where S_{n} is the symmetric group on n letters. Also Bertram, Ballester-Bolinches and Cossey gave lower bounds for the maximum size of non-commuting sets for certain solvable groups([5]). Recently authors [17, 20] have determined all groups G with $\omega(G)=5$ and obtained $\omega(G)$ for certain groups. Known upper bounds for this invariant were recently used to prove an important result in modular represention theory ([13]). In this article we determine the structure of nonabelian groups G of order n such that $\omega(G) \leq \omega(H)$ for all nonabelian groups H of order n.
1.4. Theorem. Let G be a nonabelian group of order n. If $\omega(G) \leq \omega(H)$ for all nonabelian groups H of order n, then one of the following holds:
(1) G is nilpotent, $\omega(G)=p+1$ and $\frac{G}{Z(G)} \cong Z_{p} \times Z_{p}$ where p is the smallest prime such that p^{3} divides n.
(2) G is nonnilpotent, $\omega(G)=p^{m}+1$ and $\frac{G}{Z(G)} \cong\left(Z_{p}\right)^{m} \rtimes Z_{l}$ where $l>0$ and p^{m} is the smallest prime-power divisor of n such that $p^{m}-1$ and n are not relatively prime.

Throughout this paper we will use usual notation which can be found in [25] and [15].

2. Proofs of the main results

The following lemmas are useful in the proof of the main theorem.

2.1. Lemma. Let G, G_{1}, \cdots, G_{n} be finite groups. Then

1. If $H \leq G$, then $|\operatorname{Cent}(H)| \leq|\operatorname{Cent}(G)|$;
2. If $G=\prod_{i=1}^{n} G_{i}$, then $|\operatorname{Cent}(G)|=\prod_{i=1}^{n}\left|\operatorname{Cent}\left(G_{i}\right)\right|$.

Proof. The proof is clear.
In Lemma 2.7 of [4], it was shown that if p is a prime, then $|\operatorname{Cent}(G)| \geq p+2$ for all nonabelian p-groups G and the equality holds if and only if $\frac{G}{Z(G)} \cong Z_{p} \times Z_{p}$. In the following we generalize this result for all nilpotent groups.
2.2. Lemma. Let G be a nilpotent group and p be a prime divisor of $|G|$ such that a Sylow p-subgroup of G is nonabelian. Then $|\operatorname{Cent}(G)| \geq p+2$ with equality if and only if $\frac{G}{Z(G)} \cong Z_{p} \times Z_{p}$.

Proof. Suppose that P is a Sylow p-subgroup of G. Then we have $|\operatorname{Cent}(G)| \geq|\operatorname{Cent}(P)| \geq$ $p+2$ by Lemma 2.1(1) and Lemma 2.7 of [4], as wanted.

Now, assume that $|\operatorname{Cent}(G)|=p+2$. Since G is nilpotent, each Sylow q-subgroup of G is abelian for each prime divisor $q \neq p$ of $|G|$ by Lemma 2.1(2). Consequently $\frac{G}{Z(G)} \cong \frac{P}{Z(P)}$ which is isomorphic to $Z_{p} \times Z_{p}$ by Lemma 2.7 of [4]. The converse holds similarly.

Recall that a minimal nonnilpotent group is a nonnilpotent group whose proper subgroups are all nilpotent. In 1924, O. Schmidt [26] studied such groups. The following result plays an important role in the proof of Theorem 1.1.
2.3. Lemma. Let G be a minimal nonnilpotent group. Then $\frac{G}{Z(G)}$ is Frobenius such that the Frobenius kernel is elementary abelian and the Frobenius complement is of prime order.

