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Centralizers and the maximum size of the pairwise
noncommuting elements in �nite groups

Seyyed Majid Jafarian Amiri∗ and Hojjat Rostami†

Abstract

In this article, we determine the structure of all nonabelian groups G
such thatG has the minimum number of the element centralizers among
nonabelian groups of the same order. As an application of this result,
we obtain the sharp lower bound for ω(G) in terms of the order of G
where ω(G) is the maximum size of a set of the pairwise noncommuting
elements of G.
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1. Introduction and main results

Throughout this paper G will be a �nite group and Z(G) will be its center. For a
positive integer n, let Zn and D2n be the cyclic group of order n and the dihedral group
of order 2n, respectively. For a group G, we de�ne Cent(G) = {CG(x) : x ∈ G} where
CG(x) is the centralizer of the element x in G. It is clear that G is abelian if and only if
|Cent(G)| = 1. Also it is easy to see that there is no group G with |Cent(G)| = 2 or 3.
Starting with Belcastro and Sherman [7], many authors have investigated the in�uence
of |Cent(G)| on the group G (see [1], [4], [6], [7], [17-21] and [27-29]). In the present
paper, we describe the structures of all groups having minimum number of centralizers
among all nonabelian groups of the same order, that is:
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1.1. Theorem. Let G be a nonabelian group of order n. If |Cent(G)| ≤ |Cent(H)| for
all nonabelian groups H of order n, then one of the following holds:

(1) G is nilpotent, |Cent(G)| = p + 2 and G
Z(G)

∼= Zp × Zp where p is the smallest

prime such that p3 divides n.
(2) G is nonnilpotent, |Cent(G)| = pm + 2 and G

Z(G)
∼= (Zp)

m o Zl where l > 0 and

pm is the smallest prime-power divisor of n such that pm − 1 and n are not relatively
prime.

The following corollary are immediate consequence of Theorem 1.1.

1.2. Corollary. Suppose that n is even and G is a nonabelian group of order n. If
|Cent(G)| ≤ |Cent(H)| for all nonabelian groups H of order n, then |Cent(G)| = 4 or
p+ 2 where p is the smallest odd prime divisor of n and also G

Z(G)
is isomorphic to one

of the following groups:

Z2 × Z2, Zp × Zp, D2p.

1.3. Remark. We notice that both conditions (1) and (2) of Theorem 1.1 may happen
for some positive integer n. For example there exist two groups G1 and G2 of order 54
such that |Cent(G1)| = |Cent(G2)| = 5 , G1

Z(G1)
∼= Z3 × Z3 and G2

Z(G2)
∼= D6.

There are interesting relations between centralizers and pairwise noncommuting ele-
ments in groups (see Proposition 2.5 and Lemma 2.6 of [1]). Let G be a �nite nonabelian
group and let X be a subset of pairwise noncommuting elements of G such that |X| ≥ |Y |
for any other set of pairwise noncommuting elements Y in G. Then the subset X is said
to have the maximum size, and this size is denoted by ω(G). Also ω(G) is the maximum
clique size in the noncommuting graph of a �nite group G. The noncommuting graph of
a group G is de�ned as a graph whose G \ Z(G) is the set of vertices and two vertices
are joined if and only if they do not commute. By a famous result of Neumann [22]
answering a question of Erd®s, the �niteness of ω(G) is equivalent to the �niteness of the
factor group G

Z(G)
which follows that |Cent(G)| is �nite. Also,if G has a �nite number of

centralisers, then it is easy to see that ω(G) is �nite. Various attempts have been made
to �nd ω(G) for some groups G. Pyber [24] has proved that there exists a constant c

such that | G
Z(G)
| ≤ cω(G). Chin [13] has obtained upper and lower bounds of ω(G) for

extra-special groups G of odd order. Isaacs has shown that ω(G) = 2m+1 for any extra-
special group G of order 22m+1 (see page 40 of [11]). Brown in [9] and [10] has investigated
ω(Sn) where Sn is the symmetric group on n letters. Also Bertram, Ballester-Bolinches
and Cossey gave lower bounds for the maximum size of non-commuting sets for cer-
tain solvable groups([5]). Recently authors [17, 20] have determined all groups G with
ω(G) = 5 and obtained ω(G) for certain groups. Known upper bounds for this invariant
were recently used to prove an important result in modular represention theory ( [13]).
In this article we determine the structure of nonabelian groups G of order n such that
ω(G) ≤ ω(H) for all nonabelian groups H of order n.

1.4. Theorem. Let G be a nonabelian group of order n. If ω(G) ≤ ω(H) for all
nonabelian groups H of order n, then one of the following holds:

(1) G is nilpotent, ω(G) = p + 1 and G
Z(G)

∼= Zp × Zp where p is the smallest prime

such that p3 divides n.
(2) G is nonnilpotent, ω(G) = pm + 1 and G

Z(G)
∼= (Zp)

m o Zl where l > 0 and pm is

the smallest prime-power divisor of n such that pm − 1 and n are not relatively prime.

