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Abstract : This paper deals with the estimation problem of the multicomponent stress-strength reliability
parameter when stress, strength variates are given by two independent one-parameter exponential distribu-
tions with different parameters. It is assumed that Yi,...,Y,, are the random strengths of ny components
subjected to random stresses Xi,...,Xn,. Our study is concentrated on the probability P(X;in, < Yiin,)
and the problem of frequentist and Bayesian estimation of P(X,.n, < Yk, ) based on X- and Y-samples are
discussed. Some special cases are considered and the small sample comparison of the reliability estimates is
made through Monte Carlo simulation.
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1. Introduction

In reliability context, the probability that the random variable X (stress) is exceeded by its
strength which is a realization of a random variable Y is called stress-strength reliability and
is equal to R:= Pr(X <Y). Parametric and non-parametric inferences on R = P(X <Y’) have
been discussed in the literature extensively. The estimator of P(X <Y) when X and Y follow
independent exponential random variables are discussed by several authors, for example see the
works by, Enis and Geisser (1971), Tong (1974), Kelley et al. (1976), Shah and Sathe (1981) and
Chao (1982). Reiser and Guttman (1987) are compared point estimations of R in the normal case.
Empirical Bayes estimation of P(X <Y') is discussed in Ahmad and Fakhry (1997), when X and
Y are Burr Type-X random variables. We refer the readers to Kotz et al. (2003) and references
therein for an extensive review of the topic up to 2003. This book collects and digests theoretical
and practical results on the theory and applications of the stress-strength relationships in industrial
and economic systems. Kunda and Gupta (2005) considered the estimation of R = P(X <Y,
when X and Y are independent and have generalized exponential distribution. Saragoglu and Kaya
(2007) considered frequentist and Bayesian estimation problem of reliability R = P(X <Y) in
the Gompertz case. Eryilmaz (2008a) obtained minimum variance unbiased (MVU) estimator of
the reliability of consecutive k-out-of-n:G system, when the stress and strength distributions are
exponential with unknown scale parameters. Eryilmaz (2010) studied stress-strength reliability for
a general coherent system and illustrated the estimation procedure for exponential stress-strength
distributions.

Multicomponent stress-strength reliability also has been studied by several authors, see for exam-
ples, Bhattacharyya and Johnson (1974), Pandey et al. (1992) and Eryilmaz (2008b). Let us denote
the rth and the kth order statistics from X-sample with sample size n, and Y-sample with sam-
ple size ny, by X,.,, and Yj.,,, respectively. In this paper, we assume Yi,...,Y,,, are the random
strengths of n, component subjected to random stresses Xi,...,X,,. We obtain the reliability
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of stress-strength models based on rth order stress component, X,.,,,, and kth order component
strength, Yi.,.,, i.e, P(X,.,, < Yj.,) which contains all arrangements of components. For example
taking » =n; and k =1 leads to the reliability of series stress-strength system. And, r =n; =1
and k =ny — s+ 1 leads the reliability of a system with n, components where the system functions
when at least s (1 < s <ny) components survive a common random stress X. So, the probability
P(X,.n, <Yin,) generalizes various stress-strength reliability models for particular selection of r
and k.

The rest of this paper is structured as follows: First, we consider special cases of R, = P(X,.,, <
Yi.n,) and determine the reliability of the system for this cases. Then, maximum likelihood esti-
mator (MLE), uniformly minimum variance unbiased estimator (UMVUE) and Bayes estimator of
R, ) are obtained, these are presented in Section 3. In Section 4, a simulation study is performed
to compare the estimators of R, ;. Section 5 contains a brief summary.

