
Hacettepe Journal of Mathematics and Statistics
Volume 46 (2) (2017), 325 � 338

A new improved estimator of population mean in
partial additive randomized response models
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Abstract

In this study, we have developed a new improved estimator for the pop-
ulation mean estimation of the sensitive study variable in Partial Ad-
ditive Randomized Response Models (RRMs) using two non-sensitive
auxiliary variables. The mean squared error of the proposed estimator
is derived and compared with other existing estimators based on the
auxiliary variable. The proposed estimator is compared with [19],[5]
and [13] estimators in performing a simulation study and is found to be
more e�cient than other existing estimators using non-sensitive auxil-
iary variable. The results of the simulation study are discussed in the
�nal section.
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1. Introduction

Respondents sometimes come across sensitive questions, such as gambling, alcoholism,
sexual and physical abuse, drug addiction, abortion, tax evasion, illegal income, mobbing,
political view, doping usage, homosexual activities and many others. Respondents often
do not respond truthfully, or even refuse to answer when asked directly such sensitive
questions. Obtaining valid and reliable information, the researchers commonly use the
randomized response models (RRMs). Starting from the pioneering work of [21], many
versions of RRMs have been developed that can deal with both proportion and mean
estimations. Standard RRMs have been primarily used with surveys that usually require
a �yes �or �no�response to a sensitive question, or a choice of responses from a set of
nominal categories. Nevertheless, the literature on RRMs is comprised of various studies
dealing with situations where the response to a sensitive question results in a quantitative
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variable [5]. Quantitative RRMs are used to estimate the mean value of some behavior in
a population. These RRMs are sub-classi�ed in either additive models or multiplicative
models. In additive models, respondents are asked to scramble their responses using
a randomization device, such as a deck of cards. Each of the cards in the deck has
a number. The numbers in the deck follow a known probability distribution, such as
Normal, Chi-square, Uniform, Poisson, Binomial, or Weibull etc. The respondent is
asked to add his �real response �to the �number listed on card �he/she picked, and then
report only the sum to the interviewer. Multiplicative RRMs are similar to the additive
RRMs. Again, a deck of cards with known probability distribution is used, but now
when the respondents scramble their responses, they are asked to report the product
of the �real response �and the �number listed on the selected card �. The interviewer
cannot see the card and can simply record the reported number [18]. RRMs can also be
categorized by how the respondents are instructed to randomize. If all respondents are
asked to randomize their response, the model is characterized as a �full randomization
model�. If some of the respondents are instructed to randomize their response, the model
is characterized as a �partial randomization model �.

[21] for the �rst time, introduced the randomization method for the proportion of a
population characterized by a sensitive variable. Later, [22], [8] and [20] extended [21]
�s approach to RRMs by estimating the mean of sensitive quantitative variables. Since
then, a large number of RRMs have been developed to estimate the mean of quantitative
variables. [7], [14] proposed additive RRMs while [6], [1], [16], [9], [10] and [11] proposed
multiplicative RRMs. Later, [17] and [4] proposed mixed RRMs with combining additive
and multiplicative techniques.

In sampling theory, it is known that there is a considerable reduction in Mean Square
Error (MSE) equation when auxiliary information is used, in particular when the corre-
lation between the study variable and the auxiliary variable is high [2]. In recent years,
auxiliary information for mean estimation of sensitive variable has been used in RRMs.
[5], [19] and [13] suggested regression, ratio, regression cum ratio, respectively, using the
auxiliary variable for estimating of the quantitative sensitive variable. Choice of scram-
bling mechanism plays an important role in quantitative response models. In the RRMs
literature, additive models are more e�ective and user-friendly than multiplicative RRMs
and also partial randomization models are more e�cient than full randomization models.
Therefore, in this paper, we focus on additive partial RRMs for quantitative data. We
propose a new improved estimator for the population mean of the sensitive study variable
in partial additive RRMs using two non-sensitive auxiliary variables. The remaining part
of the paper is organized as follows. In section 2, we present the notations about additive
RRMs for quantitative data and introduce various estimators using the auxiliary variable
for the unknown mean of a sensitive variable in RRMs. In section 3, we introduce the
proposed estimator. In section 4, the proposed estimator is compared with other existing
estimators with a simulation study in RRMs and we obtain speci�c results suggesting
that proposed estimator is more e�cient than other estimators. Section 5 concludes the
paper.

