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Abstract: The most widely used semiparametric estimators under fractional integration are variants of the
local Whittle [LW] estimator. They are consistent for the long memory parameter d and follow a limiting
normal distribution. Such properties require the bandwidthm to satisfy certain restrictions for the estimators
to be “local” or semiparametric in large samples. Optimal rates for m are known and data-driven selection
procedures have been proposed. A Monte Carlo study is conducted to compare the performance of the LW
and the so-called exact LW estimators both in terms of experimental size when testing hypotheses about d
and in terms of root mean squared error. In particular, the choice of the bandwidth is addressed. Further,
competing approximations to limiting normality are compared.
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1. Introduction
Persistence in the sense of slowly decaying autocorrelations is a stylized fact with many economic

and financial time series, see Henry and Zaffaroni [12] for a survey. Such persistence is often called
long memory. It can be captured by models that are fractionally integrated of order d, I(d), with
0< d< 1, which extends the classical I(0)/I(1) paradigm.
Two popular procedures to analyze long memory are the log-periodogram regression (GPH after

Geweke and Porter-Hudak [4]), and the local Whittle estimator [LW], proposed by Künsch [18]
and investigated by Robinson [22]. Both estimators are asymptotically normally distributed and
consistent for d ∈ (−0.5,0.75), but the LW estimator is more efficient asymptotically. Still, LW
is inconsistent for d≥ 1 and lacks asymptotic normality for d > 3/4, see Velasco [30]. Therefore,
diverse methods have been proposed to improve its statistical properties. Well-known and easily
implemented extensions include data differencing and periodogram tapering, see for example Hur-
vich and Ray [17], Hurvich and Chen [15] and Velasco [30]. However, Shimotsu and Phillips [28]
argue that the first alternative requires prior knowledge of the degree of differencing, while the
second one leads to an increase in the variance of the estimator. They propose a computationally
more demanding variant of LW called Exact Local Whittle estimator [ELW]. It is consistent and
follows the same limiting distribution as the LW estimator, however, it does so for a much larger
parameter space. Alternatively, Abadir, Distaso and Giraitis [1] introduce a fully extended (or:
nonstationarity-extended) version of the LW estimator. A thorough discussion of these LW-type
estimators, and also of tapered LW estimators as well as wavelet-based competitors can be found
in Faÿ, Moulines, Roueff and Taqqu [3].
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In this paper, we focus on two variants of the LW procedure and compare the original LW
and ELW estimators in an extensive Monte Carlo study. Several papers have studied the selection
of the number of periodogram ordinates (bandwidth m) in relation to estimation bias and root
mean squared error [RMSE], see for instance Robinson and Henry [24], Henry [10], and Nielsen
and Frederiksen [20]. But it seems that size properties when testing for the true parameter value
building on approximate normality have hardly been reported (an exception being the limited
evidence in Hauser [9] and Hurvich and Chen [15, Table II] for just one bandwidth choice). For that
reason we provide on the one hand experimental evidence not only on RMSE, but in particular on
distortions of the nominal size (or coverage) as a function of the chosen bandwidth. Additionally,
we compare deterministic with data-driven bandwidth selection rules. The latter ones have been
proposed by Robinson [21], Delgado and Robinson [2] and Henry and Robinson [11]. On the other
hand, we compare an alternative approximation of the test statistic (R∗ from eq. (3.6)) with the
usual asymptotic version (R from (3.4)), motivated by earlier findings in Hurvich and Chen [15].
We arrive at three relevant conclusions for empirical work that are summarized at the end of the
paper.
The rest of the paper is organized as follows. Section 2 introduces the long memory model of

fractional integration and the (E)LW estimator. In Section 3, we discuss approximations to the
limiting normal distribution used for testing hypotheses about d, while simulation evidence is
contained in Section 4. The final section summarizes our main findings.