2. Model description
Let X and Y be two random variables with exponential distribution with means 1/a and 1/8,
respectively. Then, it is known that the pdf of X and Y are given by

fx(z)=ae ", >0, a>0, (2.1)
and

fy(y)=Be"", y>0,5>0, (2.2)

respectively. Suppose X;,...,X,, and Y;,...,Y,, are two independent samples from X and Y,
respectively. The stresses and the strengths, are assumed to be independent. Under these assump-
tions, we find

Rr,k = P(Xr:nl < Yk:nz) = / FXT;nl (y)fYka (y) dy7 (23>
0

where F,., (y) and fy,m2 (y) stand for the rth cdf and the kth pdf of X,.,, and Y}.,,, respectively.
We recall that for a random sample X,..., X,,, the pdf and cdf of the ith order statistic are given
by

m

fxi:m<x>=i( )F“(w)[l—F(x)]’”"f(w% (2.4)

1

and

Py (=3 @ Fi(@)[1 - F(2)]" ), (2.5)

j=i

respectively, see David and Nagaraja (2003) for more details. By substituting (2.1), (2.2), (2.4)
and (2.5) into (2.3), and doing some calculations, we obtain

ni 0o
— k(" m — e V)i (1 — e~ ¥Bk—1pl—y(a(n1—j)+B(n2—k+1))]
RT’k_k(k;);(j)/o 5(1 e )(1 e ) el™Y 1 2 dy

= k(ij) iiki (731) <Z) (k ! 1) ai+ —g()_+12;++5n2 —k+1)3 (26)

j=r i=0 1=0

In what follows, some special cases of (2.6) are considered.
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2.1. Special cases

For some special cases of R, ;, we obtained a simple expression for the reliability of the system
with different arrangement of the components.

(i) For r=n; and k=1, minimum strength component is subjected to maximum stress compo-
nent. In this case, the probability R, ; is the reliability of a series system with n, component

S () B
Rnl,l—m;(i )( Vs (2.7)

(ii) When r =n; and k = n,, maximum strength component is subjected to maximum stress
component. Then, R, ,, is reliability of a parallel system with n, component

=0 [=0

(ili)) When r =1 and k =1, minimum strength component is subjected to minimum stress com-

ponent. Then , |
w22 (5) () e e

j=1 =0

(iv) For r =n; and k =k, the kth strength order component is subjected to maximum stress
component. In fact in this case, R, j is reliability of the k-out-of-n, system

re= ()X (1) (7 rarm i 2:10)

=0 (=0

3. Estimation of reliability

When the parameters a and 3 are known, then the exact value of R, is simply calculated,
otherwise we have to obtain an estimate of the reliability. In this section, we provide three common
estimators namely the UMVUE, MLE and Bayes estimator for reliability of R, .

3.1. MLE
Let Xi,...,X,, be a random sample of size n; from (2.1) and Y7,...,Y,, be a random sample
of size ny from (2.2). Then, the log likelihood function of the observed samples is readily given by

ni n2
log L, ) = nyloga + nologs — a Z x;—f3 Z Yj.
i=1 j=1

Then the MLE of « and 8 denoted by & and B, receptively, immediately obtained as
ny

S

o=

(3.1)

and

p= (3.2)

2"2 Yi
Due to the invariance property of the maximum likelihood estimator the MLE of R, , denoted by
R, 1, can be easily obtained by replacing o and § by their MLE’s as in (3.1) and (3.2), respectively.
Hence the MLE of R, j, is given by

() EEE (O et 09

j=r i=0 (=0
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- Y
To obtain E(RM), by noting that W = ﬁX has F-distribution with 2n, and 2n,; degree of freedom,
’ «
it is enough to find

E<(¢+n1j)Y+)(§+n2k+1)X>'

For example in the case of series system, we obtain
o B2 ]
L = n
iV +ny X 8 ?