2. Notations and Various Existing Estimators in Partial Additive

RRMs for Quantitative Data

Let Y be the study variable, a sensitive variable which cannot be observed directly.
Let X be a non-sensitive auxiliary variable which has positive correlation with Y . For
example, the sensitive study variable Y may be the annual household income and X
may be the annual rental value. Let a random sample of size n be drawn from a �nite
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population. For the ith unit (U1, U2, . . . , UN ), let yi and xi be the values of the study
variable Y and auxiliary variable X, respectively.

[5] proposed a class of regression estimator for the mean of sensitive variable using
a non-sensitive auxiliary variable. In their approach, to estimate µy, a sample of n
individuals is selected from the population and each respondent is asked to perform a
Bernoulli trial with a probability of success P . If this is successful, the respondent then
gives the true values of both Y and X. In the case of failure, the respondent gives their
answers by using the values given in S and R which are the various randomized designs
for Y and X variables, respectively.

Table 1. General Scheme

Reported Responses (Z, U)

Variables (Y, X) with probability P

Randomized Designs (S, R) with probability (1-P)

Under the general scheme, given in Table 1, regression estimator in [5] is,

(2.1) µ̂DP =
z̄ + b (µu − ū)− c

h
, (h 6= 0)

where z̄ = 1
n

n∑
i=1

zi is the sample mean of the reported responses for the sensitive variable.

Here, the reported response for the sensitive variable is given by Z = PY + (1−P )(Y +
W ). Here W is the scrambling variable which has pre-assigned distribution. W is the

scrambling variable with known true mean µw and known variance S2
w. ū =

1

n

n∑
i=1

ui

is the sample mean of the reported responses for the non-sensitive auxiliary variable. b
is suitably selected real constant. Here, c and h depend exclusively on the randomized
design.

The variance of µ̂DP is

(2.2) µ̂DP =
z̄ + b (µu − ū)− c

h
, (h 6= 0)

where S2
z =

N∑
i=1

(zi − µz)2

N − 1
and S2

u =

N∑
i=1

(ui − µu)2

N − 1
are the population variances of z and

u, respectively, Szu =

N∑
i=1

(zi−µz)(ui−µu)

N−1
is the population covariance between z and u,

B = Szu
S2
u

is the population regression coe�cient between z and u.E (z̄) = µz = 1
N

N∑
i=1

zi

and E (ū) = µu = 1
N

N∑
i=1

ui are the population means of Z and U , respectively. Sub-

stituting the population regression coe�cient B =
Szu
S2
u

, minimum variance of unbiased

estimator µ̂DP is

(2.3) V ar(µ̂DP )min =
S2
z

nh2

(
1− ρ2zu

)
.

where ρzu =
Szu
SzSu

is the population correlation coe�cient between Z and U .
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[19] proposed a ratio estimator for the mean of sensitive variable using a non-sensitive
auxiliary variable for full randomization additive model. In their model, the respondent
is asked to provide true responses for X. The estimator in [19] is

(2.4) µ̂SR = z̄
(µx
x̄

)
.

where z̄ is the sample mean of the reported responses for the sensitive variable (Z =

Y +W ), E (x̄) = µx =
1

N

N∑
i=1

xi is the known population mean of non-sensitive auxiliary

variable, x̄ =
1

n

n∑
i=1

xi is the sample mean of non-sensitive auxiliary variable.

The bias and MSE of µ̂SR , under �rst order of the approximation, are

(2.5) Bias(µ̂SR) ∼= λµz
(
C2
x − Czx

)
.

and

(2.6) MSE (µ̂SR) ∼= λµ2
z

[
C2
z + C2

x − 2ρxzCxCz
]
.

where λ =
1

n
− 1

N
, Cz =

Sz
µz

and Cx =
Sx
µx

are the coe�cients of variation of Z and

X, respectively, ρxz is the correlation coe�cient between X and Z.
[13] proposed regression-cum-ratio estimator for full randomization additive model.