2. Model and estimation

2.1. Fractional integration
The most widely used model to capture long memory is a fractionally integrated process {yt, t∈

Z}, given by
(1−L)dyt = xt , −1<d< 0.5 , (2.1)

where (1−L)d with the usual lag operator L is given by binomial expansion,

(1−L)
d
=

∞∑

j=0

πj,dL
j , π0,d = 1, πj,d =

j− 1− d

j
πj−1,d , j ≥ 1 , (2.2)

and {xt} is a purely stochastic, stationary process with short memory. More precisely, we assume
that the spectral density of {xt} is bounded and bounded away from zero at frequency zero, such
that the process is I(0). In case of fractional integration one allows for non-integer values of d∈R.
Equation (2.1) defines a stationary process if and only if d < 0.5, see e.g. Granger and Joyeux [6]
and Hosking [13].
In the time domain, the persistence of a fractionally integrated process is reflected by the

behaviour of a hyperbolically decaying autocovariance sequence. For 0 < d < 0.5, the autocovari-
ances γh =E(ytyt+h) decay for a constant Cd depending on d so slowly,

γh ∼Cd h
2d−1, h→∞ , (2.3)

that they are not summable, which characterizes long memory in the time domain:

H∑

h=0

| γh | → ∞, H→∞ .

Often, it is assumed that {xt} is an autoregressive moving-average process [ARMA], which we do
not require here. For a fairly general sufficient condition on the short memory component {xt} that
guarantees (2.3), see Hassler and Kokoszka [7, Coro. 2.1].
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In the frequency domain, long memory translates into unboundedness of the spectral density at
frequency zero. Particularly, it holds for {yt} with spectral density fy(λ) that

fy(λ)∼ λ−2d fx(0), λ→ 0 , (2.4)

where fx(λ) stands for the spectral density of the short memory component {xt}. Hence, fy is
integrable for d< 0.5 notwithstanding the singularity at frequency zero.
Nonstationary fractionally integrated processes can be defined in terms of integer differences

(∆= 1−L) for 0.5≤ d < 1.5,
∆yt = zt ∼ I(d− 1) ,

where {zt, t∈Z} is I(d− 1) as defined in (2.1). Consequently,

yt = y0 +
t∑

j=1

zj , t= 1, . . . , T , (2.5)

is integrated of order d. Such processes have been labelled “type I” by Marinucci and Robinson
[19], see also Robinson [23] for a discussion. Alternatively, many people work under the assumption
of “type II” processes defined as

yt = µ+
t−1∑

j=0

ψj,d xt−j , t=1, . . . , T , (2.6)

where ψj,d are from the truncated expansion of ∆−d, i.e. ψj,d =
j−1+d

j
ψj−1,d, and a constant µ is

added to the process. The model from (2.6) can also be used for d < 0.5, although the process
becomes stationary only asymptotically.

2.2. (Exact) Local Whittle [LW] estimation
Whittle [31, 32] suggested for stationary processes an approximation of the likelihood function

in the frequency domain, which relies on the periodogram. Consider the discrete Fourier transform
[DFT] wy(·) of {yt} (t= 1 . . . T ),

wy(λj) =
1√
2πT

T∑

t=1

yt exp{iλjt} , i2 =−1 ,

at the jth harmonic frequency λj =
2πj
T
. Then the periodogram simply is

Iy(λj) = |wy(λj)|2 , j = 1, . . . ,M =

⌊
T − 1

2

⌋
, (2.7)

where ⌊·⌋ stands for the floor operator. The log likelihood approximation in the frequency domain
becomes

lM (d) =−
M∑

j=1

log fy(λj)−
M∑

j=1

Iy(λj)

fy(λj)
.

Now, let us assume model (2.5). The LW estimator maximizes the log likelihood locally over a
vicinity close to frequency 0, where the slope of fy varies with d alone, see (2.4). To that end
M is replaced by the bandwidth m. A crucial condition for the consistency of the estimator in
the presence of short memory in {xt} is that the number of harmonic frequencies m used in the
estimation must diverge more slowly than the sample size T :

1

m
+
m

T
→ 0 , T →∞ . (2.8)
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Replacing fy(λj)∼Gλ−2d
j where G= fx(0), the negative local log likelihood becomes

−lm(d) ≈
m∑

j=1

(
logG− 2d log (λj)+

Iy (λj)

Gλ−2d
j

)
=:Qm (G,d) .

Concentrating G out yields Ĝ= 1
m

∑m

j=1 λ
2d
j Iy(λj). Hence, the estimation of d requires minimizing

R(m,d) := log

{
1

m

m∑

j=1

λ2d
j Iy (λj)

}
− 2d

m

m∑

j=1

log (λj) , (2.9)

being the LW estimator thus defined as

d̂LW = argmin R(m,d) .