_/°° L(ni+n2) na.,, wn2~1 1
Jo T(n)T(ny) 'nmy (1+ 2w)rrtn n2+%w

. 1 .
= Ll [ R 1 et (1 = g
0 e

dw,

niz 5n§ F(nl)F(TLQ)
(G )" oy F(na 4 n2,na +1,nyna +1;C), |C] <1,
n3 ni1+ng)na

-4 ) (3.4)
(222 )m2 — M F(ny 4+ ng,na,nyne + 15 225), C<—1,

anyi (n1+n2)ng

where C'=1— % and F'(a,b,c;z) is hypergeometric series defined by (see e.g. Abramowtiz and
Stegun, 1992, page 556)

ala+1)...(a+ji—1)b0b+1)...(b+j—1)2
F(a,b,c;2) = : iy 3.5
(a,b,¢;2) ; cle+1)...(c+j5—-1) J! (3:5)
The series in (3.5) is convergent for |z| < 1,¢#0,—1,—2,..., and reduces to a finite sum if a or

b is zero or a negative integer. Since |&] <1 for C' < —1, the hypergeometric series in (3.4) are
always convergent. We used the integral form of hypergeometric series in (3.4) which is given by

F(a)l"(c—b)/o uP™ M1 —w) (1 — ux) " du.

Therefore, the excepted value of Rn1,1 is

BRY ) = mY (")

=0

(emiym M F(ny +ng,my +1,nyn, +1;C), |C|<1,

Bn3 (n1+ng)nz

F(a,b,c;x) =

’I’L2 n
(fo)mmF(nl +ng,n2,n4n9 + 15 %) C<-1,

We have not an analytical expression for MSE of Rr,k, this can be done by using numerical
computations.

3.2. UMVUE )
Let us denote the UMVUE of R, by RY,. To obtain the UMVUE of R, , from (2.6) and using
the linear property of UMVUE;, it is enough to find UMVUE for

_ p
¢(a’6)_a(i+n1—j)+(l+n2—k+1)ﬁ' (3.6)
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To do this, let Xi,...,X,, and Yi,...,Y,, be two independent random samples from (2.1) and
(2.2), respectively. For obtaining UMVU estimator, we use Rao-Blackwell method (see, Rao, 1973,
for more details). An unbiased estimator of ¢(a, ) is given by

]., X1>(Z+n1—])}/1 and Y2>(l+n2—k)Y1,

h(X1,Y1,Ys) = { 0, otherwise.

Since T' = (T},T3) (Z ZY) is a complete sufficient statistic for (a, ), then from Rao-
Blackwell Theorm, the UMVUE of ¢(«, ) is given by

¢(a, ) = E[h(X1,Y1,Ys)|T]
= P(X1> (i4+n,—j)Y1,Ys > (I+ns—k)Y1 | T). (3.7)

Letting 57 = X1/T1, Se =Y, /T, S5 =Y3/T, and V = T,/T;, then, the equation (3.7) can be
expressed as

Obvious that S;, S; and S3 are ancillary statistics, therefore by using Basu’s Theorem (see, Basu,
1955) (51,52, S3) is independent of T'. Consequently, we have

f51.50,95 (51, 82,83 | T') = (ny — 1) (np — 1) (np — 1) (1 — s1)™ (1 — 55)"2 (1 — 53)"2 2,

0<s;<1,i=1,2,3. (3.9)
Using (3.9), for the case (i+n; —j)V <1if l+ny—k <1, we find

d(a,B) = P{S1> (i-+n;—j)V Sy, s> (I+n2 — k)Sz | T}
= / (1—(i+n—j)Vsy)™ (1= (I4+ny—k)sg)"2 " (ng — 1) (1 — 89)"272 dss.
0

When [ +n, — k> 1, we have

~

1
Frg—F
P(a, B) = / T (i — V)" T (A= (I na— k))s2)™ T (na — 1) (1= 52)"2 72 dss.
0
Similarly for the case (i +n; —7)V > 1, we have
1
7 (i+n1=5)V . . ni—1 no—1 ng—2
¢(a, B) =/ (L= (i4n1—j)Vs2)™ (L= (I4+n2—k)s2)™  (na = 1)(1 — 52)" " dsa,
0
when [+ ny —k > 1, we find

$(a, B) = / (L= (i n1 = §)Visa)™ ™ (1= (L4 1y — k)s2)™ (g — 1)(1 — 52)"2 dis,

where E' = min{ (i+n11 2

v l+n127k:}' Summing up, the UMVUE of ¢(a, 3) is given by

QV,1), (i+n—j)V<1, I4+ny—k<1
. Q. i) (i+m -V <1, I+n,—k>1
¢, B) = . .