Throughout this paper we will use usual notation which can be found in [25] and [15].
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2. Proofs of the main results

The following lemmas are useful in the proof of the main theorem.

2.1. Lemma. Let G,G1, · · · , Gn be �nite groups. Then

1. If H ≤ G, then |Cent(H)| ≤ |Cent(G)|;
2. If G =

∏n
i=1 Gi, then |Cent(G)| =

∏n
i=1 |Cent(Gi)|.

Proof. The proof is clear. �

In Lemma 2.7 of [4], it was shown that if p is a prime, then |Cent(G)| ≥ p + 2 for
all nonabelian p-groups G and the equality holds if and only if G

Z(G)
∼= Zp × Zp. In the

following we generalize this result for all nilpotent groups.

2.2. Lemma. Let G be a nilpotent group and p be a prime divisor of |G| such that a
Sylow p-subgroup of G is nonabelian. Then |Cent(G)| ≥ p+ 2 with equality if and only
if G

Z(G)
∼= Zp × Zp.

Proof. Suppose that P is a Sylow p-subgroup ofG. Then we have |Cent(G)| ≥ |Cent(P )| ≥
p+ 2 by Lemma 2.1(1) and Lemma 2.7 of [4], as wanted.

Now, assume that |Cent(G)| = p + 2. Since G is nilpotent, each Sylow q-subgroup
of G is abelian for each prime divisor q 6= p of |G| by Lemma 2.1(2). Consequently

G
Z(G)

∼= P
Z(P )

which is isomorphic to Zp × Zp by Lemma 2.7 of [4]. The converse holds

similarly. �

Recall that a minimal nonnilpotent group is a nonnilpotent group whose proper sub-
groups are all nilpotent. In 1924, O. Schmidt [26] studied such groups. The following
result plays an important role in the proof of Theorem 1.1.

2.3. Lemma. Let G be a minimal nonnilpotent group. Then G
Z(G)

is Frobenius such

that the Frobenius kernel is elementary abelian and the Frobenius complement is of prime
order.

Proof. By Theorem 9.1.9 of [25], we have G = PQ where P is a unique Sylow p-subgroup
of G and Q is a cyclic Sylow q-subgroup of G for some distinct primes p and q. Also
by Exercise 9.1.11 of [25], the Frattini subgroups of P and Q are contained in Z(G). It

follows that PZ(G)
Z(G)

is elementary and QZ(G)
Z(G)

is of order q. Since all Sylow subgroups

of G
Z(G)

are abelian, Theorem 10.1.7 of [25] gives that ( G
Z(G)

)′
⋂

Z( G
Z(G)

) = 1. Since

P = [P,Q], we have PZ(G)
Z(G)

≤ G′Z(G)
Z(G)

and so Z( G
Z(G)

) is a q-group. On the other hand

since G is not nilpotent, Z( G
Z(G)

) = 1. Now it is easy to see that G
Z(G)

is a Frobenius

group. �

2.4. Proposition. Let G
Z(G)

= K
Z(G)

o H
Z(G)

be a Frobenius group such that H is abelian.

If Z(G) < Z(K), then |Cent(G)| = |Cent(K)| + | K
Z(G)
| + 1 and if Z(G) = Z(K), then

|Cent(G)| = |Cent(K)|+ | K
Z(G)
|. Also ω(G) = ω(K) + | K

Z(G)
|.

Proof. See Proposition 3.1 of [18] and its proof. �

Recall that a group G is a CA-group if the centralizer of every noncentral element of
G is abelian. R. Schmidt [26] determined all CA-groups (see Theorem A of [14]). Now
we are ready to prove the main result.

Proof of Theorem 1.1.

Suppose that G is a nilpotent group. Since G is not abelian, a Sylow q-subgroup of
G is not abelian for some prime q. It follows from Lemma 2.2 that |Cent(G)| ≥ q + 2.
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But there exists a nonabelian group H := Q × Z n
q3

of order n where Q is a nonabelian

group of order q3 and we see that |Cent(H)| = q+2. Since G has the minimum number
of the element centralizer, we must have |Cent(G)| = p + 2 and p must be the smallest
prime such that p3 divides n. Also G

Z(G)
∼= Zp × Zp by Lemma 2.2, as wanted.

Now, assume that G is a nonnilpotent group of order n. Then there exist two prime
divisors q and r of n such that q divides rk− 1 for some positive integer k by Corollary 1
of [23]. We claim that if pm is the smallest prime-power divisor of n such that gcd(pm −
1, n) 6= 1, then |Cent(G)| ≥ pm + 2.

Since G is �nite and nonnilpotent, G contains a minimal nonnilpotent subgroup M . It
follows from Lemma 2.3 that M

Z(M)
is Frobenius with the kernel K

Z(M)
and the complement

H
Z(M)

. Note that | K
Z(M)

| = pt1 and | H
Z(M)

| = p2 for some primes p1 and p2 such that

p2|pt1−1. It follows from Proposition 2.4 that |Cent(M)| ≥ | K
Z(M)

|+2 = pt1+2. Since M

is a subgroup of G, we have |Cent(G)| ≥ |Cent(M)| ≥ pt1 + 2 which is equal or greater
than pm +2 by hypothesis. This proves the claim. Now we want to �nd the structure of
nonnilpotent groups G for which the equality occurs.