Obviously, d̂LW crucially hinges on m as well as on the slope of fx(λ) at the origin, which is
surpressed for notational convenience. Robinson [22] establishes limiting normality under (2.8) and
further assumptions,

√
m (d̂LW − d)⇒N

(
0,

1

4

)
, (2.10)

for d ∈ (−0.5,0.5) where “⇒” denotes convergence in distribution. Since the periodogram is shift
invariant, the LW estimator is not affected by a mean µ different from zero and does not require an
estimation of µ. Notice that the limiting variance is smaller than that of the famous semiparametric
competitor, the log-periodogram regression by Geweke and Porter-Hudak [4]. Moreover, LW has
been recommended since it is robust with respect to heteroskedasticity of a certain degree, see
Robinson and Henry [24] and Shao and Wu [25]. Finally, Velasco [30] extended the results by
Robinson [22] showing that the LW estimator is consistent for d ∈ (−0.5,1) and asymptotically
normal for d∈ (−0.5,0.75).
The issue of nonstationarity has been addressed more fully by Shimotsu and Phillips [28]. They

propose to correct the DFT by adding a complementing term ensuring a valid approximation that
holds for every value of d. This so-called exact LW procedure [ELW] implies replacing λ2d

j Iy(λj)
in (2.9) by I∆dy(λj), and it is valid if µ= 0 in (2.6). For means different from zero, Shimotsu [27]
suggests to demean {yt} with an appropriate estimator µ̂, and to compute the exact LW estimator
from the demeaned data. The objective function to be minimized becomes

RE(m,d) := log

{
1

m

m∑

j=1

I∆d(y−µ̂)(λj)

}
− 2d

m

m∑

j=1

log(λj) , (2.11)

where I∆d(y−µ̂)(λj) is the periodogram of {∆d(yt − µ̂)}. To determine the fractional differences, it
is assumed that {yt} is given by a type II process as in (2.6). It turns out that the first sample
observation y1 is a reliable mean estimator in the case of large values of d, while the usual arithmetic
mean y does a good job for small parameter values of d. Hence, Shimotsu [27] puts forward the
following weighted estimator:

µ̂(d) = v(d) y+(1− v(d)) y1 ,

v(d) =





1 , d≤ 0.5
1+cos(4πd)

2
, 0.5< d< 0.75

0 , d≥ 0.75
.

To get a feasible procedure, he considers two steps. First, one determines an estimator of d̂ inde-
pendent of µ in order to get an estimator of the constant: µ̂= µ̂(d̂). In a second step, the slope
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and Hessian of RE(m,d) are used to compute the feasible estimator (a MATLAB code is available
from the homepage of K. Shimotsu):

d̂2ELW = d̂− R′
E(m, d̂)

R′′
E(m, d̂)

.

Shimotsu [27, Theo. 3] shows that the two-step ELW estimator d̂2ELW is consistent and has the
same limiting distribution as the LW and ELW estimators under −0.5< d< 2.

3. Approximate inference
One goal of semiparametric inference is hypothesis testing about the long memory parameter d.

Hypotheses of interest are d≤ 0 (short memory) vs. d > 0 (long memory), or d≥ 0.5 (nonstation-
arity) vs. d< 0.5 (stationarity). The tests are approximate in that they rely on limiting normality
(as m→∞) of the appropriately standardized estimators.

3.1. Bandwidth selection
Robinson [22] proves limiting normality for the LW estimator under

m= Tα, 0<α< 0.8. (3.1)

This rate is from Robinson [22, Assumption A4’] in the case {xt} is ARMA (for β = 2 in his
notation); see Shimotsu and Phillips [28] for a slightly stronger assumption in the case of ELW
estimation. In practice, the choice of the bandwidth m will be crucial for reliable inference. It
balances a trade-off between variance and bias, see Henry and Robinson [11]. Thus, if m is chosen
too large or too small, the outcome of the estimation may wrongly suggest a certain degree of
persistence. To avoid such pitfalls, many empirical researchers typically opt for choosing a grid of
bandwidth values and then plot the estimates against different values of m, see also Taqqu and
Teverovsky [29] for graphical bandwidth selection. Ideally, one observes three regimes: With small
values of m the estimates will display high variability, then the plot of the estimates should become
approximately flat, while with further growing values of m the estimates may start to fall or to rise
because of a bias due to a short memory component. In such an ideal situation one would choose
m from the middle regime. In practice, however, such an ideal situation will rarely be encountered
unless the sample size is very large.
As an alternative to graphical means, data-driven techniques for bandwidth choice have been

