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Oscillation criteria for a certain class of fractional
order integro-differential equations
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Abstract

In this paper, we shall give some new results about the oscillatory
behavior of nonlinear fractional order integro-differential equations with
forcing term v(t) of form

t
Dx(t) = U(t)f/K(t, 8)F(s,z(s))ds, 0 < a < 1, 11m+J;*‘*m(t) = by,
t—a
where v, K and F are continuous functions, b; € R, and D and J} ¢
denote the Riemann-Liouville fractional order differential and integral
operators respectively.
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1. Introduction

Fractional order differential equations have gained more importance in last two decades
because of their various applications in different disciplines of science and engineering,
such as in control theory, viscoelasticity, electromagnetic, etc. [5, 9, 14, 18]. Many
mathematicians have studied the existence and uniqueness of solutions, the stability of
solutions, the methods of explicit and numerical solutions of fractional order differential
equations [3, 11, 13, 20, 24, 25]. For a background of the subject, we refer in particular
to the books [2, 10, 19, 22, 23].

As far as the oscillation theory of fractional order differential equations are concerned,
there are only a few papers. To the best of our knowledge, the paper by Grace et al.
[15] has initiated the study of oscillation theory for fractional differential equations. In
mentioned paper, the authors established several results criteria for solutions of equations
in the form

Dix+ fi(t,x) = v(t) + f2(t, x)
satisfying the initial condition

lim J2~“x(t) = by,

t—at
where Dy denotes the Riemann-Liouville fractional differential operator of order o with
0 < a < 1. The operator Jo defined by

t

Joz(t) ::/%x(s)ds

is called the Riemann-Liouville fractional integral operator of order o. Note that

f<g = Ja(f) <Ja(9). (%)

The Riemann-Liouville fractional differential operator of order a with m — 1 < a <
m, m € N | is given by
[ —
DZz(t) .= dt—mJ;" “x(t),
as a special case for 0 < a < 1, Riemann-Liouville fractional differential operator is given
by

a

a d 11—«
D = — .
fa(t) = LA a(t)
Following the work developed in [15], Chen et al. in the [6] studied the fractional
differential equation

{ (Dgx) () + fi(t,x) = v(t) + f2(t, x), t>a>0,
(De z)(t) =brx (k=1,2,...,m—1), tlim+ (I ~x) (t) = bm.

and established some new results different than the ones obtained in [15]. Here, 17"~ is
also a Riemann- Liouville fractional integral operator.

Further results on the oscillation theory of fractional order differential equations can
be found in [1, 4, 7, 8, 12, 16, 21].

In the present work, we study the oscillatiory behavior of solutions of nonlinear frac-
tional order integro-differential equations with forcing term v(¢) of form

¢
(1.1)  Dgz(t) =v(t) — /K(t, s)F(s,z(s))ds, 0 < o < 1, lierJ;*&a:(t) = b1,
t—a
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where v, K and F are continuous functions, by € R, and DS and J.~% denotes the
Riemann-Liouville fractional order differential and integral operators, respectively. The
equation that we considered above is more general than those investigated before in the
literature.

By a solution of Eq.(1.1), we mean a nontrivial function z € C (J,R), with J =
(a,00), satisfies Eq.(1.1) for ¢ > a > 0. A solution is said to be oscillatory if it has
arbitrarily large zeros on (0, 00); otherwise, it is called nonoscillatory.

2. Results for Riemann-Liouville derivative

With regard to Eq. (1.1) we assume that

(i) v:J - Rand K : J x J — R are continuous functions with K (¢,s) > 0 for
t>s;
(ii) there exist continuous functions p,q : J — [0, 00) such that

K(t,s) < p(t)q(s) for all t > s;

(iii) F:J xR = R, with F(t,x) := fi(t,x) — f2(t,x), is continuous and there exist
continuous functions fi, f2 : J x R — R such that zf;(¢t,z) > 0 (: = 1,2) for
x#0andt>a,

(iv) there exist real constants 3,~ and continuous functions p1,p2 : J — (0, 00) such
that

filt,) = pi(t)a” and fo(t,z) < pa(t)2”, z#0, t > a.
We will make use of the following lemma, extracted from [17].
2.1. Lemma. If X and Y are nonnegative, then
(21) X4+ A-1DY = AXYM >0, A> 1,
and
(22) X'—(1-NY*-AXY*'<0, A<,
with equality holds if and only if X =Y.
Our first result is as follows.
2.2. Theorem. Let conditions (i)-(1) hold with fo = 0. If for every constant k > 0
(2.3) liillsup(]g‘ [v(t) — kp(t)] = +o0
and
(2.4) 1itrgio£1fJ(;1 [v(t) + kp(t)] = —o0,
then every solution of Eq.(1.1) is oscillatory.