Assume that |Cent(G)| = pm + 2. We shall prove that G
Z(G)

∼= (Zp)
m o Zl for some

positive integer l. By hypothesis and the previous paragraph, there is a subgroup M
of G such that M

Z(M)
is Frobenius with the kernel K

Z(M)
of order pm and the Frobenius

complement H
Z(M)

which is cyclic of prime order. Since | K
Z(M)

|+ |Cent(K)| ≤ |Cent(M)|
by Proposition 2.4 and |Cent(M)| ≤ |Cent(G)| = pm + 2, we have |Cent(M)| = pm + 2
and |Cent(K)| = 1. It follows that K is abelian and so M is a CA-group by Theorem A
(II) of [14]. Next, we show that G is a CA-group.

Since M is a CA-group, we have pm + 1 is the maximum size of a set of pairwise
non-commuting elements of M by Lemma 2.6 of [1] and so the maximum size of a set
of pairwise non-commuting elements of G is at least pm + 1. Since |Cent(G)| = pm + 2,
the maximum size of a set of pairwise non-commuting elements of G must be pm + 1.
Therefore G is CA-group by Lemma 2.6 of [1]. Now we apply Theorem A of [14].

Note, �rst, that if 8 divides |G| = n, then by hypothesis |Cent(G)| ≤ |Cent(D8 ×
Zn

8
)| = 4 and so |Cent(G)| = 4. Therefore G

Z(G)
∼= Z2 × Z2 by Fact 3 of [7] and so

G is nilpotent, a contradiction. Hence 8 does not divide n and so |Cent(G)| ≥ 5 by
Fact 4 of [7]. Also if 6 divides n, then |Cent(G)| ≤ |Cent(D6 × Zn

6
)| = 5 which implies

|Cent(G)| = 5. Therefore G
Z(G)

∼= D6 by Fact [7] and so we have the result. Thus we

may assume that 6 does not divide n. Now since G is not nilpotent, G satis�es (I), (II)
or (III) of Theorem A of [14]. Therefore G has an abelian subgroup A of prime index
r or G

Z(G)
= K

Z(G)
o T

Z(G)
is a Frobenius group with the Frobenius kernel K

Z(G)
and the

Frobenius complement T
Z(G)

. In the �rst case, we have |G′| = pm by Theorem 2.3 of [6]

and so | G
Z(G)
| = pmr by Lemma 4 (page 303) of [8]. Consequently G

Z(G)
= A

Z(G)
o L

Z(G)

where | L
Z(G)
| = r and | A

Z(G)
| = pm. By the property of pm, the number of Sylow r-

subgroup of G
Z(G)

is pm and so G
Z(G)

is Frobenius. Again by the property of pm, A
Z(G)

is

characteristically simple which implies that it is elementary, as wanted.
In the second case, it follows from (II)-(III) of Theorem A of [14] that T is abelian and

K is abelian or K = QZ(G) where Q is a normal Sylow q-subgroup of G for some prime
q. If K is abelian, then Z(G) < Z(K) and so |Cent(G)| = | K

Z(G)
|+2 by Proposition 2.4.

Therefore | K
Z(G)
| = pm. By the property of pm, K

Z(G)
is elementary. On the other hand

T
Z(G)

is cyclic by Corollary 6.17 of [15] and so we have the result.

If K = QZ(G), then | K
Z(G)
| = qa and since G

Z(G)
is Frobenius, we have | T

Z(G)
| divides

qa − 1. It follows that pm ≤ qa by hypothesis. On the other hand pm +2 = |Cent(G)| ≥
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| K
Z(G)
|+ 2 by Proposition 2.4 and this implies that pm = qa. It follows from Proposition

2.4 that |Cent(K)| = 1 and K is abelian. The rest of the proof is similar to the previous
case.

Proof of Theorem 1.4

The proof is similar to the previous theorem. If G is nilpotent, then ω(G) ≥ p + 1
where p is the smallest prime such that p3 divides |G| and the equality holds if and only
if G

Z(G)
∼= Zp × Zp.

Now suppose that G is nonnilpotent. Then G contains a minimal nonnilpotent
subgroup M and so M

Z(M)
= K

Z(M)
o H

Z(M)
is Frobenius such that | K

Z(M)
| = pm1 and

| H
Z(M)

| = p2 by Lemma 2.3. Since H is abelian and has at least pm1 conjugates in G,

say H = H1, H2, · · · , Hpm1
, we see {x1, · · · , xpm1

} is a subset of pairwise noncommuting
elements of M where xi ∈ Hi \ {1}. It follows that ω(G) ≥ pm1 + 1 ≥ pm + 1. The
remainder of the proof is similar to Theorem 1.1.
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