proposed. They rely on a minimization of the asymptotic mean squared error and have been
proposed by Delgado and Robinson [2], Henry and Robinson [11], Henry [10], Giraitis, Robinson
and Samarov [5] and Hurvich and Deo [16]. While the latter two contributions concentrate on
the log-periodogram regression estimator of d, Henry and Robinson [11] and Henry [10] derive an
algorithm to obtain an optimal bandwidth for the LW estimator.
The approximative optimal spectral bandwidth derived heuristically in Henry and Robinson [11]

must be iterated until convergence to an optimal bandwidth value is achieved. It is defined as

d̂(k) = argminR(m̂(k);d) ,

m̂(k+1) =

(
3T

4π

)4/5
∣∣∣∣∣θ+

d̂(k)

12

∣∣∣∣∣

−2/5

, (3.2)

with initial value m̂(0) = T 0.8. Strictly speaking, the optimal rate of T 0.8 in (3.2) violates the
condition in (3.1). In the case of the long memory representation defined in (2.4), if the first and
second derivatives of fx(λ) exist, the parameter θ from (3.2) is defined as θ = f ′′

x (0)/2fx(0), as
shown by Delgado and Robinson [2]. The authors propose a simple feasible approximation for the
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unknown parameter θ, which is motivated by a Taylor expansion and consists in regressing the
periodogram Iy(λj) on the regressors Zjℓ(d̂

(0)), ℓ= 0,1,2:

Iy(λj) =
2∑

ℓ=0

Zjℓ(d̂
(0)) ϕ̃ℓ+ ε̃j j = 1, . . . , m̂(0) ,

where Zjℓ(d) = |1− exp{iλj}|−2d
λℓ
j/ℓ!. The estimates of fx(0) and f

′′
x (0) are ϕ̃0 and ϕ̃2, respectively,

so that the estimated parameter is given by

θ̂=
ϕ̃2

2ϕ̃0

. (3.3)

In principle, one could include the determination of θ̂ as part of the kth iteration step, but Delgado
and Robinson [2] advice against doing so, see also Henry [10].

3.2. Approximation of the asymptotic variance
Let now d̂ stand generically for the local Whittle estimator d̂LWor the two-step mean-corrected

version d̂2ELW of the ELW estimator by Shimotsu [27]. If we wish to test a null hypothesis about
d0, the asymptotic version of the test statistic becomes

R= 2
√
m (d̂− d0) , (3.4)

which is compared with critical values from the standard normal distribution because of (2.10). In
order to improve the size properties of the tests in finite samples, the bandwidth m in (3.4) can be
replaced with an approximation m∗ where

m∗ =
m∑

j=1

ν2j with νj = log j− 1

m

m∑

j=1

log j , (3.5)

because
m∗

m
=1+O

(
log2m

m

)
→ 1 as m→∞ ,

see Robinson [22, p.1645] or Hurvich and Beltrao [14, Lemma 1]. The rationale behind m∗ stems
from the Hessian of R(m,d) from (2.9) evaluated at maximum likelihood,

∂2R(m, d̂)

∂d2
=4

m∗

m
+ op(1) ,

see Robinson [22, (4.10)] or Hurvich and Chen [15, p.163], and Shimotsu and Phillips [28, p.1916]
for ELW. This motivates the usual maximum-likelihood approximation building on the Fisher
information: √

m (d̂− d0) ∼ N
(
0,

m

4m∗

)
.