Q<‘/’(1+n1 J)V) (i+n—HV>1, l+n,—k<1

Q(me{m_n1 ])V’l+n2 1), ((+n =)V >1,1+n,—k>1,
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ni no
where Ty =» X;, Ty =Y Y}, V=T,/T; and

Q(V.p)= /Op(l — (1411 —§)Vs2)" 1= (I4+n5—k)s2)" (ng — 1)(1 — 52)" % dsa.

Since R, is a linear function of ¢(a, ), then the UMVUEs of R, is readily obtained; see, e.g.,
Rao (1973, p. 318).

R =k (”) Yy (")( )( ! 1)(—1)“%3(0«6)- (3.10)

j=r =0 (=0

The UMVU estimator obtained in (3.10) leads to computational complexities, however the variance
of R, ) can be easily obtained numerically.

3.3. Bayes estimator of R,

In this section, we consider the Bayes estimator of R, with respect to the squared error loss
(SEL) function. Let X;,...,X,, and Yi,...,Y,, be two independent random samples taken from
one-parameter exponential distribution with parameters o and g as in (2.1) and (2.2), respectively.
We consider conjugate priors for v and 3, i.e.

w
m(a) = —F—a"lexp{—ya},a > 0,7> 0, >0, (3.11)

(1)

and 3
7(B) = B texp{—AB}, 8> 0,0 > 0,A >0, (3.12)

7(v)
respectively. From (2.1), (2.2), (3.11) and (3.12) the posterior distribution of o and S is as follows

f(z,yla,B)m(a, B)
T T; F @yl Byn(e ) da 4B
— (7+n1$)n1+“<n2)\+y)"2+u
T(n1 + p)7(n2 +v) )
xexp{—a(y+n.,Z) — B(A+n27)}, (3.13)

where x = (24,...,7,,) and y = (y1,...,Yn, ). Note that, from (2.6), R, can be expressed as

B U EEROO()or

j=r i=1 1=0
X[ (Z+Zl )

It is known that the Bayes estimator under SEL function is the mean of the posterior distribution.
Hence, using (3.13) and (3.14), denoting the Bayes estimator of R, ; by Rffk, we have

(o, Blz,y) =

n1+u—16n2+v—1

+l+ny—k+1]71 (3.14)

AR EEE ()0 ()

o) oé:&nzj-b—lT no+v—1
T exp{—a(y+m7) — B+ np)} da db, (3.15)
o Jo EA+B
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where A=i+n;—jand B=Il+n,—k+ 1.

Consider a one-to-one transformation U = ﬁﬁw and W = Aa + B with the inverse o = 1=
Oa da W 1-U

and =Y. The Jacobian | J(U,W) | here is det (U %‘g) = det( w o > Hence, the term
oU oW B B

double integral in equation (3.15) can be reexpressed as

r 1 = A —\ —(n1t+ne+ptv)
(g;:iffl;ﬁjﬂ“)/ unz (] — qp)mteel <(1—u)y+£1x+u +B”2y> du.  (3.16)

By substituting (3.16) in (3.15) and take D=1 — gg;\x?%, finally the Bayes estimator of R, is
given by

w1 S e () SR () (7)o

=0 j=r i=1 [=0

G”QJFU%F(M +n2+,u+v,n2+v+1 ni+ny+pu+v+1;D), Dl <1,

X (3.17)

G e Py +ng + kv, ma + o e+ pt o+ 15 525). D < -1,

where G = 24Q+n20)
B(y+n12) R
We have not a closed form for the risk of R7;, hence numerical computations are needed. As we
recognize, in this case the results lead to some complexities and it is hard to compute the risk of
Rfjk in (3.17). Here, we employ Lindley’s approximation method to obtain Bayes estimates of R, .
Notice that there exists other methods and approximations such as Markov Chain Monte Carlo
(MCMC) method and Tierney-Kadane approximation; see DasGupta (2008) for more details.