Proof. By Theorem 9.1.9 of [25], we have $G=P Q$ where P is a unique Sylow p-subgroup of G and Q is a cyclic Sylow q-subgroup of G for some distinct primes p and q. Also by Exercise 9.1 .11 of [25], the Frattini subgroups of P and Q are contained in $Z(G)$. It follows that $\frac{P Z(G)}{Z(G)}$ is elementary and $\frac{Q Z(G)}{Z(G)}$ is of order q. Since all Sylow subgroups of $\frac{G}{Z(G)}$ are abelian, Theorem 10.1.7 of [25] gives that $\left(\frac{G}{Z(G)}\right)^{\prime} \cap Z\left(\frac{G}{Z(G)}\right)=\overline{1}$. Since $P=[P, Q]$, we have $\frac{P Z(G)}{Z(G)} \leq \frac{G^{\prime} Z(G)}{Z(G)}$ and so $Z\left(\frac{G}{Z(G)}\right)$ is a q-group. On the other hand since G is not nilpotent, $Z\left(\frac{G}{Z(G)}\right)=\overline{1}$. Now it is easy to see that $\frac{G}{Z(G)}$ is a Frobenius group.
2.4. Proposition. Let $\frac{G}{Z(G)}=\frac{K}{Z(G)} \rtimes \frac{H}{Z(G)}$ be a Frobenius group such that H is abelian. If $Z(G)<Z(K)$, then $|\operatorname{Cent}(G)|=|\operatorname{Cent}(K)|+\left|\frac{K}{Z(G)}\right|+1$ and if $Z(G)=Z(K)$, then $|\operatorname{Cent}(G)|=|\operatorname{Cent}(K)|+\left|\frac{K}{Z(G)}\right|$. Also $\omega(G)=\omega(K)+\left|\frac{K}{Z(G)}\right|$.
Proof. See Proposition 3.1 of [18] and its proof.
Recall that a group G is a $C A$-group if the centralizer of every noncentral element of G is abelian. R. Schmidt [26] determined all $C A$-groups (see Theorem A of [14]). Now we are ready to prove the main result.

Proof of Theorem 1.1.

Suppose that G is a nilpotent group. Since G is not abelian, a Sylow q-subgroup of G is not abelian for some prime q. It follows from Lemma 2.2 that $|\operatorname{Cent}(G)| \geq q+2$.

But there exists a nonabelian group $H:=Q \times Z_{\frac{n}{q^{3}}}$ of order n where Q is a nonabelian group of order q^{3} and we see that $|\operatorname{Cent}(H)|=q+2$. Since G has the minimum number of the element centralizer, we must have $|\operatorname{Cent}(G)|=p+2$ and p must be the smallest prime such that p^{3} divides n. Also $\frac{G}{Z(G)} \cong Z_{p} \times Z_{p}$ by Lemma 2.2, as wanted.

Now, assume that G is a nonnilpotent group of order n. Then there exist two prime divisors q and r of n such that q divides $r^{k}-1$ for some positive integer k by Corollary 1 of [23]. We claim that if p^{m} is the smallest prime-power divisor of n such that $\operatorname{gcd}\left(p^{m}-\right.$ $1, n) \neq 1$, then $|\operatorname{Cent}(G)| \geq p^{m}+2$.

Since G is finite and nonnilpotent, G contains a minimal nonnilpotent subgroup M. It follows from Lemma 2.3 that $\frac{M}{Z(M)}$ is Frobenius with the kernel $\frac{K}{Z(M)}$ and the complement $\frac{H}{Z(M)}$. Note that $\left|\frac{K}{Z(M)}\right|=p_{1}^{t}$ and $\left|\frac{H}{Z(M)}\right|=p_{2}$ for some primes p_{1} and p_{2} such that $p_{2} \mid p_{1}^{t}-1$. It follows from Proposition 2.4 that $|\operatorname{Cent}(M)| \geq\left|\frac{K}{Z(M)}\right|+2=p_{1}^{t}+2$. Since M is a subgroup of G, we have $|\operatorname{Cent}(G)| \geq|\operatorname{Cent}(M)| \geq p_{1}^{t}+2$ which is equal or greater than $p^{m}+2$ by hypothesis. This proves the claim. Now we want to find the structure of nonnilpotent groups G for which the equality occurs.