The approximate test statistic R∗ is therefore defined as

R∗ = 2
√
m∗ (d̂− d0) , (3.6)

to be compared with standard normal percentiles.
Normalizing with m∗ instead of m comes in naturally for the log-periodogram regression, too,

due to studentizing the estimator with the regressor being log
(
4 sin2(λj/2)

)
∼ 2 logλj. In fact, this

corresponds to the original proposal by Geweke and Porter-Hudak [4], which was found experimen-
tally to outperform differing normalizations by Hassler, Marmol and Velasco [8, eqn. (7)]. For LW
estimation, an asymptotically equivalent approximation of m building on log (2 sin(λj/2)) instead
of log j in (3.5) was advocated by Hurvich and Chen [15], while our asymptotically equivalent
choice of m∗ in (3.5) was used by Shimotsu [26].
In the next section we report experimental size properties of R and R∗ under the null hypothesis

that d0 is the true value.
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4. Experimental evidence

To investigate the finite-sample behaviour of the variants of the LW estimator, we now report

the empirical size and RMSE from a simulation study for different bandwidth selection rules. These

are deterministic as well as data-driven according to the iterative procedure described in (3.2).

The data generating process [DGP] is an ARFI(1, d) model, where the short memory component

{xt} is a stable AR(1) sequence,

xt = axt−1 +ut , (4.1)

with standard normal innovations ut ∼ iiN (0,1). We consider the following cases:

1. ARFI(0, d), d ∈ {0,0.45,0.7} and

2. ARFI(1,0) with a= 0.5.

ARFI(0, d) denotes the case of fractionally integrated noise where a= 0. The scheme to generate

fractional integration is throughout of type II, see (2.6), where we set µ= 0 without loss of general-

ization. For each Monte Carlo DGP, 1000 replications with T ∈ {256,512,1024} observations were

performed. All computations were performed with MATLAB. To estimate d, we minimize over the

interval [−1; 3] using the routine “fminbnd”.

From our experiments we present as empirical size 100 α̂, where α̂ is the relative frequency

of rejection under the null at nominal level α0 ∈ {0.01,0.05,0.10}. Since α̂ converges to α0, the

approximate 95% confidence interval is given by

[
α̂± 1.96

√
α0(1−α0)

1000

]
or

[
100 α̂± 1.96

√
10α0(1−α0)

]
. (4.2)

The following table presents lengths of such intervals that allow to judge whether the percentages

of rejections reported in the next two subsections are conformable with the corresponding nominal

levels or not.
α0 1% 5% 10%

CI from (4.2) [100 α̂± 0.617] [100 α̂± 1.351] [100 α̂± 1.859]
In what follows, we highlight in bold face those experimental levels that are not significantly

different from the nominal ones at the 95% level according to (4.2).
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Table 1. White noise: ARFI(0,0)

T =256 T = 512 T = 1024

Test statistic n.s. T 0.55 T 0.65 T 0.75 T 0.55 T 0.65 T 0.75 T 0.55 T 0.65 T 0.75

1% 6.7 4.5 3.4 3.9 3.2 2.3 3.8 2.4 1.5

RLW 5% 16.9 11.8 8.8 12.3 10.0 7.5 10.7 8.8 6.0

10% 24.3 17.2 16.9 19.1 15.9 13.3 15.6 15.1 12.2

1% 2.4 2.1 1.5 1.6 1.7 1.1 2.2 1.2 1.1

R
∗
LW 5% 7.8 6.7 6.1 5.9 5.8 6.1 6.6 6.1 4.6

10% 14.4 12.1 11.3 11.5 11.3 10.7 11.6 11.8 10.0

RMSE 0.145 0.103 0.072 0.115 0.079 0.055 0.089 0.062 0.038

1% 5.9 4.6 3.6 4.5 3.4 2.5 3.8 2.6 2.5

R2ELW 5% 15.6 11.9 9.1 12.6 10.7 7.7 10.6 8.6 9.3

10% 24.5 18.7 18.5 19.5 16.0 14.5 16.7 15.9 14.4

1% 1.8 2.3 1.9 1.9 1.9 1.4 2.3 1.6 1.7

R
∗
2ELW 5% 6.6 6.9 6.6 6.6 6.2 6.4 6.8 6.5 7.2

10% 14.1 12.5 11.9 11.5 11.7 11.8 12.2 11.8 12.6

RMSE 0.148 0.108 0.076 0.118 0.085 0.058 0.092 0.067 0.042

Root mean squared errors and frequencies of rejections at nominal significance level n.s.

when testing for the true value d0 =0 based on 1000 replications. The test statistics R and

R
∗ are from (3.4) and (3.6), respectively. The bandwidths are m = T 0.55, T 0.65, T 0.75. In

bold face experimental levels not significantly different from the nominal ones at 95% level

according to (4.2).