3.3.1. Lindley’s approximation
We consider Lindley’s approximation (see, Lindley, 1980) form expanding about the posterior
mode. For the two parameter case A = (A1, A2), Lindley’s approximation leads to

Us=EUN) 2] =U\) +

5B+ Qa0 B2 + Q21 Cha + Q12Ca1 + Qo3 Baul (3.18)

where B=3"" 320 UyTij, Que = 0" $Q/0" M0 Xy, 0,€ =0,1,2,3, n+ £ =3, for i,j=1,2, U; =
8U/3)\1, Uij :82U/8)\18)\] and fOI'i?éj, ij (U 7'”+U TU)T”, Cij :3UiTiiTij+Uj<TiiTjj+27-7;2j) Tij
is the (i,7)th element in the inverse of matrix Q* = (-Qy;), 4,j = 1,2 such that Q* = 0°Q/d\10Xs.
Expansion (3.17) is to be evaluated at (A1, \2), the mode of the posterior density.

In our case, (A1, A2) = (o, ) and Q is given by

Q=loggox (n;+u— 1)loga—a(’y+2xj)+(n2+v— 1)log6—5()\+2yj), (3.19)

also U(a, B) = R,.;. The joint posterior mode, denoted by (&Mod,BMod), is obtained from (3.19),
we have

. n+p—1 3 My TV~ 1

QMod = T Z] 2 and Brroa = N+ Z] U
First, the 7;; elements of the inverse of the matrix Q* = (-Qj;) ,j = 1,2 are given by 71, = mf:izl,
Top = ngfii—l and 712 = To; = 0. Furthermore, Q12 = Q21 =0, Q39 = MPN and Qo3 w
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Substituting the above values in (3.18) and take A=i+n; —j and B=1[1+ny —k+ 1 yields the
Bayes estimate of the function U(«, 3, ) of the unknown parameters o and /8 given by

oL A ELECOC o

« ] Bitod 31,4 Br10aA? _ rr0aB304AB
AnoaA~+ BBroa, (ny+p—1)(&aroaA + /BModB)SA (na +v —1)(&rroaA + BrroaB)?
A A A A
B AnrodProd _ n arodBMod 1. (3.20)

(ny + 1 — 1) (&prodA + BrroaB)?  (na+v —1)(GproaA + BModB)2

Here also we have not a closed form for the risk of RBk as RT «» hence numerical computations are
needed. Notic that Rnk is easy calculable with respect to Rn,C

4. Numerical studies and conclusions

In this numerical study, we have considered the sample sizes of n; = ny = 5,10, 30, which are rep-
resentative of small, moderate and large data sets. We intend to observe the behavior of UMVUE,
MLE and Bayes estimator for different parameters and for different sample sizes in the case of series
system. To compare the performance of MLE and UMVUE, the parameters o and 8 are chosen
in such away that the reliability parameter R, ; in series system equals a given values based on
(2.7). The algorithm used to compute the MSE of UMVU and ML (4;) estimate for series system
are as follows:

1. For given a and 3, we compute R, ; from (2.7) so that it takes the values: 0.01 to 0.99.

2. For given n; and n,, generate a sample size n; from (2.1) and n, from (2.2) with given o and
0, respectively.

3. The estimate §;(MLE or UMVUE) is computed using (3.3) or (3.10).

4. Steps 2-3 are repeated N =10* times and MSE’s and Biases are calculated and are given by

MSE($) = NZ’L 1(0; = Ry, 1)? and Bias((s):%Zi]iﬂéi_Rm,l)'

0.08

12

MLE

o7k - UMVUE||

0.06
0.8

0.6
%004
2o

Bias

0.4
0.03f

0.2
0.02}

0.01f

-0.2
0

FIGURE 1. MSE and Bias for n1 =nos =5.

