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1. Introduction

Stochastic orders have been shown that are very useful in applied probability, statistics, reliabil-
ity, operation research, economics and other fields. Various types of stochastic orders and associated
properties have been developed rapidly over the years. A lot of research works have been done on
likelihood ratio, hazard rate and reversed hazard rate orders due to their properties and applica-
tions in the various sciences. For example, the hazard rate order which is well-known and it is a
useful tool in reliability theory and reversed hazard rate order is defined via stochastic comparison
of inactivity time. We can refer the interested readers to Muller (1997), Kijima (1998), Chandra
and Roy (2001), Gupta and Nanda (2001), Hu and Zhu (2001), Nanda and Shaked (2001), Kochar
et al. (2002), Kayid and Ahmad (2004), Ahmad et al. (2005) and Shaked and Shanthikumar (2007).
Ramos-Romero and Sordo-Diaz (2001) introduced a new stochastic order between two continuous
and non-negative random variables and called it proportional likelihood ratio (plr) order, which
is closely related to the usual likelihood ratio order. The proportional likelihood ratio order can
be used to characterize random variables whose have log-concave (log-convex) densities. Further-
more, using stochastic comparisons of random variable X to itself according to the proportional
stochastic orderings, new classes of life time distributions is generated which, in turn, are useful to
describe aging process of a lifetime system. It is shown that some well-known distributions namely
truncated normal, exponential, power series and beta distributions belong to those classes which
make them of increasing interest. So, they studied increasing proportional likelihood ratio class
(IPLR) and as an application, they showed that the IPLR properties is sufficient conditions for
the Lorenz ordering of truncated distributions.
Belzunce et al. (2002), extended hazard rate and reversed hazard rate orders to proportional state
in the same manner and called them proportional hazard rate and proportional reversed hazard
rate orders respectively. So, they studied their properties, preservations and relations with other
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orders.
Shifted stochastic orders are useful tools for establishing interesting inequalities and have been
introduced in papers such as Shanthikumar and Yao (1986), Nakai (1995), Brown and Shanthiku-
mar (1998) and Belzunce et al. (2001). Lillo et al. (2001) studied in details four shifted stochastic
orders, namely the up (down) likelihood ratio order and the up (down) hazard rate order. Recently,
Aboukalam and Kayid (2007) obtained some new results about shifted hazard rate and shifted
likelihood ratio orders.
Note that the usual stochastic ordering is equivalent to its shifted and proportional versions. In
general, the shifted and proportional versions are stronger orderings and easy to verify in many
situations, so they are helpful to check what components are more reliable, and consequently sys-
tems formed from them.

In this paper, we study the shifted proportional likelihood ratio and shifted proportional hazard
rate orders and some results. Also, conditions for preservation of this orderings under weighted
distributions are given and finally some applications of them in shock models and reliability systems
are studied.

2. Preliminaries

Let X and Y be two continuous and non-negative random variables with densities f and g,
distribution functions F and G, hazard rate functions rF and rG and reversed hazard rate functions
r̃F and r̃G, each with an interval support SX and SY respectively. Denote by lX the left endpoint
and by uX the right endpoint of SX . Similarly, define lY and uY for Y . The values uX and uY may
be infinite. Throughout the article, we will use the term increasing in place of non-decreasing and
decreasing in place of non-increasing and we take a/0 to be ∞, whenever a > 0, also, let λ≤ 1 be
any positive constant.
Definition 1. Let X and Y be two continuous and non-negative random variables. It is said

that

(1) X is smaller than Y in the usual stochastic order (X ≤st Y ), if P (X > x) ≤ P (Y > x), ∀x ∈
(−∞,∞).

(2) X is smaller than Y in the likelihood ratio order (X ≤lr Y ), if g(x)

f(x)
increases in x over the

SX
⋃

SY .

(3) X is smaller than Y in the hazard rate order (X ≤hr Y ), if rF (x)≥ rG(x), ∀x∈ (−∞,∞).

(4) X is smaller than Y in the reversed hazard rate order (X ≤rh Y ), if r̃F (x) ≤ r̃G(x), ∀x ∈
(−∞,∞).

(5) X is smaller than Y in the up likelihood ratio order (up hazard rate order, up reversed hazard
rate order), denoted by X ≤lr↑ (≤hr↑,≤rh↑)Y , if X −x≤lr (≤hr,≤rh)Y, ∀x≥ 0.