Assume that $|\operatorname{Cent}(G)|=p^{m}+2$. We shall prove that $\frac{G}{Z(G)} \cong\left(Z_{p}\right)^{m} \rtimes Z_{l}$ for some positive integer l. By hypothesis and the previous paragraph, there is a subgroup M of G such that $\frac{M}{Z(M)}$ is Frobenius with the kernel $\frac{K}{Z(M)}$ of order p^{m} and the Frobenius complement $\frac{H}{Z(M)}$ which is cyclic of prime order. Since $\left|\frac{K}{Z(M)}\right|+|\operatorname{Cent}(K)| \leq|\operatorname{Cent}(M)|$ by Proposition 2.4 and $|\operatorname{Cent}(M)| \leq|\operatorname{Cent}(G)|=p^{m}+2$, we have $|\operatorname{Cent}(M)|=p^{m}+2$ and $|\operatorname{Cent}(K)|=1$. It follows that K is abelian and so M is a $C A$-group by Theorem A (II) of [14]. Next, we show that G is a $C A$-group.

Since M is a $C A$-group, we have $p^{m}+1$ is the maximum size of a set of pairwise non-commuting elements of M by Lemma 2.6 of [1] and so the maximum size of a set of pairwise non-commuting elements of G is at least $p^{m}+1$. Since $|\operatorname{Cent}(G)|=p^{m}+2$, the maximum size of a set of pairwise non-commuting elements of G must be $p^{m}+1$. Therefore G is $C A$-group by Lemma 2.6 of [1]. Now we apply Theorem A of [14].

Note, first, that if 8 divides $|G|=n$, then by hypothesis $|\operatorname{Cent}(G)| \leq \mid \operatorname{Cent}\left(D_{8} \times\right.$ $\left.Z_{\frac{n}{8}}\right) \mid=4$ and so $|\operatorname{Cent}(G)|=4$. Therefore $\frac{G}{Z(G)} \cong Z_{2} \times Z_{2}$ by Fact 3 of [7] and so G is nilpotent, a contradiction. Hence 8 does not divide n and so $|\operatorname{Cent}(G)| \geq 5$ by Fact 4 of [7]. Also if 6 divides n, then $|\operatorname{Cent}(G)| \leq\left|\operatorname{Cent}\left(D_{6} \times Z_{\frac{n}{6}}\right)\right|=5$ which implies $|\operatorname{Cent}(G)|=5$. Therefore $\frac{G}{Z(G)} \cong D_{6}$ by Fact [7] and so we have the result. Thus we may assume that 6 does not divide n. Now since G is not nilpotent, G satisfies (I), (II) or (III) of Theorem A of [14]. Therefore G has an abelian subgroup A of prime index r or $\frac{G}{Z(G)}=\frac{K}{Z(G)} \rtimes \frac{T}{Z(G)}$ is a Frobenius group with the Frobenius kernel $\frac{K}{Z(G)}$ and the Frobenius complement $\frac{T}{Z(G)}$. In the first case, we have $\left|G^{\prime}\right|=p^{m}$ by Theorem 2.3 of [6] and so $\left|\frac{G}{Z(G)}\right|=p^{m} r$ by Lemma 4 (page 303) of [8]. Consequently $\frac{G}{Z(G)}=\frac{A}{Z(G)} \rtimes \frac{L}{Z(G)}$ where $\left|\frac{L}{Z(G)}\right|=r$ and $\left|\frac{A}{Z(G)}\right|=p^{m}$. By the property of p^{m}, the number of Sylow r subgroup of $\frac{G}{Z(G)}$ is p^{m} and so $\frac{G}{Z(G)}$ is Frobenius. Again by the property of $p^{m}, \frac{A}{Z(G)}$ is characteristically simple which implies that it is elementary, as wanted.