Regression-cum-ratio estimator in [13] is

(2.7) µ̂GRR = [b1z̄ + b2 (µx − x̄)]
(µx
x̄

)
where z̄ is the sample mean of the reported responses for the sensitive variable ( Z =

Y +W ), E (x̄) = µx =
1

N

N∑
i=1

xi is the known population mean of non-sensitive auxiliary

variable, x̄ =
1

n

n∑
i=1

xi is the sample mean of non-sensitive auxiliary variable, b1 and b2

are constants.
The bias and MSE of µ̂GRR , under �rst order of the approximation, are

(2.8) Bias(µ̂GRR) ∼= (b1 − 1)µz + b1λµz
{
C2
x − Czx

}
+ b2λµxC

2
x.

and

(2.9)

MSE (µ̂GRR) ∼= (b1 − 1)2µ2
z + λ

[
b21µ

2
z

{
C2
z + 3C2

x − 4ρzxCzCx
}

+ b22µ
2
xC

2
x − 2b2µzµxC

2
x − 2b1µ

2
z

{
C2
x − ρzxCzCx

}
− 2b1b2µzµ x

{
ρzxCzCx − 2C2

x

}]
.

Di�erentiating (2.9) with respect to b1 and b2, the following optimum values which
minimize the MSE are

(2.10) b1(opt) =
1− λC2

x

1− λ{C2
x − C2

z (1− ρ2zx)}

and

(2.11) b2(opt) =
µz
µx

{
1 + b1(opt)

(
ρzxCz
Cx

− 2

)}
.
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Substituting the optimum values of b1 and b2 in (2.10) and (2.11) , the minimum MSE

of µ̂GRR is

(2.12) MSE(µ̂GRR)min
∼=
λµ2

zC
2
z

(
1− ρ2zx

) (
1− λC2

x

)
λC2

z (1− ρ2zx) + (1− λC2
x)
.

3. Suggested Improved Estimator in Partial Additive RRMs

Applying the general formulation of [5], we propose an improved estimator for the
mean of sensitive variable using two non-sensitive auxiliary variables (X and M). For
example, the sensitive study variable Y may be the annual household income and X
may be the annual rental value and M may be the number of vehicles in household. In
our approach, to estimate µy, the procedure works as follows: the respondent gives the
true values of the sensitive variable and non-sensitive variables (Y, X, M) with known
probability P, whereas provides the scrambled responses with known probability (1-P).

The distribution of the responses is illustrated as: Here, Y is the sensitive variable of

Table 2. General Scheme for Proposed Estimator

Reported Responses (Z, U, V)

Variables (Y, X, M) with probability P

Randomized Designs (S, R, L) with probability (1-P)

interest with unknown mean µy and unknown variance S2
y , X and M are non-sensitive

variables with known means µx and µm . Z is the reported response for the sensitive
variable Y which is given by Z = PY + (1 − P )(Y + W ), U and V are the reported
responses for the �rst non-sensitive variable X and the second non-sensitive variable M ,
respectively. Here W is the scrambling variable which has pre-assigned distribution. W
is the scrambling variable with known true mean µw and known variance S2

w . S, R and L
are the various randomized designs for Y , X andM variables, respectively. The reported
responses for auxiliary variables changes to which randomized design adopted. Under the
general scheme presented in Table 2, we propose the following improved estimator based
on a SRSWOR sample (z1, u1, v1), (z2, u2, v2), . . . , (zn, un, vn) of n responses

(3.1) µ̂NHR =
z̄R − c
h

, (h 6= 0)

here

(3.2) z̄R = k1z̄

(
µu

k2ū+ (1− k2)µu

)(
µv

k3v̄ + (1− k3)µv

)
(h 6= 0)

where z̄ =
1

n

n∑
i=1

zi is the sample mean of the reported responses for sensitive variable

and ū =
1

n

n∑
i=1

ui and v̄ = 1
n

n∑
i=1

vi are the sample means of reported responses for

�rst and second auxiliary variables, respectively. E (ū) = µu =
1

N

N∑
i=1

ui and E (v̄) =

µv =
1

N

N∑
i=1

vi are the population means of �rst and second reported auxiliary variables,

respectively. k1, k2 and k3 are the constants. Here, c and h values for partial additive
RRMs obtained as:

(3.3)
µz = Pµy + (1− P ) (µy + µw)
µz = µy + (1− P )µw.
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from (3.3) c and h values are given:

(3.4) µy = µz − (1− P )µw.