Proof. Let z(t) be a nonoscillatory solution of Eq.(1.1) with fo = 0. We may assume
that z(t) > 0 for ¢ > ¢1 for some ¢t; > a. The case where z(t) < 0 for ¢ > ¢, is similar.
From Eq.(1.1), we have

Diz(t) = v(t)—/K(t,s)F(s,x(s))ds

(2.5) - v(t)—/K(t,s)fl(s,x(s))ds—/K(t,s)fl(s,x(s))ds.
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Letting
m = min{F(t,z(t)) : t € [a,t1]} <0 and k := —m/q(s)ds >0,

(2.5) leads to

(2.6) Dgz(t) <wv(t) + kp(t).

Using the monotonicity property (*), we have
JEDEw(t) < J2[o(t) + kp(t)],

and hence

2.7) st@%%i

In view of (2.4), it follows from (2.7) that

bi + Jg'[v(t) + kp(t)].

lim infz(t) = —oo,
t—o0

which clearly contradicts the assumption that z(¢) > 0 eventually. This completes the
proof. O

Next, we have the following results.

2.3. Theorem. Let conditions (i)-(iv) hold with 3 > 1 and v = 1. In addition to
conditions of Theorem 1, if

oo

(t —u)*? = -
(2.8) / () /K u, s) 11 (s)ps " (s)dsdu < oo,

then every solution of Eq.(1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of Eq.(1.1) with z(¢) > 0 for ¢ > ¢;. From
conditions (#44)-(iv) with 8 > 1 and v = 1, we have

(29)  DSa(t) < v(t) + kp(t) /Ktsm 2(s) — p1 ()2 ()]s,

1 —1\ B—1
for some k > 0. If we take in (2.1) A=3, X =p/zand Y = (%pgplﬁ ) , then we
have

i ;1 L
(2.10)  poz—pra” < (B—1)BTFp Tpy T,

Using (2.10) in (2.9), we have

—1 _B_
(2.11)  D2a(t) < v(t) + kp(t) /Kt ) (B — 1)BTBpI T (8)pF " (s)ds.
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Applying « order fractional operator J5' to (2.11), we have

(t—a)*!
z(t) < Ta)

*/“L/K" (B — )BT (s)p] T (s)dsdu.

a

by + J2w(t) + kp(t)]

(2.12)

Taking limit inferior on both sides of (2.12) as t — co, and using (2.4) and (2.8), we
have

liminfz(t) = —oo,
t— oo
a contradiction with z(¢) > 0 eventually. This completes the proof. O

2.4. Theorem. Let conditions (i)-(iv) hold with 8 = 1 and v < 1. In addition to
conditions of Theorem 1, if

(e o]

(2.13) / — al/Kus )21”()dsdu<oo,

then every solution of Eq.(1.1) is oscillatory.

Proof. Let z(t) be a nonoscillatory solution of Eq.(1.1) with z(¢) > 0 for ¢ > ¢;. From
conditions (#47)-(iv) with 8 =1 and v < 1, we have

(214)  Dga(t) < v(t) + kp(t) / K(t, 5)[pa(s)a” (5) — pr (s)a(s)]ds,

1
1 —1\ 5=1
for some k > 0. If we take A =, X =pJzand Y = (%plp; )7 in (2.2), then we

have

(2.15) pa’ —piz < (L= )y =TpT Py
Using (2.15) in (2.14), we have

1

(2.16)  Dgz(t) < v(t) + kp(t) K(t,s)(1—y)y=> W107 1 (8)ps 7 (s)ds

The rest of the proof is similar to the proof of Theorem 2.3. and will be omitted. O
Finally, we consider the case § > 1 and v < 1.

2.5. Theorem. Let conditions (i)-(iv) hold with 8 > 1 and v < 1. In addition to condi-
tions of Theorem 1, assume that there ezrists a continuous function & : R — (0,00) such
that

< oc 1 1 8
(2.17) / /K u, s) 11 (8)€P-1(s)dsdu < oo,
and

t_uoc 1
(2.18) Kusf’vl 5)py ()dsdu<oo

\8
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then every solution of Eq.(1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of Eq.(1.1) with z(¢) > 0 for ¢ > ¢;. Using
the approach above, from conditions (¢4:)-(iv) with 8 > 1 and v < 1, we have

Diz(t) < w(t)+kp(t) /K (t, 8)[x(s)E(s) — pi(s)z” (s)]ds

t

(2.19) +/K(t,5)[1>2(5)$”(8) — z(s)€(s)]ds,

t1

for some k > 0. Taking p2(s) = £(s) in (2.10), and pi1(s) = £(s) in (2.15), (2.19) yields

(2.20) +/K@@a—ww%@%@£:@w

The rest of the proof is similar to that of Theorem 2.3. O

2.6. Example. Consider the integro-differential equation with Riemann-Liouville frac-
tional derivative
t

1/3 I t* 2/3 _
(2.21) Dy z(t) = + — —t [ sz(s)ds, lim Jj " z(t) =0.
0

I(5/3) ' 3 a8

Comparing with Eq.(1.1) with fo = 0, we have
12/3 -
—, K(t =ts.
TG/3) +3, Kt,s)=ts

o =

s azbl:ov fl(tax):xv U(t):

- wle

Conditions (i) — (i47) are satisfied. But, condition (2.4) fails, since

- 8t13/3
htlg 1£f [t + m} =
One can easily verify that xz(t) =t is a nonoscillatory solution of Eq.(2.21). Here,
¢5/3
Jim Ao (0) = 5575 =0
Note that here m = k = 0.
2.7. Example. Consider the integro-differential equation with Riemann-Liouville frac-

tional derivative
t

3/2 45 4 (s s
(2.22) D(l)/z:rz(t) zt\f + v % —t/s [ﬂc(s) — %] ds, hm Jy / z(t) = 0.