In the second case, it follows from (II)-(III) of Theorem A of [14] that T is abelian and K is abelian or $K=Q Z(G)$ where Q is a normal Sylow q-subgroup of G for some prime q. If K is abelian, then $Z(G)<Z(K)$ and so $|\operatorname{Cent}(G)|=\left|\frac{K}{Z(G)}\right|+2$ by Proposition 2.4. Therefore $\left|\frac{K}{Z(G)}\right|=p^{m}$. By the property of $p^{m}, \frac{K}{Z(G)}$ is elementary. On the other hand $\frac{T}{Z(G)}$ is cyclic by Corollary 6.17 of [15] and so we have the result.

If $K=Q Z(G)$, then $\left|\frac{K}{Z(G)}\right|=q^{a}$ and since $\frac{G}{Z(G)}$ is Frobenius, we have $\left|\frac{T}{Z(G)}\right|$ divides $q^{a}-1$. It follows that $p^{m} \leq q^{a}$ by hypothesis. On the other hand $p^{m}+2=|\operatorname{Cent}(G)| \geq$
$\left|\frac{K}{Z(G)}\right|+2$ by Proposition 2.4 and this implies that $p^{m}=q^{a}$. It follows from Proposition 2.4 that $|\operatorname{Cent}(K)|=1$ and K is abelian. The rest of the proof is similar to the previous case.

Proof of Theorem 1.4

The proof is similar to the previous theorem. If G is nilpotent, then $\omega(G) \geq p+1$ where p is the smallest prime such that p^{3} divides $|G|$ and the equality holds if and only if $\frac{G}{Z(G)} \cong Z_{p} \times Z_{p}$.

Now suppose that G is nonnilpotent. Then G contains a minimal nonnilpotent subgroup M and so $\frac{M}{Z(M)}=\frac{K}{Z(M)} \rtimes \frac{H}{Z(M)}$ is Frobenius such that $\left|\frac{K}{Z(M)}\right|=p_{1}^{m}$ and $\left|\frac{H}{Z(M)}\right|=p_{2}$ by Lemma 2.3. Since H is abelian and has at least p_{1}^{m} conjugates in G, say $H=H_{1}, H_{2}, \cdots, H_{p_{1}^{m}}$, we see $\left\{x_{1}, \cdots, x_{p_{1}^{m}}\right\}$ is a subset of pairwise noncommuting elements of M where $x_{i} \in H_{i} \backslash\{1\}$. It follows that $\omega(G) \geq p_{1}^{m}+1 \geq p^{m}+1$. The remainder of the proof is similar to Theorem 1.1.

Acknowledgment. The authors would like to thank the referee for his/her careful reading and valuable comments.