Here, c = (1− P )µw , h = 1
To obtain the MSE equation for the proposed estimator, we de�ne the following

relative error terms [3]

(3.5) e0 =
(z̄ − µz)
µz

, e1 =
(ū− µu)

µu
, e2 =

(v̄ − µv)

µv
.

such that

E (e0) = E (e1) = E (e2) = 0; E
(
e20
)

= λC2
z , E

(
e21
)

= λC2
u, E

(
e22
)

= λC2
v ,

E (e0e1) = λρzuCzCu, E (e0e2) = λρzvCzCv, E (e1e2) = λρuvCuCv,
(3.6)

where C2
v =

S2
v

µ2
v

, S2
v =

N∑
i=1

(vi − µv)2

N − 1
, ρzu =

Szu
SzSu

, ρzv =
Szv
SzSv

, ρuv =
Suv
SuSv

.

Expressing (3.2) in terms of e's in (3.5) and retaining terms in e's up to �rst order,
we have,

(3.7)

z̄R − µz = k1µz (1 + e0)

(
µu

k2µu (1 + e1) + (1− k2)µu

)(
µv

k3µv (1 + e2) + (1− k3)µv

)
− µz

= k1µz (1 + e0) (1 + k2e1)−1(1 + k3e2)−1 − µz
= k1µz (1 + e1) (1− k2e1 + ...) (1− k3e2 + ...)− µz
= (k1 − 1)µz + k1µz (e0 − k2 e1 − k3e2 − k2e0 e1 − k3e0e2 + k2k3 e1e2) .

Taking expectation of both sides of (3.7) and using notations in (3.6), the bias equation
of the estimator z̄R

Bias (z̄R) = (k1 − 1)µz − k1λµz (k2ρzuCzCu + k3ρzvCzCv − k2k3ρuvCuCv) .(3.8)

using (3.1) and (3.8) , we obtain the bias equation of the estimator µ̂NHR

(3.9) Bias (µ̂NHR) = (k1 − 1)µz − k1λµz (k2ρzuCzCu + k3ρzvCzCv − k2k3ρuvCuCv)− (1− P )µw.

Retaining terms in e's up to �rst order, taking the square of both sides of (3.7) and
expectation and using notations in (3.6) , the MSE equation of the estimator z̄R

(3.10)

E(z̄R − µz)2 =E
(
(k1 − 1)2µ2

z + k21µ
2
ze

2
0 + k21k

2
2µ

2
ze

2
1 + k21k

2
3µ

2
ze

2
2

− 2k21k2µ
2
ze0e1,−2k21k3µ

2
ze0e2 +2k21k2k3µ

2
ze1e2

)}
MSE (z̄R) =(k1 − 1)2µ2

z + λk21S
2
z + λk21S

2
z

(
k22C

2
u + k23C

2
v − 2k2ρzuCzCu

− 2k3ρzvCzCv + 2k2k3ρuvCuCv) .

using (3.1) and (3.10), we obtain the MSE equation of the estimator µ̂NHR

MSE (µ̂NHR) =(k1 − 1)2µ2
z + λk21S

2
z + λk21S

2
z

(
k22C

2
u + k23C

2
v − 2k2ρzuCzCu

− 2k3ρzvCzCv + 2k2k3ρuvCuCv)
(3.11)

where Suv =

N∑
i=1

(ui − µu) (vi − µv)

N − 1
is the covariance between u and v.
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Di�erentiating (3.11) with respect to k1, k2 and k3, and then by setting the resulting
equations to zero, we obtain the following equations:

(3.12)

∂MSE (µ̂NHR)

∂k1
=2 (k1 − 1)µ2

z + 2λk1S
2
z + 2λk1µ

2
z

(
k22C

2
u + k23C

2
v

− 2k2ρzuCzCu − 2k3ρzvCzCv + 2k2k3ρuvCuCv) = 0.

(3.13)
∂MSE (µ̂NHR)

∂k2
= k2C

2
u − ρzuCzCu + k3ρuvCuCv = 0.

(3.14)
∂MSE (µ̂NHR)

∂k3
= k3C

2
v − ρzvCzCv + k2ρuvCuCv = 0.

Solving the (3.12), (3.13) and (3.14) simultaneously, we get the optimum values which
minimize theMSE equation.

(3.15) k1(opt) =
2− λC2

z

2 (1− λC2
zR2

zu.v)

where R2
zu.v =

ρ2zu + ρ2zv − 2ρzuρzvρuv
1− ρ2uv

(3.16) k2(opt) =
ρzu (Cz/Cv)− ρzvρuv (Cz/Cu)

1− ρ2uv
.