4.1. Deterministic choice of m

As deterministic rules for bandwidth selection we include m= T 0.55, T 0.65 and T 0.75. Tables 1-4

report the rejection frequencies of the test statistics (3.4) and (3.6) for the LW estimator and the

two-step mean-corrected ELW estimator, respectively. All empirical sizes are computed for the

bandwidth values m and for the sample sizes T mentioned above.
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Table 2. Stationary fractionally integrated noise: ARFI(0,0.45)

T =256 T = 512 T = 1024

Test statistic n.s. T 0.55 T 0.65 T 0.75 T 0.55 T 0.65 T 0.75 T 0.55 T 0.65 T 0.75

1% 5.3 4.1 3.1 4.5 2.6 1.2 3.1 1.7 2.4

RLW 5% 14.2 13.4 10.3 12.2 8.6 8.4 10.5 7.8 7.2

10% 23.2 20.1 17.1 20.3 15.2 14.6 17.3 13.6 12.1

1% 2.0 1.4 1.1 1.6 1.1 0.7 1.7 1.0 1.7

R
∗
LW 5% 5.9 7.8 6.4 6.5 5.5 5.8 5.8 5.2 5.2

10% 12.0 13.7 12.6 11.7 11.0 11.9 11.7 10.9 10.7

RMSE 0.149 0.103 0.073 0.115 0.083 0.055 0.090 0.060 0.040

1% 5.7 4.2 3.4 4.6 2.6 1.7 3.5 2.2 2.5

R2ELW 5% 14.5 12.8 10.5 12.6 8.7 8.7 11.5 7.8 8.4

10% 22.6 19.3 19.7 20.4 16.5 14.5 18.5 14.2 14.7

1% 2.8 2.1 1.9 1.7 1.5 1.8 1.8 1.6 1.9

R
∗
2ELW 5% 8.1 7.5 6.8 6.3 5.8 5.9 5.9 5.8 7.3

10% 13.9 13.7 13.9 11.9 11.2 11.9 11.6 11.2 12.9

RMSE 0.148 0.110 0.078 0.117 0.082 0.056 0.092 0.062 0.045

Results when testing for the true value d0 = 0.45; for further comments see Table 1.
Generally, it can be observed that the size distortion of the test tends to decrease as T and

m increase. In the case of white noise (Table 1), R is noticeably oversized, and the performance

of all estimators is very similar. The rejection probabilities seem indeed to be markedly sensitive

to the bandwidth choice, though this problem is reduced for large sample sizes. The variance

approximation used in R∗ from (3.6) clearly reduces the size distortion in all cases and for both

estimators. When d = 0.45, the size distortion is at least as large as in the white noise case.

The performance of the LW estimator in terms of size and RMSE is a bit better than that of

2ELW in almost all cases, also when the sample size is small, but the overall performance of the

two approaches is quite similar. Again, the variance approximation used in (3.6) reduces the size

distortion of all tests remarkably. In the case d takes on the nonstationary value 0.7, the two-stage

ELW estimator outperforms the LW estimator, above all in terms of size distortion, see Table 3.
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Table 3. Nonstationary fractionally integrated noise: ARFI(0,0.7)

T =256 T = 512 T = 1024

Test statistic n.s. T 0.55 T 0.65 T 0.75 T 0.55 T 0.65 T 0.75 T 0.55 T 0.65 T 0.75

