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Oscillation criteria for a certain class of fractional
order integro-di�erential equations
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Abstract

In this paper, we shall give some new results about the oscillatory
behavior of nonlinear fractional order integro-di�erential equations with
forcing term v(t) of form

Dα
ax(t) = v(t)−

t∫
a

K(t, s)F (s, x(s))ds, 0 < α < 1, lim
t→a+

J1−α
a x(t) = b1,

where v, K and F are continuous functions, b1 ∈ R, and Dα
a and J1−α

a

denote the Riemann-Liouville fractional order di�erential and integral
operators respectively.
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1. Introduction

Fractional order di�erential equations have gained more importance in last two decades
because of their various applications in di�erent disciplines of science and engineering,
such as in control theory, viscoelasticity, electromagnetic, etc. [5, 9, 14, 18]. Many
mathematicians have studied the existence and uniqueness of solutions, the stability of
solutions, the methods of explicit and numerical solutions of fractional order di�erential
equations [3, 11, 13, 20, 24, 25]. For a background of the subject, we refer in particular
to the books [2, 10, 19, 22, 23].

As far as the oscillation theory of fractional order di�erential equations are concerned,
there are only a few papers. To the best of our knowledge, the paper by Grace et al.
[15] has initiated the study of oscillation theory for fractional di�erential equations. In
mentioned paper, the authors established several results criteria for solutions of equations
in the form

Dα
ax+ f1(t, x) = v(t) + f2(t, x)

satisfying the initial condition

lim
t→a+

J1−α
a x(t) = b1,

where Dα
a denotes the Riemann-Liouville fractional di�erential operator of order α with

0 < α < 1. The operator Jαa de�ned by

Jαa x(t) :=

t∫
a

(t− s)α−1

Γ(α)
x(s)ds

is called the Riemann-Liouville fractional integral operator of order α. Note that

f ≤ g =⇒ Jαa (f) ≤ Jαa (g). (∗)

The Riemann-Liouville fractional di�erential operator of order α with m − 1 < α <
m, m ∈ N , is given by

Dα
ax(t) :=

dm

dtm
Jm−αa x(t),

as a special case for 0 < α < 1, Riemann-Liouville fractional di�erential operator is given
by

Dα
ax(t) :=

d

dt
J1−α
a x(t).

Following the work developed in [15], Chen et al. in the [6] studied the fractional
di�erential equation{

(Dα
ax) (t) + f1(t, x) = v(t) + f2(t, x), t > a ≥ 0,(

Dα−k
a x

)
(t) = bk (k = 1, 2, ...,m− 1), lim

t→a+

(
Im−αa x

)
(t) = bm.

and established some new results di�erent than the ones obtained in [15]. Here, Im−αa is
also a Riemann- Liouville fractional integral operator.

Further results on the oscillation theory of fractional order di�erential equations can
be found in [1, 4, 7, 8, 12, 16, 21].

In the present work, we study the oscillatiory behavior of solutions of nonlinear frac-
tional order integro-di�erential equations with forcing term v(t) of form

(1.1) Dα
ax(t) = v(t)−

t∫
a

K(t, s)F (s, x(s))ds, 0 < α < 1, lim
t→a+

J1−α
a x(t) = b1,
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where v, K and F are continuous functions, b1 ∈ R, and Dα
a and J1−α

a denotes the
Riemann-Liouville fractional order di�erential and integral operators, respectively. The
equation that we considered above is more general than those investigated before in the
literature.

By a solution of Eq.(1.1), we mean a nontrivial function x ∈ C (J,R) , with J =
(a,∞) , satis�es Eq.(1.1) for t ≥ a ≥ 0. A solution is said to be oscillatory if it has
arbitrarily large zeros on (0,∞); otherwise, it is called nonoscillatory.

2. Results for Riemann-Liouville derivative

With regard to Eq. (1.1) we assume that

(i) v : J → R and K : J × J → R are continuous functions with K(t, s) ≥ 0 for
t > s;

(ii) there exist continuous functions p, q : J → [0,∞) such that

K(t, s) ≤ p(t)q(s) for all t ≥ s;

(iii) F : J × R→ R, with F (t, x) := f1(t, x)− f2(t, x), is continuous and there exist
continuous functions f1, f2 : J × R → R such that xfi(t, x) > 0 (i = 1, 2) for
x 6= 0 and t ≥ a,

(iv) there exist real constants β, γ and continuous functions p1, p2 : J → (0,∞) such
that

f1(t, x) ≥ p1(t)xβ and f2(t, x) ≤ p2(t)xγ , x 6= 0, t ≥ a.

