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Abstract

In this study, we develop two simple generalized con�dence intervals
for the di�erence between means of two normal populations with het-
eroscedastic variances which is usually referred to as the Behrens-Fisher
problem. The developed con�dence intervals are compared with the
generalized con�dence interval in the literature. We also propose mod-
i�ed �ducial based approach using Fisher's �ducial inference for com-
paring the mean of two lognormal distributions and compare them with
the other tests in the literature. A Monte Carlo simulation study is
conducted to evaluate performances of the proposed methods under
di�erent scenarios. The simulation results indicate that the developed
con�dences intervals for the Behrens-Fisher problem have shorter inter-
val lengths and they give better coverage accuracy in some cases. The
modi�ed �ducial based approach is the best to provide satisfactory re-
sults in respect to its type error and power in all sample sizes. The
modi�ed test is applicable to small samples and is easy to compute and
implement. The methods are also applied to two real-life examples.
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1. Introduction

In practice, it is often of interests to compare the means of two populations, which
are approximately normally distributed but with possibly di�erent variances. When the
variances are unknown, it is usually referred to as the Behrens-Fisher (BF) problem. The
BF problem has been studied since the early 1930's. One reason for its popularity is that
there is no exact solution satisfying the classical criteria for good tests. There have been
quite few solutions proposed for the BF problem; see [1, 2, 3, 4, 5, 6, 7]. Kim and Cohen
[8] presented a review of fundamental concepts and applications used to address the BF
problem under �ducial, Bayesian, and frequentist approaches. Singh et al. [9] proposed
a new test using Jackknife methodology. Dong [10] considered the empirical likelihood
approach for the BF problem.

The idea is an extension of the solution for testing the BF problem, which was pro-
posed by Tsui and Weerahandi [11] using the concept of the generalized p-values. Weer-
ahandi [12] gave the concept of generalized pivotal quantities for constructing con�dence
intervals of scalar parameters, which are called generalized con�dence intervals (GCI).
Generalized con�dence intervals were achieved to obtain exact con�dence intervals in
statistical problems involving nuisance parameters. Generalized procedures have been
successfully applied to several problems of practical importance; see [13, 14, 15, 16, 17].

In recent years, Chang and Pal [18] revisited BF problem and apply a newly devel-
oped Computational approach test (CAT) that does not require explicit knowledge of
the sampling distribution of the test statistic. Zheng et al. [19] proposed a two-stage
method for BF problem. Ozkip et al. [20] presented a simulation study on some tests
for the BF problem. Sezer et al. [21] compared three approximate con�dence intervals
and a generalized con�dence interval for the BF problem for the two population case.
They also showed how to obtain simultaneous con�dence intervals for the 3 population
case (ANOVA) by the Bonferroni correction factor. Ye et al. [22] considered the hy-
pothesis testing and interval estimation for the reliability parameter in balanced and
unbalanced one-way random models. They developed the tests and con�dence intervals
for the reliability parameter using the concepts of generalized p-value and generalized
con�dence interval. Gunasekera and Ananda [23] considered the development of inferen-
tial techniques based on the generalized variable method for the location parameter of the
general half-normal distribution. Zhao and Xu [24] applied the generalized inference to
the calibration problem, and took the generalized p-value as the test statistic to develop
a new p-value for one-sided hypothesis testing, which they referred to as the one-sided
posterior predictive p-value.

Faced with positive right-skewed data, the lognormal distribution is frequently used.
It is di�cult to construct exact tests and con�dence intervals for comparing the mean of
two lognormal distributions since the nuisance parameter is present. A major motivation
for the present work is to provide inference procedure for the small samples when the
interest is to compare means of two lognormal distributions. The lognormal distribution
is frequently used for analyzing biological, medical and industrial data (Krishnamoorthy
et al. [25] and Shen et al. [26]). Let X be a lognormal distributed random variable and µ
and σ2 denote the mean and variance of lnX, respectively, so that Y = lnX ∼ N(µ, σ2).
The mean of Y random variable depends on µ and σ2 as expressed in equation 1.1.

(1.1) E(Y ) = E(exp(X)) = exp(η) where η = µ+
σ2

2

The hypothesis tests and con�dence intervals about X random variable depends on
calculations corresponding to value of the nuisance parameter η. It is di�cult to obtain
exact tests and con�dence intervals about Y random variable in the presence of the
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nuisance parameter η. The problem of obtaining con�dence intervals and tests concerning
η has been addressed by Land [27, 28, 29] and Angus [30, 31]. Zhou et al. [32] proposed
a likelihood-based approach and a bootstrap-based approach. Wu et al. [33] proposed
the signed log-likelihood ratio statistic and modi�ed signed log-likelihood ratio statistic
for inference about the ratio of means of two independent lognormal distributions.