Using N=10* replications, the Figures 1, 2 and 3 show the MSEs and Biases of R 1 and RM 1
corresponding to different sample sizes ny = ny = 5,10,30. From the Figures 1, 2 and 3, it is
observed that when R, ; is around 0.5 the MSEs are large and when R, ; is small or large, the
MSE for both estimators take small values. We expect the MSEs and Biases of estimators such
as UMVUE or MLE decrease when sample sizes increase. In our case for UMVU, ML and Bayes
estimators when ny,n, increase the average Biases and the MSEs decrease. For large sample sizes
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0.025 T

0.02

0.015

MSE

0.01

0.005

Bias

-0.151

0.2}

-0.251

-0.35-

-0.4
0

0.2 0.4

FIGURE 2. MSE and Bias for n; = ne = 10.

Bias

0.6

0.8 1

0.01

0.008 -

0.006 -

0.004 -

0.002

-0.002
-0.004f °
~0.006 -

-0.008

0.2 0.4

FiGUure 3. MSE and Bias for n; = no = 30.

0.6

0.8 1

the performance of the MLE and UMVUE is similar and in this case we prefer MLE. Since MLE
is easiest to obtain computationally, it has been proposed to use the MLE in practice, when the
sample sizes are sufficiently large.

Also, we study sensitivity the Estimated Risks (ER) of Bayes and approximation Bayes estima-
tors with respect to prior parameters. First for a given vector of parameters (u, v, v, \) which
includes least informative, informative and most informative, for N=10* we generate «; and f;
from the prior distribution in (3.11) and (3.12), respectively. Then we put oy = %Zi\; a; and
Bo = %Zf\; B:. Sample of sizes ny = 5,10,30 and ny = 5,10, 30 are generated from (2.1) with a = ayq
and (2.2) with 8 = 3y, respectively. For the given vector of parameters (i, v, v, A), for N=10*
replication the Bayes and approximation Bayes estimates based on SEL function are computed.

These are presented in Table 1.

TABLE 1. The values of ERs and Bias for estimators in (3.17) and (3.20).

ni=ny pu v v A E(@=BE(B) Var(q)=Var(8) ER(RZ,) Bias(RZ,) ER(RE,) Bias(RZ,)
1 20 1 20 0.05 0.0025 0.4081 0.6388 0.4328 0.6579
5 5 100 5 100 0.05 0.0005 0.3438 0.5864 0.3565 0.5971
10 200 10 200 0.05 0.00025 0.3258 0.5708 0.3338 0.5777
T 20 1 20 0.05 0.0025 0.3338 205778 0.3481 ~0.5900
10 5 100 5 100 0.05 0.0005 0.2764 -0.5257 0.2853 -0.5341
10 200 10 200 0.05 0.00025 0.2499 -0.4999 0.2559 -0.5059
1 20 1 20 0.05 0.0025 0.2539 -0.5038 0.2580 -0.5079
30 5 100 5 100 0.05 0.0005 0.2284 -0.4779 0.2316 -0.4813
10 200 10 200 0.05 0.00025 0.1862 -0.4315 0.1885 -0.4342
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From Table 1, by an empirical evidence, it is observed that the ER’s is sensitive with respect to
prior parameters, and also is decrease as the sample size increases. Moreover, it is observed that
the estimated risks of R, is less than that of R7,.

5. Summary

In this paper, we have studied the problem of estimating R, j = P(X,.,, < Y.,,) for the exponen-
tial distribution. We obtain different point estimators, namely MLE, UMVUE and Bayes estimator.
It is observed that in series system for large sample sizes the performance of the MLE and UMVUE
is similar and in this case the MLE is preferred. Since MLE is easiest to obtain computationally,
it has been proposed to use the MLE in practice, when the sample sizes are sufficiently large. The
Baysian estimator of R, ; is obtained by using series expansion and Lindley’s approximation meth-
ods. It is observed that the estimated risks in Lindley’s approximation is less than Bayes estimator.
Therefore, Lindley’s approximation is a better alternative for the case in which the Bayes estima-
tor of R, ) cannot be obtained in explicit forms. Finally, we emphasize here that the probability
P(X,.n, <Yin,) generalizes various stress-strength reliability models for particular selection of r
and k.
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