We will make use of the following lemma, extracted from [17].

2.1. Lemma. If X and Y are nonnegative, then

(2.1) Xλ + (λ− 1)Y λ − λXY λ−1 ≥ 0, λ > 1,

and

(2.2) Xλ − (1− λ)Y λ − λXY λ−1 ≤ 0, λ < 1,

with equality holds if and only if X = Y.

Our �rst result is as follows.

2.2. Theorem. Let conditions (i)-(iii) hold with f2 = 0. If for every constant k > 0

(2.3) lim sup
t→∞

Jαa [v(t)− kp(t)] = +∞

and

(2.4) lim inf
t→∞

Jαa [v(t) + kp(t)] = −∞,

then every solution of Eq.(1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of Eq.(1.1) with f2 = 0. We may assume
that x(t) > 0 for t ≥ t1 for some t1 ≥ a. The case where x(t) < 0 for t ≥ t1 is similar.
From Eq.(1.1), we have

Dα
ax(t) = v(t)−

t∫
a

K(t, s)F (s, x(s))ds

= v(t)−
t1∫
a

K(t, s)f1(s, x(s))ds−
t∫

t1

K(t, s)f1(s, x(s))ds.(2.5)
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Letting

m := min{F (t, x(t)) : t ∈ [a, t1]} ≤ 0 and k := −m
t1∫
a

q(s)ds ≥ 0,

(2.5) leads to

(2.6) Dα
ax(t) ≤ v(t) + kp(t).

Using the monotonicity property (*), we have

JαaD
α
ax(t) ≤ Jαa [v(t) + kp(t)],

and hence

(2.7) x(t) ≤ (t− a)α−1

Γ(α)
b1 + Jαa [v(t) + kp(t)].

In view of (2.4), it follows from (2.7) that

lim inf
t→∞

x(t) = −∞,

which clearly contradicts the assumption that x(t) > 0 eventually. This completes the
proof. �

Next, we have the following results.

2.3. Theorem. Let conditions (i)-(iv) hold with β > 1 and γ = 1. In addition to
conditions of Theorem 1, if

(2.8)

∞∫
a

(t− u)α−1

Γ(α)

u∫
a

K(u, s)p
1

1−β

1 (s)p
β

β−1

2 (s)dsdu <∞,

then every solution of Eq.(1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of Eq.(1.1) with x(t) > 0 for t ≥ t1. From
conditions (iii)-(iv) with β > 1 and γ = 1, we have

(2.9) Dα
ax(t) ≤ v(t) + kp(t) +

t∫
t1

K(t, s)[p2(s)x(s)− p1(s)xβ(s)]ds,

for some k > 0. If we take in (2.1) λ = β, X = p
1
β

1 x and Y =

(
1
β
p2p

−1
β

1

) 1
β−1

, then we

have

(2.10) p2x− p1xβ ≤ (β − 1)β
β

1−β p
−1
β−1

1 p
β

β−1

2 .

Using (2.10) in (2.9), we have

(2.11) Dα
ax(t) ≤ v(t) + kp(t) +

t∫
t1

K(t, s)(β − 1)β
β

1−β p
−1
β−1

1 (s)p
β

β−1

2 (s)ds.
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Applying α order fractional operator Jαa to (2.11), we have

x(t) ≤ (t− a)α−1

Γ(α)
b1 + Jαa [v(t) + kp(t)]

+

t∫
a

(t− u)α−1

Γ(α)

u∫
t1

K(u, s)(β − 1)β
β

1−β p
−1
β−1

1 (s)p
β

β−1

2 (s)dsdu.

(2.12)

Taking limit inferior on both sides of (2.12) as t → ∞, and using (2.4) and (2.8), we
have

lim inf
t→∞

x(t) = −∞,

a contradiction with x(t) > 0 eventually. This completes the proof. �

2.4. Theorem. Let conditions (i)-(iv) hold with β = 1 and γ < 1. In addition to
conditions of Theorem 1, if

(2.13)

∞∫
a

(t− u)α−1

Γ(α)

u∫
a

K(u, s)p
γ

γ−1

1 (s)p
1

1−γ

2 (s)dsdu <∞,

then every solution of Eq.(1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of Eq.(1.1) with x(t) > 0 for t ≥ t1. From
conditions (iii)-(iv) with β = 1 and γ < 1, we have

(2.14) Dα
ax(t) ≤ v(t) + kp(t) +

t∫
t1

K(t, s)[p2(s)xγ(s)− p1(s)x(s)]ds,

for some k > 0. If we take λ = γ, X = p
1
γ

2 x and Y =

(
1
γ
p1p

−1
γ

2

) 1
γ−1

in (2.2), then we

have

(2.15) p2x
γ − p1x ≤ (1− γ)γ

γ
1−γ p

γ
γ−1

1 p
1

1−γ

2 .