(6) X is smaller than Y in the down likelihood ratio order (down hazard rate order, down reversed
hazard rate order), denoted by X ≤lr↓ (≤hr↓,≤rh↓)Y , if X ≤lr (≤hr,≤rh)[Y −x|Y >x], ∀x≥ 0.

The proportional likelihood ratio order and its related aging classes have been introduced by
Ramos-Romero and Sordo-Diaz (2001). Then Belzunce et al. (2002) presented proportional hazard
rate and proportional reversed hazard rate orders and their related aging classes similarly and
studied preservation properties of them under some system structures.
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Definition 2. If X and Y are continuous and non-negative random variables, then we will
say that

(1) X is smaller than Y in the proportional likelihood ratio order (proportional hazard rate order,
proportional reversed hazard rate order), denoted by, X ≤plr (≤phr,≤prh)Y , if λX ≤lr (≤hr,≤rh)Y
for all 0<λ≤ 1.

(2) X has the increasing proportional likelihood ratio (increasing proportional hazard rate) prop-
erty, X ∈ IPLR (IPHR), if X ≤plr (≤phr)X.
In the next section we introduce shifted proportional likelihood ratio order and study some results.

3. The shifted proportional likelihood ratio order

Up (Down) shifted proportional likelihood ratio order is introduced for continuous and non-
negative random variables. Here, we obtain some results for the up shifted proportional likelihood
ratio order. The results can be obtained for the down shifted proportional likelihood ratio order in
a similar manner.
Definition 3. Let X and Y be two continuous and non-negative random variables.

(1) We say that X is smaller than Y in the up proportional likelihood ratio order (X ≤plr↑ Y ), if
[X −x|X >x]≤plr Y for all x≥ 0.

(2) X is smaller than Y in the down proportional likelihood ratio order (X ≤plr↓ Y ), if X ≤plr
[Y −x|Y > x] for all x≥ 0.

Theorem 1. Let X and Y be two continuous and non-negative random variables.

(1) X ≤plr↑ Y if and only if g(λt)

f(t+x)
is increasing in t∈ (lX −x,uX −x)∪ ( lY

λ
, uY
λ
) for all x≥ 0.

(2) X ≤plr↓ Y if and only if g(λt+x)

f(t)
is increasing in t≥ 0, for all x≥ 0.

(3) X ≤plr↑ Y and X ≤plr↓ Y imply X ≤lr↑ Y and X ≤lr↓ Y respectively.

Definition 4. A continuous non-negative random variable X admits up increasing propor-
tional likelihood ratio property, denoted by X ∈UIPLR, if X ≤plr↑X.

Theorem 2. Let X and Y be two continuous non-negative random variables. Then,

(1) If X ≤lr↑ Y and X ∈ IPLR then, X ≤plr↑ Y .

(2) If X ≤plr Y and f is log-concave then, X ≤plr↑ Y .

(3) If X ≤lr Y and Y ∈UIPLR then, X ≤plr↑ Y .

Proof We prove only the case (3), the proofs of the other parts are clear. When X ≤lr Y , then
lX ≤ lY and uX ≤ uY , so,

lX
λ
≤ lY

λ
and uX

λ
≤ uY

λ
. If uX − x≤

lY
λ
, the proof is complete. Otherwise,

if lY
λ
< uX − x, then for each t ∈ ( lY

λ
, uX − x) we get g(λt)

f(t+x)
= g(λt)

g(t+x)

g(t+x)

f(t+x)
, which both right frac-

tions are increasing in t ∈ ( lY
λ
, uX − x), note that if t ∈ ( lY

λ
− x, uY

λ
− x), then g(t+ x)> 0. Since

lX −x≤
lY
λ
<uX −x≤

uY
λ
, using Definition 3 the proof is complete. �

The following result helps us to find for systems the components with less dispersion in up propor-
tional likelihood ratio order.
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Theorem 3. Let X and Y be two continuous non-negative random variables. If X ≤plr↑ Y ,
then, there exists a random variable Z ∈UIPLR, such that X ≤plr Z ≤plr Y .