1% 5.8 3.7 3.4 4.0 3.4 4.2 3.6 2.9 4.4

RLW 5% 15.1 11.7 10.1 12.3 11.8 11.6 13.1 10.9 12.0

10% 22.5 19.5 16.0 19.1 18.2 17.8 18.4 17.0 19.8

1% 1.6 1.3 1.5 1.5 1.9 2.6 1.9 1.8 3.6

RLW∗ 5% 7.2 6.6 7.0 5.8 7.3 8.5 7.4 7.3 10.6

10% 13.1 12.4 12.5 11.8 13.4 15.0 13.8 13.6 17.1

RMSE 0.148 0.103 0.075 0.114 0.083 0.058 0.092 0.065 0.047

1% 4.4 3.1 2.1 3.8 2.4 3.1 2.7 2.3 2.0

R2ELW 5% 12.5 9.9 9.6 11.8 10.8 9.2 9.7 7.3 8.0

10% 21.2 17.2 14.6 18.9 17.5 15.3 17.2 13.8 14.4

1% 1.7 1.6 1.4 1.3 1.5 1.6 1.1 1.0 1.5

R
∗
2ELW 5% 5.6 5.0 5.2 5.8 7.1 7.5 5.6 5.0 5.7

10% 11.3 11.1 11.7 10.9 11.7 12.5 11.4 9.6 11.9

RMSE 0.144 0.102 0.072 0.112 0.081 0.056 0.088 0.058 0.042

Results when testing for the true value d0 = 0.7; for further comments see Table 1.
When short-run dynamics are added to the model, the selection of an adequate bandwidth

becomes even more decisive. Table 4 shows the simulation results for an ARFI(1,0) process with a

moderate autoregressive coefficient a= 0.5. The influence of the short-term component dominates

the behaviour of all estimators, and the contamination of the periodogram leads to a large bias in

the estimation of d. The size distortion caused by the autoregressive term increases excessively asm

gets large. If we allowed for a moving-average component instead of the AR(1) dynamics, similarly

detrimental effects are obtained. The theoretical charm of semiparametric estimators consists in

their (asymptotic) robustness against the presence of short memory. The simulations show, however,

that the finite sample performance may be far from the asymptotic promise. We conclude that even

for samples as large as T = 1000 the bandwidth must be chosen very conservatively (m< T 0.65)

to get somewhere close to the nominal size. Once more, the variance approximation used in (3.6)

clearly outperforms the test from (3.4).
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Table 4. AR(1)

T =256 T = 512 T = 1024

Test statistic n.s. T 0.55 T 0.65 T 0.75 T 0.55 T 0.65 T 0.75 T 0.55 T 0.65 T 0.75

1% 8.1 23.1 91.8 4.3 16.6 94.6 3.6 11.2 96.9

RLW 5% 18.5 41.8 97.3 13.1 31.2 98.4 13.0 24.3 99.2

10% 25.7 52.3 97.9 20.1 43.0 99.4 19.5 34.7 99.5

1% 3.1 13.4 88.2 1.6 9.8 92.0 1.9 7.2 95.7

R
∗
LW 5% 9.6 30.6 95.6 6.1 24.2 97.9 7.2 19.4 99.2

10% 15.9 42.2 97.5 12.5 35.2 99.2 14.6 30.0 99.5

RMSE 0.158 0.172 0.276 0.120 0.120 0.220 0.091 0.087 0.174

1% 7.1 28.6 95.6 4.8 20.5 98.5 3.4 10.9 98.4

R2ELW 5% 17.8 45.1 98.6 12.6 38.5 99.6 10.7 25.9 99.6

10% 26.2 55.0 99.4 19.5 47.7 99.8 19.3 35.3 99.7

1% 2.6 16.2 94.0 1.6 13.0 96.4 1.7 7.6 97.1

R
∗
2ELW 5% 8.4 35.5 97.6 6.7 31.0 99.6 7.1 20.7 99.6

10% 15.5 46.1 99.3 12.3 42.6 99.8 13.0 31.2 99.7

RMSE 0.159 0.183 0.316 0.116 0.130 0.244 0.095 0.087 0.192

The model is ARFI(1,0) with a= 0.5; for further comments see Table 1.

4.2. Data-driven choice of m

In this subsection we study the iterative procedure defined in (3.2), concentrating on the LW

estimator in order to save space. In the white noise case we observe in Table 5 similar empirical

sizes as under deterministic bandwidth selection in Table 1. For the ARFI(0,d) cases (Tables 5

and 6) the size distortion is larger than under the deterministic rules reported in Tables 2 and

3. Finally, in the ARFI(1,0) case (Table 6) the data-driven selection is superior only to large

bandwidths chosen deterministically (T 0.65 or T 0.75). This reinforces the above warning to select m

rather conservatively in practice to circumvent bias and size distortion due to short-memory. All

in all, data-driven bandwidth determination has no benevolent effect on the size distortion. What

is more, there were many cases where no convergence according to (3.2) was achieved (see Tables

5 and 6).
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Table 5. LW and data-driven bandwidth selection