References

[1] A. Abdollahi, S. M. Jafarian. Amiri and A. M. Hassanabadi, Groups with specific number of centralizers, Houston J. Math. 33(1) (2007), 43-57.
[2] A. Abdollahi, S. Akbari and H. R. Maimani, Non-commuting graph of a group, J. Algbera 298 (2) (2006), 468-492.
[3] A. Abdollahi, A. Azad, A. Mohamadi Hasanabadi and M. Zarrin, On the clique numbers of non-commuting graphs of certain groups, Algebra Colloq, 17(4) (2010), 611-620.
[4] A. R. Ashrafi, On finite groups with a given number of centralizers, Algebra Colloq. 7(2) (2000), 139-146.
[5] A. Ballester-Bolinches and J. Cossey, On non-commuting sets in finite soluble CC-groups, Publ. Mat. 56 (2012), 467-471
[6] S. J. Baishya, On finite groups with specific number of centralizers, International Electronic Journal of Algebra, 13(2013), 53-62.
[7] S. M. Belcastro and G. J. Sherman, Counting centralizers in finite groups, Math. Mag. 5 (1994), 111-114.
[8] Y. G. Berkovich and E. M. Zhmu'd, Characters of Finite Groups, Part 1, Transl. Math. Monographs 172, Amer. Math. Soc., Providence. RI, 1998.
[9] R. Brown, Minimal covers of S_{n} by abelian subgroups and maximal subsets of pairwise noncommuting elements, J. Combin. Theory Ser. A 49 (1988), 294-307.
[10] R. Brown, Minimal covers of S_{n} by abelian subgroups and maximal subsets of pairwise noncommuting elements, II, J. Combin. Theory Ser. A 56 (1991), 285-289.
[11] E. A. Bertram, Some applications of graph theory to finite groups, Discrete Math. 44(1) (1983), 31-43.
[12] A. M. Y. Chin, On noncommuting sets in an extraspecial p-group, J. Group Theory 8(2) (2005), 189-194.
[13] A. Y. M. Chin, On non-commuting sets in an extraspecial p-group, J. Group Theory, 8.2 (2005), 189-194.
[14] S. Dolfi, M. Herzog and E. Jabara, Finite groups whose noncentral commuting elements have centralizers of equal size, Bull. Aust. Math Soc, 82 (2010), 293-304.
[15] I. M. Isaacs, Finite group theory, Grad. Stud. Math, vol. 92, Amer. Math. Soc, Providence, RI, 2008.
[16] The GAP Group, GAP-Groups, Algoritms, and Programming, version 4.4.10, (2007) ,(http://www.gap-system.org).
[17] S. M. Jafarian Amiri and H. Madadi, On the maximum number of the pairwise noncommuting elements in a finite group, J. Algebra Appl, (2016), Vol. 16, No. 1 (2017) 1650197 (9 pages).
[18] S. M. Jafarian Amiri, H. Madadi and H. Rostami, On 9-centralizer groups, J. Algebra Appl, Vol. 14, No. 1 (2015) 1550003 (13 pages).
[19] S. M. Jafarian Amiri and H. Rostami, Groups with a few nonabelian centralizers, Publ. Math. Debrecen, 87 (3-4) (2015), 429-437.
[20] S. M. Jafarian Amiri, H. Madadi and H. Rostami, On F-groups with central factor of order p^{4}, Math. Slovaca, Accepted.
[21] S. M. Jafarian Amiri, M. Amiri and H. Rostami, Finite groups determined by the number of element centralizers, Comm. Alg., 45(9) (2017), 3792-3797.
[22] B. H. Neumann, A problem of Paul Erdös on groups, J. Austral. Math. Soc. Ser. A 21 (1976), 467-472.
[23] J. Pakianathan, S. Krishnan Shankar, Nilpotent numbers, Amer. Math. Monthly, (2000), 631-634.
[24] L. Pyber, The number of pairwise noncommuting elements and the index of the centre in a finite group, J. Lond. Math. Soc. 35(2) (1987), 287-295.
[25] D. J. S. Robinson, A course in the theory of groups, Springer-Verlag New York, 1996.
[26] R. Schmidt, Zentralisatorverbände endlicher Gruppen, Rend. Sem. Mat. Univ. Padova 44 (1970), 97-131.
[27] M. Zarrin, Criteria for the solubility of finite groups by its centralizers, Arch. Math. 96 (2011), 225-226.
[28] M. Zarrin, On element centralizers in finite groups, Arch. Math. 93(2009), 497-503.
[29] M. Zarrin, On solubility of groups with finitely many centralizers, Bull. Iran. Math. Soc. 39 (2013), 517-521.

[^0]: *Department of Mathematics, Faculty of Sciences, University of Zanjan, P.O.Box 4537138791, Zanjan, Iran
 Email : sm_jafarian@znu.ac.ir
 ${ }^{\dagger}$ Department of Mathematics, Faculty of Sciences, University of Zanjan, P.O.Box 45371-38791, Zanjan, Iran
 Email : h.rostami5991@gmail.com