Using (2.15) in (2.14), we have

(2.16) Dα
ax(t) ≤ v(t) + kp(t) +

t∫
t1

K(t, s)(1− γ)γ
γ

1−γ p
γ

γ−1

1 (s)p
1

1−γ

2 (s)ds

The rest of the proof is similar to the proof of Theorem 2.3. and will be omitted. �

Finally, we consider the case β > 1 and γ < 1.

2.5. Theorem. Let conditions (i)-(iv) hold with β > 1 and γ < 1. In addition to condi-
tions of Theorem 1, assume that there exists a continuous function ξ : R → (0,∞) such
that

(2.17)

∞∫
a

(t− u)α−1

Γ(α)

u∫
a

K(u, s)p
1

1−β

1 (s)ξ
β

β−1 (s)dsdu <∞,

and

(2.18)

∞∫
a

(t− u)α−1

Γ(α)

u∫
a

K(u, s)ξ
γ

γ−1 (s)p
1

1−γ

2 (s)dsdu <∞,
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then every solution of Eq.(1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of Eq.(1.1) with x(t) > 0 for t ≥ t1. Using
the approach above, from conditions (iii)-(iv) with β > 1 and γ < 1, we have

Dα
ax(t) ≤ v(t) + kp(t) +

t∫
t1

K(t, s)[x(s)ξ(s)− p1(s)xβ(s)]ds

+

t∫
t1

K(t, s)[p2(s)xγ(s)− x(s)ξ(s)]ds,(2.19)

for some k > 0. Taking p2(s) = ξ(s) in (2.10), and p1(s) = ξ(s) in (2.15), (2.19) yields

Dα
ax(t) ≤ v(t) + kp(t) +

t∫
t1

K(t, s)(β − 1)β
β

1−β p
−1
β−1

1 (s)ξ
β

β−1 (s)ds

+

t∫
t1

K(t, s)(1− γ)γ
γ

1−γ ξ
γ

γ−1 (s)p
1

1−γ

2 (s)ds.(2.20)

The rest of the proof is similar to that of Theorem 2.3. �

2.6. Example. Consider the integro-di�erential equation with Riemann-Liouville frac-
tional derivative

(2.21) D
1/3
0 x(t) =

t2/3

Γ(5/3)
+
t4

3
− t

t∫
0

sx(s)ds, lim
t→0+

J
2/3
0 x(t) = 0.

Comparing with Eq.(1.1) with f2 = 0, we have

α =
1

3
, a = b1 = 0, f1(t, x) = x, v(t) =

t2/3

Γ(5/3)
+
t4

3
, K(t, s) = ts.

Conditions (i)− (iii) are satis�ed. But, condition (2.4) fails, since

lim inf
t→∞

[
t+

8t13/3

Γ(16/3)

]
=∞.

One can easily verify that x(t) = t is a nonoscillatory solution of Eq.(2.21). Here,

lim
t→0+

J
2/3
0 x(t) = lim

t→0+

9t5/3

10Γ(2/3)
= 0,

Note that here m = k = 0.

2.7. Example. Consider the integro-di�erential equation with Riemann-Liouville frac-
tional derivative

(2.22) D
1/2
0 x(t) =

8t3/2

3
√
π

+
t5

4
− t4

3
− t

t∫
0

s

[
x(s)− x(s)

s

]
ds, lim

t→0+
J
1/2
0 x(t) = 0.

Now we have

α =
1

2
, a = b1 = 0, f1(t, x) = x, f2(t, x) =

x

t
, v(t) =

8t3/2

3
√
π

+
t5

4
− t4

3
, K(t, s) = ts.



205

Conditions (i) − (iv) are satis�ed with γ = 1, β = 2 and p1(t) = t−3, p2(t) = t. But,
condition (2.8) is not, because

lim
t→∞

1

7
√
π

t∫
0

(t− u)−1/2u8du =∞.