(3.17) k3(opt) =
ρzv (Cz/Cv)− ρzuρuv

(
C2
u

/
CzCv

)
1− ρ2uv

.

Substituting the optimum values of k1, k2 and k3 in (3.11), the minimum MSE of µ̂NHR
is

(3.18) MSEmin (µ̂NHR) = λS2
z

[
R2
zu.v − 1

2

(
λC2

z − 1
)

1− λC2
zR2

zu.v

− R2
zu.v

C2
z

(
1− λC2

z/2

1− λC2
zR2

zu.v

)2
]
.

MSE and mean equations change depending on the speci�ed models. We speci�ed
three partial additive models. In the �rst model M1, the additive model is applied for
the sensitive variable while the direct method is utilized for the non-sensitive auxiliary
variables {Z=PY+(1-P)(Y+W), U=X, V=M}. In the second model M2, additive model
is applied for the sensitive variable and both of two non-sensitive auxiliary variables
{Z=PY+(1-P)(Y+W), U=PX+(1-P)(X+T), V=PM+(1-P)(M+K)}. In the third model
M3, the additive model is applied for the sensitive variable and the �rst non-sensitive
auxiliary variable while the direction method is utilized for second non-sensitive auxiliary
variable {Z=PY+(1-P)(Y+W), U=PX+(1-P)(X+T), V=M}. Here W , T and K are the
scrambling variables which have pre-assigned distributions. W is the scrambling variable
with known true mean µw and known variance S2

w in S design, T is the scrambling variable
with known true mean µt and known variance S

2
t in R design, K is the scrambling variable

with known true mean µk and known variance S2
k in L design [15]

Mean equations which will be used in MSE equation in (3.18) for M1 is obtained as
below: Mean equation of z is

(3.19)
µz = Pµy + (1− P ) (µy + µw)
µz = µy + (1− P )µw.
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Mean equation of u is

(3.20)
µu = Pµx + (1− P )µx
µu = µx.

Mean equation of v is

(3.21)
µv = Pµm + (1− P )µm
µv = µm.

Variance equation of z which will be used in MSE equation in (3.18) for M1 is obtained
as,

(3.22)
S2
z = PE

(
Y 2
)

+ (1− P )E
{

(Y +W )2
}
− µ2

z

= S2
y + (1− P )S2

w + P (1− P )µ2
w

S2
z = S2

y + (1− P )µ2
w

(
C2
w + P

)
.

The correlation equation between Z and U which will be used in MSE equation in (3.18)
for M1 is obtained as

(3.23) ρzu =
Syx

Sx
√
S2
y + (1− P )µ2

w (C2
w + P )

for Szu = Syx, Sz =
√
S2
y + (1− P )µ2

w (C2
w + P ), Su = Sx.

The correlation equation between Z and V which will be used in MSE equation in
(3.18) for M1 is obtained as

(3.24) ρzv =
Sym

Sx
√
S2
y + (1− P )µ2

w (C2
w + P )

for Szv = Sym, Sz =
√
S2
y + (1− P )µ2

w (C2
w + P ), Sv = Sm .

The correlation equation between U and V which will be used in MSE equation in
(3.18) for M1 is obtained as

(3.25) ρuv =
Sxm
SxSm

= ρxm

for Suv = Sxm, Su = Sx, Sv = Sm.
Mean, variance and correlation equations which will be used in MSE equation in (3.18)

for M2 and M3 is obtained similarly given as before. Mean, variance and correlation
equations for three models are given in Table 3.

4. Simulation Study

In this section, a simulation study is presented to show the performance of the pro-
posed estimator in comparison to other estimators using the auxiliary variable for partial
additive RRMs. The proposed estimator,µ̂NHR , is compared with µ̂DP in [5], µ̂SR in
[19], and µ̂GRR in [13]. It is known that RRMs based on the auxiliary variable are
practically indistinguishable and always perform better than RRMs in which auxiliary
variables are not used. For this reason, the estimators without using auxiliary variables
are not included in the simulation study [5]. We generate three �nite populations of size
10000 from multivariate normal distribution. Three populations have theoretical means
of [Y,X,M ] as µ = [5, 5, 5] and have di�erent variance-covariance matrices. The popu-
lations are generated as the levels of correlation between the variables. The correlation
levels are considered as low, medium and high. The covariance matrices and the correla-
tions are presented in (4.2), (4.3) and (4.4). The scrambling variable W is considered to
be a normal random variable with mean equal to zero and standard deviation is equal to
0.30. The scrambling variables, T and K, are normal random variables with mean equal
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Table 3. Special Partial Additive Randomized Models