Proof For uX ≤ lY take Z as an arbitrary random variable with UIPLR property taking values on
[uX , lY ]. Suppose that lY ≤ uX . Set kX = f ′

f
and kY = g′

g
which are transformations of X and Y ,

respectively. We know that

X ≤plr↑ Y ⇐⇒ kX(t+x)≤ λkY (λt), ∀x≥ 0, t∈ (lY , uX −x)
⇐⇒ kX(t

′)≤ λkY (λt), ∀lY ≤ t < t
′ ≤ uY . (3.1)

Define k∗(t) = max
ν≥t

kX(ν), t ∈ (lY , uX). By Lillo et al. (2001), f ∗(t) = (
∫ uX

lY
e
∫ s
t k
∗(ν)dνds)−1, t ∈

(lY , uX), is a density function on (lY , uX), which admits the UIPLR property. Hence, kX(t) ≤
λk∗Y (λt), ∀t∈ (lY , uX), thus X ≤plr Z. Finally, from (3.1), k∗(t)≤ λkY (λt), ∀t∈ (lY , uX), so Z ≤plr
Y holds. �

Example 1. Let X and Y be two independent random variables. If X ≤plr↑ Y , using Corollary
1.C.34 of Shaked and Shanthikumar (2007), there exists a random variable Z ∈UIPLR such that
min{X,Y } ≤plr min{Y,Z} and max{X,Y } ≤plr max{Y,Z}.

Theorem 4. Let {Xj} and {Yj} be two sequences of continuous and non-negative random vari-
ables such that Xj −→X in law and Yj −→ Y in law as j −→∞, where X and Y are continuous
and non-negative random variables. If Xj ≤plr↑ Yj, j = 1,2, ... then, X ≤plr↑ Y .

Proof For each interval I ∈ [0,∞) write P (I) = P (X ∈ I), Pj(I) = P (Xj ∈ I), Q(I) = P (Y ∈ I)
and Qj(I) = P (Yj ∈ I). Also, for any interval I ∈ [0,∞] and x > 0 define I + x = {y + x;y ∈ I}.
Finally, for any two intervals I and J we say I ≤ J if x∈ I and y ∈ J imply x≤ y.
We see that Xj ≤plr↑ Yj if and only if Pj(J + x)Qj(λI) ≤ Pj(I + x)Qj(Jλ) for all intervals I,
J ∈ [0,∞] such that I ≤ J and x > 0. Since Xj −→X in law and Yj −→ Y in law as j −→∞, we
get, using the continuity of X and Y , that P (J + x)Q(λI) ≤ P (I + x)Q(λJ) for all intervals I,
J ∈ [0,∞] such that I ≤ J and x> 0, that leads to, X ≤plr↑ Y . �

The weighted distributions were first proposed by Fisher (1934) and formalized later by Rao
(1965). Statistical applications of the weighted distributions are especially used to the analysis of
data relating to human populations, ecology, forestry and reliability. Readers may refer to Patil and
Rao (1977), Gupta and Keating (1986), Kochar and Gupta (1987), Jain et al. (1989), Bartoszewicz
and Skolimowska (2004), Belzunce et al. (2004), Misra et al. (2008), Bartoszewicz (2009) and Izad-
khah et al. (2013) for more details. Here, we present the results for up proportional likelihood ratio
order, for others, they can be obtained similarly.

Let wi : R −→ R+, i = 1,2 be a weight function such that 0 < E(wi(Xi)) <∞, i = 1,2. Define a
random variable Xwi with distribution function

Fwi(x) =
1

E(wi(X))

∫ x

−∞

wi(u)dF (u),

and we call Xwi the weighted random variable corresponding to X and wi for i = 1,2. For an
absolutely continuous distribution F the probability density function of Xwi is given by

fwi(x) =
wi(x)f(x)

E(wi(X))
, i= 1,2.

Define by SwiX = {x ∈ SXi : wi(x)> 0} the support of Xwi where SXi is the support of Xi, i= 1,2.
We now list some well-known weight functions as follows:
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(a) size biased of order pi, i= 1,2; wi(x) = xpi , pi =1,2, ..., i= 1,2;
(b) moment generating; wi(x) = elix,−∞< li <+∞, i=1,2;
(c) right truncated at θi, i=1,2;wi(x) = I(−∞,θi](x),−∞<θi <+∞, i= 1,2;
(d) left truncated at θi, i=1,2;wi(x) = I(θi,∞)(x),−∞< θi <+∞, i= 1,2;
(e) proportional hazard rates; wi(x) = (F̄i(x))

ki−1, ki > 0, i= 1,2;
(f) proportional reversed hazard rates; wi(x) = (Fi(x))

ji−1, ji > 0, i= 1,2;
(g) order statistics; wi(x) = (Fi(x))

ki−1.(F̄i(x))
ni−ki , ki= 1,2, ..., ni, i= 1,2;

(h) upper records; wi(x) = (−lnF̄i(x))
ni, ni = 1,2, ..., i= 1,2;

(i) lower records; wi(x) = (−lnFi(x))
mi,mi = 1,2, ..., i= 1,2;

(j) general weight function; wi(x) = elixxpiF ji
i (x)F̄ ki

i (x) where li, pi, ji, ki ∈R, i= 1,2.