One can easily verify that x(t) = t2 is a nonoscillatory solution of Eq.(2.22), as

lim
t→0+

J
1/2
0 x(t) = lim

t→0+

16t5/2

15
√
π

= 0.

3. Results for Caputo Fractional Derivative

If we replace the Caputo fractional derivative by the Riemann-Liouville fractional
derivative de�ned by

CDq
af(t) = Jm−qa f (m)(t), m− 1 < q < m, m ∈ N,

Eq.(1.1) turns into

(3.1)
CDα

ax(t) = v(t)−
t∫
a

K(t, s)F (s, x(s))ds, m− 1 < α < m,

Dix(a) = bi ∈ R, i = 0, 1, ...,m− 1

Below we provide corresponding results for (3.1). Since the arguments are similar to
the Riemann-Liouville case, we only give the proof of the �rst theorem.

3.1. Theorem. Let conditions (i)-(iii) hold with f2 = 0. If for every constant k > 0

(3.2) lim sup
t→∞

t1−mJαa [v(t)− kp(t)] = +∞

and

(3.3) lim inf
t→∞

t1−mJαa [v(t) + kp(t)] = −∞,

then every solution of Eq.(3.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of Eq.(3.1) with f2 = 0. We may assume
that x(t) > 0 for t ≥ t1. Proceeding as in the proof of Theorem 1, we have

(3.4) CDα
ax(t) ≤ v(t) + kp(t).

Applying the α order fractional operator Jαa to (3.4), we have

(3.5) t1−mx(t) ≤
m−1∑
k=0

Dkx(a)

k!
(t− a)k−m+1 + t1−mJαa [v(t) + kp(t)]

Using (3.3) we see that

lim inf
t→∞

x(t)

tm−1
= −∞.

This however contradicts the fact that x(t) > 0 eventually. This completes the proof. �

3.2. Theorem. Let conditions (i)-(iv) hold with β > 1 and γ = 1. In addition to
conditions of Theorem 5, if

(3.6) lim
t→∞

t1−m
t∫
a

(t− u)α−1

Γ(α)

u∫
a

K(u, s)p
1

1−β

1 (s)p
β

β−1

2 (s)dsdu <∞,

then every solution of Eq.(3.1) is oscillatory.
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3.3. Theorem. Let conditions (i)-(iv) hold with β = 1 and γ < 1. In addition to
conditions of Theorem 5, if

(3.7) lim
t→∞

t1−m
t∫
a

(t− u)α−1

Γ(α)

u∫
a

K(u, s)p
γ

γ−1

1 (s)p
1

1−γ

2 (s)dsdu <∞,

then every solution of Eq.(3.1) is oscillatory.

3.4. Theorem. Let conditions (i)-(iv) hold with β > 1 and γ < 1. In addition to condi-
tions of Theorem 5, assume that there exists a continuous function ξ : R → (0,∞) such
that

(3.8) lim
t→∞

t1−m
t∫
a

(t− u)α−1

Γ(α)

u∫
a

K(u, s)p
1

1−β

1 (s)ξ
β

β−1 (s)dsdu <∞,

and

(3.9) lim
t→∞

t1−m
t∫
a

(t− u)α−1

Γ(α)

u∫
a

K(u, s)ξ
γ

γ−1 (s)p
1

1−γ

2 (s)dsdu <∞,

then every solution of Eq.(3.1) is oscillatory.,

3.5. Example. Consider the integro-di�erential equation with Caputo fractional deriv-
ative

(3.10) CD
3/2
0 x(t) =

2t1/2√
π

+
t5

4
− t

t∫
0

sx(s)ds, x(0) = 0, x′(0) = 0.

Comparing with Eq.(3.1) with f2 = 0, we see

α =
3

2
, a = b1 = b2 = 0, f1(x, t) = x, v(t) =

2t1/2√
π

+
t5

4
, K(t, s) = ts.

Conditions (i)− (iii) are satis�ed. But, condition (3.3) does not satisfy, because

lim inf
t→∞

[
t

2
+

256t11/2

9009
√
π

]
=∞.

One can e�ortlessly verify that x(t) = t2 is a nonoscillatory solution of Eq.(3.1).

We end this work with following remark.

3.6. Remark. We noting that the function

K(t, s) =
(t− s)α−1

Γ(α)

satis�es assumptions (i) and (ii). Therefore, the results given above are valid for equa-
tions of the form

Dα
ax(t) = v(t)− Jαa F (t, x(t)), 0 < α < 1, lim

t→a+
J1−α
a x(t) = b3.
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