0

Now we have

o=

a=b=0, fit,z) ==z, f2(t,z) =~

53
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Conditions (i) — (iv) are satisfied with v = 1, § = 2 and p1(t) = t ™2, pa(t) = t. But,
condition (2.8) is not, because

. 1 —1/2,8 5 _
t1i>r207\/7? (t—w) u’du = oo.
0
One can easily verify that x(t) = t* is a nonoscillatory solution of Eq.(2.22), as
16t°/2
lim T 2200 = 1i _
Jm Joa(t) = lim 35

3. Results for Caputo Fractional Derivative

If we replace the Caputo fractional derivative by the Riemann-Liouville fractional
derivative defined by

CDLf() = ST (1), m—1<g<m, mEN,
Eq.(1.1) turns into

t
(3.1) “Dex(t) =v(t) — [ K(t,s)F(s,z(s))ds, m—1<a<m,
Diz(a)=b, €R, i=0,1,...m —1

Below we provide corresponding results for (3.1). Since the arguments are similar to
the Riemann-Liouville case, we only give the proof of the first theorem.

3.1. Theorem. Let conditions (i)-(4ii) hold with fo = 0. If for every constant k > 0
(3.2)  limsup ' "JI[u(t) — kp(t)] = 400
t—o0
and
(3.3)  liminf IS o(t) + kp(t)] = —oo,
—00
then every solution of Eq.(3.1) is oscillatory.

Proof. Let z(t) be a nonoscillatory solution of Eq.(3.1) with fo = 0. We may assume
that x(t) > 0 for ¢t > t;. Proceeding as in the proof of Theorem 1, we have

(3:4)  “Dga(t) < v(t) + kp(t).
Applying the « order fractional operator J$ to (3.4), we have

m—1

k
35) et <> D If,(“) (t—a)" ™ Lt I u(t) + kp(t)]
k=0 ’
Using (3.3) we see that
liminf 28 — _

t—oo tm—1

This however contradicts the fact that z(¢) > 0 eventually. This completes the proof. O

3.2. Theorem. Let conditions (i)-(iv) hold with 8 > 1 and v = 1. In addition to
conditions of Theorem &, if

1 B

(3.6) lim tlfm/%/K(u,s)p?(s)pfﬁ(s)dsdu< 00,

t—o0
a

then every solution of Eq.(8.1) is oscillatory.
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3.3. Theorem. Let conditions (i)-(iv) hold with 8 = 1 and v < 1. In addition to
conditions of Theorem 5, if

t
ind 1

(3.7) lim tlfm/%/K(u,s)pfj(s)pﬁ(s)dsdu< 00,

t—ro0
a

then every solution of Eq.(8.1) is oscillatory.

3.4. Theorem. Let conditions (i)-(iv) hold with 8 > 1 and v < 1. In addition to condi-
tions of Theorem 5, assume that there erists a continuous function & : R — (0,00) such
that

t—o0

(3.8) lim tl_m/%/K(u,s)p?(s)gﬁjl(s)dsdu< 00,

and

t—o0

(3.9) lim tl_m/%/K(u,s)gﬁ(s)p;%AY (s)dsdu < oo,

then every solution of Eq.(3.1) is oscillatory.,

3.5. Example. Consider the integro-differential equation with Caputo fractional deriv-
ative
t
ofl/2 45 )
Jr o t/sx(s)ds, z(0) =0, z'(0) = 0.

0

(3.10) °D¥?x(t) =

Comparing with Eq.(3.1) with f2 = 0, we see

3 b= b 212 1P
= - = = = = = —_— K = .
(&3 27 a 1 2 07 fl(l’,t) x, U(t) \/TT' + 4 ) (t7 S) ts

Conditions () — (i4¢) are satisfied. But, condition (3.3) does not satisfy, because

lim inf

t, 256t'1/21

2 90097 |

One can effortlessly verify that x(t) = t* is a nonoscillatory solution of Eq.(3.1).
We end this work with following remark.

3.6. Remark. We noting that the function

(t—s)*"

K(t,s) = ()

satisfies assumptions () and (4¢). Therefore, the results given above are valid for equa-
tions of the form

Dgx(t) =v(t) — JOF(t,z(t), 0 < a < 1, 1im+J;*a:c(t) = bs.
t—a
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