The general weight function, given in (j), contains the ones in (a), (b), (e), (f), and (g), respectively,
when (li = ji = ki = 0), (ji = ki = pi = 0), (li = ji = pi = 0, ki = ki− 1), (li = ki = pi = 0, ji = ji− 1),
and (li = pi =0, ji = ki− 1, ki= ni− ki) for i=1,2.
In the next theorems, conditions for preservation of this orderings under weighted distributions are
given.

Theorem 5. If X ∈UIPLR and w(λx) is increasing in x then, X ≤plr↑X
w.

For example some weights such as w(x) = xi, w(x) = F n(x) and w(x) = elx satisfy in the above
result.
Example 2. Let X ∼ Exp(µ) and w(x) = xi, then Xw ∼ gamma(i + 1, µ) and fw(λx+t)

f(x)
is

increasing and so X ≤plr↑X
w.

Theorem 6. Suppose that w1 and w2 be weight functions and Xw1 and Xw2 be corresponding
random variables with densities functions fw1

and fw2
respectively. if X ∈ UIPLR and w2(λt)

w1(t+x)
is

increasing in t, then, Xw1 ≤plr↑X
w2 .

Proof We get

fw2
(λt)

fw1
(t+x)

= [
λw2(λt)f(λt)

E(w2(X))
][

E(w1(X))

w1(t+x)f(t+x)
]

= λ[
E(w1(X))

E(w2(X))
][
w2(λt)

w1(t+x)
][
f(λt)

f(t+x)
],

which is increasing in t. �

Example 3. Let X ∈ UIPLR, with consideration the following weight functions we have
Xw1 ≤plr↑X

w2 .
(1) If w1(t) =w2(t) = t then, w2(λt)

w1(t+x)
= λt

t+x
in which d

dt
λt
t+x

≥ 0.

(2) If w1(t) = tn and w2(t) = tm for t≥ 0 and n>m, then, h(t) = w2(λt)

w1(t+x)
= (λt)n

(t+x)m
and,

d

dt
h(t) =

nλntn−1(t+x)m−m(λt)n(t+x)m−1

(t+x)2m

=
λntn−1(t+x)m−1[n(t+x)−mt]

(t+x)2m

=
λntn−1(t+x)m−1[t(n−m)+nx]

(t+x)2m
≥ 0.

(3) If w1(t) = el1t and w2(t) = el2t such that l1
l2
<λ. For other weights it can be checked similarly.
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4. The shifted proportional hazard rate order

We can do a process similar to the previous section for proportional (reversed) hazard rate order.
Here, we do it only for proportional hazard rate order. It is evident that all of the results can be
obtained for proportional reversed hazard rate order similarly.
Definition 5. For continuous and non-negative random variables X and Y , we say that

(1) X is smaller than Y in the up proportional hazard rate order (X ≤phr↑ Y ), If [X−x|X >x]≤phr
Y, ∀x≥ 0.

(2) X is smaller than Y in the down proportional hazard rate order (X ≤phr↓ Y ), if X ≤phr
[Y −x|Y > x], ∀x≥ 0.

Actually, X ≤phr↑ Y if and only if, Ḡ(λt)

F̄ (t+x)
,∀x≥ 0, is increasing in t∈ (0, uY

λ
) and X ≤phr↓ Y if and

only if, Ḡ(λt+x)

F̄ (t)
, ∀x≥ 0 is increasing in t≥ 0.

(3) X has up increasing proportional hazard rate property, X ∈ UIPHR, if X ≤phr↑ X, and has
down increasing proportional hazard rate property, X ∈DIPHR, if X ≤phr↓X.
It is evident that, X ≤phr↑ Y ⇒X ≤phr Y and X ≤hr↑ Y .

Theorem 7. Let X and Y be two continuous and non-negative random variables.

(1) If X ≤hr Y and Y ∈UIPHR (DIPHR), then X ≤phr↑ Y (X ≤phr↓ Y ).

(2) If X ≤hr↑ Y and F̄ is log-concave then X ≤phr↑ Y .

Theorem 8. Let X and Y be two continuous and non-negative random variables. If X ≤phr↑ Y ,
then for each concave and strictly increasing function ψ that ψ(Y )∈UIPHR we have ψ(X)≤phr↑
ψ(Y ).