White noise ARFI(0,0.45)

Test statistic n.s. T = 256 T =512 T = 1024 T = 256 T =512 T = 1024

1% 4.9 3.5 2.7 8.2 6.5 4.1

RLW 5% 12.3 8.5 7.1 17.6 15.7 12.3

10% 19.9 15.2 12.5 25.0 23.2 18.2

1% 2.5 2.2 2.1 3.3 2.3 2.0

R
∗
LW 5% 7.5 5.5 5.4 9.7 9.8 8.3

10% 13.7 11.3 9.8 15.9 15.9 14.3

Non convergence 70 50 26 29 8 8

Based on 1000 replications of the ARFI(0,0) and ARFI(0,0.45) models. The number of

non convergence cases is also reported. For further comments see Table 1.

Table 6. LW and data-driven bandwidth selection

ARFI(0,0.7) ARFI(1,0)

Test statistic n.s. T = 256 T =512 T = 1024 T = 256 T =512 T = 1024

1% 14.2 9.8 9.7 14.2 8.3 5.7

RLW 5% 23.6 19.0 18.4 24.0 16.4 15.0

10% 31.2 26.6 26.1 31.8 23.4 21.6

1% 8.1 4.1 3.8 7.1 4.0 3.0

R
∗
LW 5% 15.4 10.4 10.6 15.1 10.6 10.5

10% 21.5 18.9 18.5 21.6 18.3 16.1

Non convergence 48 17 8 15 7 8

Based on 1000 replications of ARFI(0,0.7), and ARFI(1,0) with a = 0.5; for further

comments see Table 5.
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5. Concluding remarks
The LW estimator is asymptotically more efficient than other popular semiparametric long mem-

ory estimators. Moreover, the procedure has been proven to be robust to heteroskedasticity of a
certain degree, see for instance Robinson and Henry [24]. At the same time it has at least three
limitations. First, consistency and limiting normality only hold for a restricted parameter range
excluding relevant cases of nonstationarity (see Robinson [22] and Velasco [30]). To overcome this
shortcoming, Shimotsu and Phillips [28] proposed a computationally more involved variant called
the exact LW estimator. It has the same limiting properties as LW but covers also the region of
nonstationarity. In most practical situations, a mean-corrected version of the exact LW has to be
worked with, see Shimotsu [27]. Second, the normal distribution of the normalized estimator holds
of course only asymptotically. In finite samples it may be hard to control the probability of a type
I error. It is a priori not clear how the estimator should be normalized to get a test statistic with
satisfactory size properties in finite samples. Third, the semiparametric nature of LW hinges on
an appropriate choice of a bandwidth m that balances the trade-off between bias and variance.
The optimal rate of divergence for m was determined such as to minimize the asymptotic mean
squared error [mse]. The resulting rate, however, violates the rate given in (3.1) ensuring limiting
normality. Hence, the question arises how the normalized estimator will behave as a test statistic
when the bandwidth is chosen according to a data-driven criterion that is mse optimal.
All three issues just raised with the (exact) LW estimator are addressed in our paper by means

of a Monte Carlo study. Our contributions can be summarized as follows. First, the 2ELW by
Shimotsu [27] is superior to the LW estimator when the process is indeed nonstationary. In the
region of stationarity, however, there are many situations where LW dominates the exact variant
in terms of size distortion and mse. Not knowing in practice, whether the true d is less than 0.5 or
not, both ELW and LW can equally be advised. Second, with respect to the normal approximation
we compared the usual asymptotic version of the test statistic R from (3.4) with the finite sample
modification R∗ from (3.6). Our experimental results on size distortions are very clear-cut: the
finite sample approximation R∗ constitutes a uniform improvement in that it always outperforms
the classical variant. This holds for LW just as well as for 2ELW. Finally, we ran a horserace
between deterministic bandwidth selection and data-driven selection rules relying on the mse opti-
mal bandwidth rate. It turns out, generally speaking, that a data-driven bandwidth choice affects
subsequent inference even in large samples. Resulting size distortions are large compared to the
case of careful, moderate choices of deterministic values of m. Our experiments show that even
a small bandwidth choice of m = T 0.55 may result in a too liberal size performance under short
memory for samples with length between T = 250 and T = 1000.
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