S R L Mean Variance and Correlation Equations

M1 Y+W X M

µz = µy + (1− P )µw S2
z = S2

y + (1− P )µ2
w

(
C2
w + P

)
µu = µx ρzu =

Syx

Sx
√
S2
y + (1− P )µ2

w (C2
w + P )

µv = µm ρzv =
Sym

Sm
√
S2
y + (1− P )µ2

w (C2
w + P )

c = (1− P )µw, h = 1 ρuv =
Sxm
SxSm

= ρxm

M2 Y+W X+T M+K

µz = µy + (1− P )µw S2
z = S2

y + (1− P )µ2
w

(
C2
w + P

)
µu = µx + (1− P )µt ρzu =

Syx + P (1− P )µwµt√{
S2
y + (1− P )µ2

w (C2
w + P )

}
{S2

x + (1− P )µ2
t (C2

t + P )}

µv = µm + (1− P )µk ρzv =
Smy + P (1− P )µwµk√{

S2
y + (1− P )µ2

w (C2
w + P )

}
{S2

m + (1− P )µ2
k (C2

k + P )}

c = (1− P )µw, h = 1 ρuv =
Sxm + P (1− P )µtµk√

{S2
x + (1− P )µ2

t (C2
t + P )} {S2

m + (1− P )µ2
k (C2

k + P )}

M3 Y+W X+T M

µz = µy + (1− P )µw S2
z = S2

y + (1− P )µ2
w

(
C2
w + P

)
µu = µx + (1− P )µt ρzu =

Syx + P (1− P )µwµt√{
S2
y + (1− P )µ2

w (C2
w + P )

}
{S2

x + (1− P )µ2
t (C2

t + P )}

µv = µm ρzv =
Sym

Sm

√{
S2
y + (1− P )µ2

w (C2
w + P )

}
c = (1− P )µw, h = 1 ρuv =

Sxm

Sm
√
{S2

x + (1− P )µ2
t (C2

t + P )}

to zero and standard deviations are equal to 0.20. We use the simulation studies of [5]
and [13] to determine the parameters that are to be easier to compare.

The variance-covariance matrix de�ne as:

(4.1)
∑
i

=

 S2
yi Syxi Symi

Sxyi S2
xi Sxmi

Smyi Smxi S2
mi

 , i = 1, 2, 3.

The variance-covariance matrices and the correlation coe�cients for each population
are given below.

Population I
There are low correlations between the sensitive variable and non-sensitive auxiliary

variables in population I. The variance-covariance matrix for population I is

(4.2)
∑
1

=

 9.0 1.8 1.5
1.8 4.0 0.8
1.5 0.8 4.0

 , ρyx = 0.30, ρym = 0.25.

Population II
There are medium correlations between the sensitive variable and non-sensitive aux-

iliary variables in population II. The variance-covariance matrix for population II is

(4.3)
∑
2

=

 9.0 3.6 3.1
3.6 4.0 1.2
3.1 1.2 4.0

 , ρyx = 0.60, ρym = 0.52

Population III
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There are high correlations between the sensitive variable and non-sensitive auxiliary
variables in population III. The variance-covariance matrix for population III is

(4.4)
∑
3

=

 9.0 5.4 4.2
5.4 4.0 2.0
4.2 2.0 4.0

 , ρyx = 0.90, ρym = 0.70

The process is repeated 5000 times and for di�erent sample sizes: n = 50, 100, 200, 300,
500. The value of the design parameter P changes from 0.10 to 0.90 with an increment
of 0.1. We observe small di�erences in e�ciency with almost each value of the design
parameter when auxiliary variable is utilized in partial additive RRMs in our simulation
study. Thus, we only present the simulation results for P=0.20. That means when partial
additive model is utilized, 0.20 percent of the respondents give direct answers, the rest
of the respondents use the scrambling devices. The performance of the estimators is
measured by the simulated mean square error as:

(4.5) MSE (µ̂) =
1

5000

5000∑
i=1

(µ̂i − µy)2

where µ̂ is the estimate of µy on the ith sample.
Simulation results are summarized in Tables 4, 5 and 6.
In Tables 4-6, theoretical and empirical MSE values of the estimators according to

degree of the correlation between the sensitive and non-sensitive variables are given for
speci�ed models, respectively. For three models, in all circumstances, regardless of both
degree of correlation and sample size, the proposed estimator is always more e�cient
than µ̂DP ,µ̂SR and µ̂GRR estimators. For population I and II, where there are low and
medium correlations between the variables, respectively, the di�erences between theMSE

values of the proposed estimator and the other estimators are small. For population III,
where there are high correlations between the variables, the MSE values of the proposed
estimator are relatively smaller than the MSE values of other estimators. We can say
that when the degree of the correlation between the variables increases, the e�ciency of
the proposed estimator increases. We also note that the MSE values of the estimators
are smaller when the sample size increases and that is an expected result.
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Table 4. Theoretical and empirical MSEs of the estimators according
to degree of the correlation between the sensitive and non-sensitive
variables under Model 1 for P=0.20.

Population I Population II Population III

Estimators MSE MSE MSE

n Theoretical Empirical Theoretical Empirical Theoretical Empirical

50

µ̂DP 0.1684 0.1728 0.1197 0.1187 0.0358 0.0372
µ̂SR 0.1894 0.1916 0.1203 0.1191 0.0472 0.0480
µ̂GRR 0.1672 0.1754 0.1191 0.1187 0.0358 0.0374
µ̂NHR 0.1617 0.1705 0.0979 0.1047 0.0053 0.0055

100

µ̂DP 0.0838 0.0840 0.0595 0.0608 0.0178 0.0186
µ̂SR 0.0942 0.0945 0.0599 0.0613 0.0235 0.0239
µ̂GRR 0.0828 0.0840 0.0594 0.0610 0.0178 0.0186
µ̂NHR 0.0807 0.0834 0.0488 0.0499 0.0026 0.0027

200

µ̂DP 0.0415 0.0408 0.0295 0.0300 0.0088 0.0091
µ̂SR 0.0466 0.0465 0.0296 0.0302 0.0116 0.0120
µ̂GRR 0.0414 0.0411 0.0291 0.0297 0.0088 0.0191
µ̂NHR 0.0400 0.0404 0.0241 0.0237 0.0013 0.0013

300

µ̂DP 0.0274 0.0272 0.0194 0.0193 0.0058 0.0060
µ̂SR 0.0308 0.0308 0.0196 0.0193 0.0077 0.0079
µ̂GRR 0.0273 0.0272 0.0194 0.0193 0.0058 0.0060
µ̂NHR 0.0264 0.0262 0.0159 0.0158 0.0008 0.0008

500

µ̂DP 0.0161 0.0163 0.0114 0.0115 0.0034 0.0035
µ̂SR 0.0181 0.0183 0.0115 0.0116 0.0045 0.0046
µ̂GRR 0.0161 0.0163 0.0114 0.0116 0.0034 0.0035
µ̂NHR 0.0155 0.0159 0.0093 0.0095 0.0005 0.0005

Table 5. Theoretical and empirical MSEs of the estimators according
to degree of the correlation between the sensitive and non-sensitive
variables under Model 2 for P=0.20.

Population I Population II Population III

Estimators MSE MSE MSE

n Theoretical Empirical Theoretical Empirical Theoretical Empirical

50

µ̂DP 0.1670 0.1722 0.1183 0.1188 0.0357 0.0375
µ̂SR 0.1883 0.1905 0.1191 0.1180 0.0459 0.0466
µ̂GRR 0.1659 0.1740 0.1178 0.1173 0.0357 0.0370
µ̂NHR 0.1601 0.172 0.0976 0.1045 0.0068 0.0070

100

µ̂DP 0.0831 0.0835 0.0589 0.0606 0.0178 0.0188
µ̂SR 0.0937 0.0938 0.0593 0.0605 0.0229 0.0233
µ̂GRR 0.0835 0.0847 0.0588 0.0600 0.0178 0.0186
µ̂NHR 0.0799 0.0831 0.0486 0.0499 0.0034 0.0034