Proof Let F̄ψ(X) and Ḡψ(Y ) be survival functions of ψ(X) and ψ(Y ), respectively. We should prove

that
Ḡψ(Y )(λt)

F̄ψ(X)(t+x)
is increasing in t. We know that,

Ḡψ(Y )(λt)

F̄ψ(X)(t+x)
=

Ḡ(ψ−1(λt))

F̄ (ψ−1(t+x))
= [

Ḡ(ψ−1(λt))

Ḡ(ψ−1(t))
][

Ḡ(ψ−1(t))

F̄ (ψ−1(t+x))
].

By assuming ψ(Y ) ∈UIPHR, so, Ḡ(ψ−1(λt))

Ḡ(ψ−1(t))
is increasing in t. Also, when X ≤phr↑ Y , using The-

orem 6.24 of Lillo et al. (2001), Ḡ(ψ−1(t))

F̄ (ψ−1(t+x))
is increasing in t , so,

Ḡψ(Y )(t)

F̄ψ(X)(t+x)
is increasing in t,

consequently, ψ(X)≤phr↑ ψ(Y ). �

Theorem 9. Let X and Y be two continuous and non-negative random variables which X ≤phr↓
Y and ψ is strictly increasing function such that ψ(Y )∈DIPHR, then, ψ(X)≤phr↓ ψ(Y ).

Proof Suppose that F̄ψ(X) and Ḡψ(Y ) be survival functions of ψ(X) and ψ(Y ) respectively. We

must prove that
Ḡψ(Y )(λt+x)

F̄ψ(X)(t)
is increasing in t. We have,

Ḡψ(Y )(λt+x)

F̄ψ(X)(t)
=
Ḡ(ψ−1(λt+x))

F̄ (ψ−1(t))
= [

Ḡ(ψ−1(λt+x))

Ḡ(ψ−1(t))
][
Ḡ(ψ−1(t))

F̄ (ψ−1(t))
],
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when ψ(Y ) ∈ DIPHR, Ḡ(ψ−1(λt+x))

Ḡ(ψ−1(t))
is increasing in t. Since X ≤phr↓ Y =⇒ X ≤hr Y and so

ψ(X) ≤hr ψ(Y ), then, Ḡ(ψ−1(t))

F̄ (ψ−1(t))
is increasing in t. Hence,

Ḡψ(Y )(λt+x)

F̄ψ(X)(t)
is increasing in t, that is,

ψ(X)≤phr↓ ψ(Y ). �

Theorem 10. Let X and Y be continuous and non-negative random variables. If X ≤phr↑ Y ,
then, there exists a random variable Z ∈UIPHR, such that X ≤phr Z ≤phr Y .

Proof If uX ≤ lY then take Z to be any random variables that has UIPHR property on [uX , lY ].
Therefore, suppose that lY ≤ uX .

X ≤phr↑ Y ⇐⇒ rX(t+x)≥ λrY (λt), ∀x≥ 0, t∈ (lY , uX −x)
⇐⇒ rX(t

′)≥ λrY (λt), lY ≤ t < t
′ ≤ uX . (4.1)

Define r∗(t) =max
ν≤t

rY (ν), t∈ (lY , uY ). By Lillo et al. (2001), r∗ defines a hazard rate function on

(lY , uY ) and it is sufficient that consider Z has the hazard rate function r∗. By assumption r∗ is
increasing in t, so, r∗(t′) ≥ λr∗(λt), and therefore, Z ≤phr Y . Finally, from (4.1), it follows that
rX(t)≥ λr

∗(λt), for all t∈ (lY , uX), so, X ≤phr Z. �

5. Applications

In the Poisson shock models, if N and Xj denote the number of shocks survived by the system
and the random interval time between the j−1-th and j-th shocks respectively, then the lifetime T

of the system is given by T =
N
∑

j=1

Xj. In particular, if the intervals are assumed to be independent

and exponentially distributed with parameter µ, then the distribution function of T can be written
as

H(t) =
∞
∑

k=0

e−µt(µt)k

k!
Pk, t≥ 0,

where Pk = P (N ≤ k) for all positive integer k.
Suppose that a device is subject to shocks occurring randomly as events in a Poisson process with
constant µ. Also, consider that the device has probability P̄k =1−Pk of surviving the first k shocks,
where 1 = P̄0 ≥ P̄1 ≥ .... The survival function of the device is given by

F̄ (t) =
∞
∑

k=0

e−µt(µt)k

k!
P̄k. (5.1)

Let pk+1 = P̄k − P̄k+1, k = 0,1,2, ..., and let f(t) be the probability function corresponding to
survival function F̄ (t), such that

f(t) =
∞
∑

k=0

e−µt(µt)k

k!
µpk+1. (5.2)

Consider another device that has contains similar to the above device and has probability of
surviving first k shocks, where 1 = Q̄0 ≥ Q̄1 ≥ .... The survival function of this device is given by

Ḡ(t) =
∞
∑

k=0

e−µt(µt)k

k!
Q̄k. (5.3)

Let qk+1 = Q̄k − Q̄k+1, k = 0,1,2, ..., and let g(t) be the probability function corresponding to
survival function Ḡ(t), such that

g(t) =
∞
∑

k=0

e−µt(µt)k

k!
µqk+1. (5.4)
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Notice that if N is distributed as geometric distribution with p.m.f pj = qj−1p, j = 1,2, ... then
the distribution given in (5.1), coincides with an exponential distribution with parameter µ(1−p).
Using this, we obtain in the next theorem the optimal upper bound for lifetime of the system.

Theorem 11. Let N1 and N2 denote the number of shocks survived by two systems with dis-
tribution functions defined as in (5.1) and (5.3), respectively. Assume further that Gp denotes the
geometric distribution with parameter p, which is independent of N2. Then, N1 ≤hr↑ min(Gp,N2),
for all p∈ (0,1], implies that X ≤phr↑ Y .

Proof For any c > 0 and λ∈ (0,1], we get

Ḡ(λt+ s)− cF̄ (t) =
∞
∑

j=0

e−λssj

j!

∞
∑

k=0

e−µλt(µt)k

k!
(λk+jQ̄k+j − c1P̄k)

=
∞
∑

j=0

e−λssj

j!

∞
∑

k=0

e−µλt(µt)k

k!
(P (N2>k+ j)P (G1−λ> k+ j)− c1P̄k)

=
∞
∑

j=0

e−λssj

j!

∞
∑

k=0

e−µλt(µt)k

k!
(P (min(N2,G1−λ)> k+ j)− c1P̄k),

where c1 = ce−µt(1−λ). Now, by assumption P (min(N2,G1−λ)> k+ j)− c1P̄k has at most one change
of sign. The conclusion now follows. �

The following result is also obtained for ≤plr↑ ordering.

Theorem 12. Under the assumptions of Theorem 11 if,N1 ≤lr↑ (
N2+Gp

2
|N2 =Gp), for all p ∈

(0,1], then X ≤plr↑ Y .

Proof For any real c and λ∈ (0,1], we have

g(λt+ s)− cf(t) =
∞
∑

j=0

e−λssj

j!

∞
∑

k=0

e−µλt(µt)k

k!
µ
(

λk+jqk+j+1− c1pk+1

)

=
∞
∑

j=0

e−λssj

j!

∞
∑

k=0

e−µλt(µt)k

k!
µ

(

P (G1−λ= k+ j+1)P (N2 = k+ j+1)

1−λ
− c1pk+1

)

=
∞
∑

j=0

e−λssj

j!

∞
∑

k=0

e−µλt(µt)k

k!
µ

(

P (N2 =G1−λ)

1−λ
P (
N2 +G1−λ

2
= k+ j+1|N2 =G1−λ)− c1pk+1

)

=
∞
∑

j=0

e−λssj

j!

∞
∑

k=0

e−µλt(µt)k

k!
µ
P (N2 =G1−λ)

1−λ

(

P (
N2 +G1−λ

2
= k+ j+1|N2 =G1−λ)− c2pk+1

)

,

where c1 = ce−µt(1−λ) and c2 =
(1−λ)c1

P (N2=G1−λ)
. By assumption P (

N2+G1−λ

2
= k+ j+1|N2 =G1−λ)− c2pk+1

has at most one change of sign. Hence the proof is obtained. �

Consider two coherent systems C1 and C2, each consisting of n iid components. Suppose that the
lifetime of components from C1 and C2 have distribution functions F and G respectively. In the
following result, the preservation of up proportional hazard rate order is proved for a coherent
system with i.i.d. components, that is an analogous of Theorem 3.1 of Aboukalam and Kayid
(2007).
Remark Let X and Y be non-negative and absolutely continuous random variables. If X ≤phr↑ Y
then, Ḡ(t+x)≤ F̄ (λx).
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Theorem 13. Let h(p) be the reliability function of coherent system of n independent and

identical components having first and second derivatives h′(p) and h′′(p) respectively. If ph′′(p)

h′(p)
is

decreasing and Ḡ≤phr↑ F̄ , then, h(Ḡ)≤phr↑ h(F̄ ).