200

µ̂DP 0.0411 0.0405 0.0291 0.0297 0.0088 0.0090
µ̂SR 0.0464 0.0462 0.0293 0.0298 0.0113 0.0116
µ̂GRR 0.0411 0.0408 0.0294 0.0300 0.0088 0.0190
µ̂NHR 0.0396 0.0402 0.0241 0.0237 0.0016 0.0016

300

µ̂DP 0.0271 0.0270 0.0192 0.0191 0.0058 0.0059
µ̂SR 0.0306 0.0307 0.0194 0.0191 0.0075 0.0077
µ̂GRR 0.0271 0.0271 0.0197 0.0193 0.0058 0.0060
µ̂NHR 0.0261 0.0269 0.0159 0.0158 0.0011 0.0011

500

µ̂DP 0.0160 0.0162 0.0113 0.0114 0.0034 0.0035
µ̂SR 0.0180 0.0182 0.0114 0.0115 0.0044 0.0045
µ̂GRR 0.0159 0.0162 0.0114 0.0116 0.0034 0.0035
µ̂NHR 0.0153 0.0158 0.0093 0.0095 0.0006 0.0006
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Table 6. Theoretical and empirical MSEs of the estimators according
to degree of the correlation between the sensitive and non-sensitive
variables under Model 3 for P=0.20.

Population I Population II Population III

Estimators MSE MSE MSE

n Theoretical Empirical Theoretical Empirical Theoretical Empirical

50

µ̂DP 0.1684 0.1728 0.1197 0.1187 0.0358 0.0372
µ̂SR 0.1895 0.1916 0.1203 0.1191 0.0472 0.0480
µ̂GRR 0.1672 0.1718 0.1191 0.1187 0.0358 0.0373
µ̂NHR 0.1608 0.1727 0.0978 0.1047 0.0062 0.0064

100

µ̂DP 0.0838 0.0840 0.0595 0.0608 0.0178 0.0186
µ̂SR 0.0942 0.0945 0.0899 0.0613 0.0235 0.0239
µ̂GRR 0.0835 0.0847 0.0594 0.0609 0.0178 0.0186
µ̂NHR 0.0802 0.0835 0.0487 0.0500 0.0031 0.0031

200

µ̂DP 0.0414 0.0408 0.0294 0.0300 0.0088 0.0091
µ̂SR 0.0466 0.0465 0.0296 0.0302 0.0116 0.0120
µ̂GRR 0.0414 0.0411 0.0291 0.0297 0.0088 0.0191
µ̂NHR 0.0398 0.0405 0.0241 0.0237 0.0015 0.0015

300

µ̂DP 0.0273 0.0272 0.0194 0.0193 0.0058 0.0060
µ̂SR 0.0308 0.0308 0.0196 0.0193 0.0077 0.0079
µ̂GRR 0.0273 0.0272 0.0194 0.0194 0.0058 0.0060
µ̂NHR 0.0262 0.0264 0.0159 0.0158 0.0010 0.0010

500

µ̂DP 0.0161 0.0163 0.0114 0.0116 0.0034 0.0035
µ̂SR 0.0181 0.0183 0.0115 0.0116 0.0045 0.0046
µ̂GRR 0.0161 0.0163 0.0114 0.0116 0.0034 0.0035
µ̂NHR 0.0154 0.0159 0.0093 0.0095 0.0006 0.0006
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5. Conclusion

In the RRMs literature, there are several estimators based on a non-sensitive auxiliary
variable. In this paper, we propose a new improved estimator based on two non-sensitive
auxiliary variables for the population mean of a sensitive variable in partial additive
RRMs. The proposed estimator is more e�cient than other existing estimators in all
circumstances, regardless of which the model is applied. The proposed estimator can be
considered reliable and may lead the researcher to �nd a suitable estimator for RRMs.
The estimation of the mean of a sensitive variable can be improved by using more non-
sensitive auxiliary variables. It is proved that RRMs based on two or more auxiliary
variables are certainly more e�cient than those with one auxiliary variable. We show
that the e�ciency of the proposed estimator can be quite distinctive if the correlation
between the study and the auxiliary variables is high. Additionally, the additive RRMs
are more e�cient and user friendly than the multiplicative RRMs. Thus, we substitute
our proposed estimator to three speci�c partial additive RRMs and we compare these
newly-generated models. In the future work, the study can be extended by combining
the additive and multiplicative RRMs for the proposed estimator using more than one
auxiliary variable based on di�erent sampling methods.
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