Proof We must show that, λf(λt)h′(F̄ (λt))

g(t+x)h′(Ḡ(t+x))
is increasing in t > 0, equivalently,

λ[λf ′(λt)g(t+x)− g′(t+x)f(λt)]+λ[f(λt)g(t+x)][
g(t+x)h′′(Ḡ(t+x))

h′(Ḡ(t+x))
−
λf(λt)h′′(F̄ (λt))

h′(F̄ (λt))
]≥ 0,

thus,

λ[λf ′(λt)g(t+x)− g′(t+x)f(λt)]

+λ[f(λt)g(t+x)][
g(t+x)

Ḡ(t+x)

Ḡ(t+x)h′′(Ḡ(t+x))

h′(Ḡ(t+x))
−
λf(λt)

F̄ (λt)

F̄ (λt)h′′(F̄ (λt))

h′(F̄ (λt))
]≥ 0, (5.5)

which is non-negative because the both terms are non-negative by assumption. �
Consider a system of n independent and not necessarily identical components in which the ith
component has survival function F̄i(t) = 1 − Fi(t), i = 1,2, ..., n. Let h(P) = h(p1, p2, ..., pn) be
the system reliability function. In the following theorem we compare the random lifetimes of two
systems according to the up proportional hazard rate order.

Theorem 14. If
n
∑

i=1

pi∂h/∂pi
h(p)

is decreasing in pi and Xi ≤phr↑ Y, for all i = 1,2, ..., n then,

h(X)≤phr↑ h(Y).

Proof We know that the hazard rate function of a coherent system is:

rh(X)(z+ t) =
n

∑

i=1

rXi(z+ t)F̄Xi(z+ t)
∂h/∂pi
h(p)

|pi=F̄Xi (z+t)

Hence, hypothesis Xi ≤phr↑ Y, gives,

rh(X)(z+ t)≥ λrY (λz)
n

∑

i=1

F̄Xi(z+ t)
∂h/∂pi
h(p)

|pi=F̄Xi (z+t)
,

using the assumption implies that,

rh(X)(z+ t)≥ λrY (λz)
n

∑

i=1

F̄Y (λz)
∂h/∂pi
h(p)

|pi=F̄Xi (z+t)
≡ λrh(Y)(λz),

and the proof is complete. �

In the next theorem we obtain the preservation of the up proportional hazard rate order under the
formation of coherent systems with different and i.i.d. components. Similar results hold concerning
the shifted reversed proportional hazard rate orderings.

Theorem 15. Let h1(p) and h2(p) be the reliability functions of two coherent systems with n
and m components respectively, such that

h′1(p)

h1(p)
≥
h′2(p)

h2(p)
for all p∈ [0,1] (5.6)
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and

p
h′(p)

h(p)
is decreasing in p, when h= h1 or h= h2. (5.7)

If X ≤phr↑ Y, then Th1(X)≤hr↑ Th2(X) where Th1(X) and Th2(X) are the lifetimes of coherent systems.

Proof From Definition 5, it is sufficient to prove that rh1(X)(t+ x)≥ λqh2(Y )(λt) for all t≥ 0 and
x≥ 0, that is

rh1(X)(t+x) =
f(t+x)

F̄ (t+x)

F̄ (t+x)h′1(F̄ (t+x))

h1(F̄ (t+x))

≥ λ
g(λt)

Ḡ(λt)

Ḡ(λt)h′2(Ḡ(λt))

h2(Ḡ(λt))
= λqh2(Y )(λt),

which holds by the hypothesis X ≤phr↑ Y and the conditions (5.6) and (5.7).�

Remark that if we replace conditions (5.6) and (5.7) with

h′1(p)

1−h1(p)
≥

h′2(p)

1−h2(p)
for all p∈ [0,1] (5.8)

and

(1− p)h′(p)

1−h(p)
is increasing in p, when h= h1 or h= h2, (5.9)

similar results hold for the up proportional reversed hazard rate ordering.
Now, we consider a set of independent and not necessarily identically distributed components with
lifetime (X1, ...,Xn) and we establish comparisons in the up proportional hazard rate order between
two coherent systems with different structures formed from this set of components. we will write
a|s| to denote the s-dimensional vector (a1, a2, ..., as).

Theorem 16. Let X1, ...,Xn be the lifetimes of n independent components with increasing den-
sity functions, and h1(p|n|) and h2(p|m|) the reliability functions of two coherent systems with
n≥m. If

1

h1(p|n|)

∂h1

∂pi
(p|n|)≥

1

h2(p|m|)

∂h2

∂pi
(p|m|) for all i= 1, ...,m, (5.10)

and

1

h(p)

∂h

∂pi
(p) is decreasing in each ps of p for all i, when h= h1 or h2 (5.11)

then Th1(X|n|) = Th1(X1,...,Xn) ≤phr↑ Th2(X1,...,Xn) = Th2(X|n|).

Proof The hazard rate function rh(X) of a coherent system with n components and reliability func-
tion h(p1, ..., pn) is given by

rh(X)(t) =
n

∑

i=1

fi(t)[
1

h(p)

∂h

∂pi
(p)]p=(F̄1(t),...,F̄n(t)), (5.12)
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where F̄i and ri are the survival and hazard rate functions of its components (see Boland et al.
1994).
Using (5.12), we have that

rh1(X|n|)(t+x) =
n

∑

i=1

fi(t+x)[
1

h1(p|n|)

∂h1

∂pi
(p|n|)]p|n|=(F̄1(t+x),...,F̄n(t+x))

≥

m
∑

i=1

fi(t+x)[
1

h1(p|n|)

∂h1

∂pi
(p|n|)]p|n|=(F̄1(t+x),...,F̄n(t+x))

≥ λ
m
∑

i=1

fi(λt)[
1

h2(p|m|)

∂h2

∂pi
(p|m|)]p|m|=(F̄1(λt),...,F̄n(λt)) = λrh2(X|m|)(λt),

where the first inequality holds for n≥m, and the second one from (5.10), (5.11) and the mono-
tonicity of the density functions.

6. Conclusions

We studied the shifted proportional likelihood ratio and proportional (reversed) hazard rate
orders and their properties. Conditions, under which these orders are preserved, are also investi-
gated . Also, applications of them are discussed in the reliability theory. Relationships between all
stochastic orders which are mentioned in this article are as below:

≤lr↑ ⇐ ≤plr↑ ⇒ ≤phr↑ ⇒ ≤hr↑
⇓ ⇓ ⇓ ⇓

≤st ⇐ ≤hr ⇐ ≤lr ⇐ ≤plr ⇒ ≤phr ⇒ ≤hr ⇒ ≤st .
⇑ ⇑ ⇑ ⇑
≤lr↓ ⇐ ≤plr↓ ⇒ ≤phr↓ ⇒ ≤hr↓

References

[1] Aboukalam, F. and Kayid, M. (2007). Some new results about shifted hazard and shifted likelihood
ratio orders. International Mathematical Forum, 31, 1525-1536.

[2] Ahmad, I. A., Kayid, M. and Li, X. (2005). The NBUT class of the life distributions. IEEE Transaction
on Reliability, 396-401.

[3] Bartoszewicz, J. and Skolimowska, M. (2004). Stochastic ordering of weighted distributions. University
of Wroclaw.

[4] Bartoszewicz, J. (2009). On a represervation of weighted distributions. Statistics and Probability Letters,
79, 1690-1694.

[5] Belzunce, F., Navarro, J., Ruiz, J. M. and Aguila, Y. D. (2004). Some results on residual entropy
function. Metrika, 59, 147-161.

[6] Belzunce, F., Lillo, R., Ruiz, J. M. and Shaked, M. (2001). Stochastic comparisons of nonhomogeneous
processes. Probability in the Engineering and Informational Sciences, 15, 199-224.

[7] Belzunce, F., Ruiz, J. M. and Ruiz, M. C. (2002). On preservation of some shifted and proportional
orders by systems. Statistics and Probability Letters, 60, 141-154.

[8] Boland, P. J., El-Neweihi, E. and Proschan, F. (1994). Applications of the hazard rate ordering in
reliability and order statistics. Journal of Applied Probability, 31, 180-192.

[9] Brown, M. and Shanthikumar, J. G. (1998). Comparing the variability of random variables and point
processes. Probability in the Engineering and Informational Sciences, 12, 425-444.

[10] Chandra, N. K. and Roy, D. (2001). Some results on reversed hazard rate. Probability in the Engineering
and Informational Sciences, 15, 95-102.



Jarrahiferiz, Borzadaran and Roknabadi: Some properties and applications of shifted proportional stochastic orders
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