Krishnamoorthy and Mathew [34] developed exact con�dence intervals and tests for
the ratio (or the di�erence) of two lognormal means using the ideas of generalized p-values
and generalized con�dence intervals. Chen and Zhou [35] discussed interval estimates of
�ve methods. These included the maximum likelihood approach, the bootstrap approach,
the generalized approach and two methods based on the log-likelihood ratio statistic.
They emphasize that parametric approaches were sometimes criticized because they did
not perform well when assumptions were violated. Their own studies indicated that
generalized approach and modi�ed signed log-likelihood ratio approach were both fairly
robust. Hanning et al. [36] introduced a subclass of generalized pivotal quantities and
called �ducial generalized Pivotal Quantities (FGPQ) and showed that GCIs constructed
using FGPQ have correct frequentist coverage under some mild conditions.

In recent years, various tests were developed for comparing the mean of two lognormal
distributions. Li et al. [37] developed a new test by using the concept of �ducial and
generalized p-value approach. Abdollahnezhad et al. [38] proposed a new test based on a
generalized approach. Weng and Myers [39] assessed performance of con�dence interval
tests for the ratio of two lognormal means applied to Weibull and gamma distributed
data. Jafari and Abdollahnezhad [40] developed a novel approach using CAT. More
recently, Jiang et al. [41] proposed a higher-order likelihood-based method.

The generalized p-value has been widely used to handle the statistical testing problem
involving nuisance parameters. We develop two simple procedures based on generalized
approach. The developed methods are compared with the generalized con�dence intervals
by Weerahandi [12]. We also propose modi�ed �ducial based approach using Fisher's
�ducial inference for comparing means of two lognormal distributions. Li et al. [37]
developed a �ducial based approach by borrowing the idea Fisher's �ducial inference.
They focused on testing the equality of several normal means when the variances are
unknown and unequal. A major motivation for the present work is to provide inference
procedure for the small samples when the interest is to compare means of two lognormal
distributions.

In Section 2, we introduce the BF problem and give con�dence intervals based gener-
alized approach. Section 3 presents �ve developed tests; the Z score test by Zhou et al.
[32], the generalized p-value test by Krishnamoorthy and Mathew [34], the test based on
generalized approach by Abdollahnezhad et al. [38], parametric bootstrap test and the
modi�ed �ducial based approach. Section 4 presents the simulation results to compare
the methods. In section 5 we give two examples to illustrate the proposed approaches.
Concluding remarks are given in Section 6.

2. The Behrens-Fisher (BF) problem

Assume that independent samples are available from two normal populations as
Xi1, ..., Xini iidN(µi, σ

2
i ), i = 1, 2 where all four parameters (µ1, µ2, σ

2
1 , σ

2
2) are unknown.

Based on the above two independent samples, problem is to test

(2.1) H0 : µ1 = µ2 vs H1 : µ1 6= µ2

First, we reduce the above data by su�ciency, and focus only on
X̄i. =

∑ni
j=1 Xij/ni, S

2
i =

∑ni
j=1(Xij − X̄i.)2, i = 1, 2, where
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(2.2) X̄i. ∼ N(µ, σ2
i /ni) and S2

i ∼ σ2
i χ

2
ni−1 , i = 1, 2

and all four statistics are mutually independent. Let x̄1, x̄2, s
2
1, s

2
2 denote the observed

values X̄1, X̄2, S
2
1 , S

2
2 , respectively. The inferences are to be based on the set of complete

su�cient statistics whose distributions are given by equation 2.2. This problem is known
as BF problem. We will construct generalized con�dence interval for the parameter
θ = µ1 − µ2. We now will propose three generalized con�dence intervals about the
di�erence of the two normal means.

2.1. Generalized Con�dence Interval (GCI). Weerahandi [12] de�nes a generalized
pivotal as a statistic that has a distribution free of unknown parameters and an observed
value that does not depend on nuisance parameters. The possibility of exact con�dence
interval can be achieved by extending the de�nition of con�dence interval. The general-
ized pivotal is allowed to be a function of nuisance parameters. Weerahandi de�nes the
con�dence interval resulting from a generalized pivotal a generalized con�dence interval.
We shall now de�ne generalized pivotal quantity for the di�erence between means of two
normal population.

(2.3)

T (X1, X2;x1, x2, µ1, µ2, σ
2
1 , σ

2
2) = x̄2 − x̄1 − X̄2−X̄1−(µ2−µ1)√

σ21
n1

σ22
n2

√
σ2
1s

2
1

n1S
2
1

+
σ2
2s

2
2

n2S
2
2

= x̄2 − x̄1 − Z
√

s21
U1

+
s22
U2

where

(2.4) Z =
X̄2 − X̄1 − (µ1 − µ2)√

σ2
1

n1
+

σ2
2

n2

∼ N(0, 1) , Ui =
niS

2
i

σ2
i

∼ χ2
ni−1 , i = 1, 2

and s1, s2, x̄1, x̄2 are the observed values of S1, S2, X̄1, X̄2, respectively. Although
it is di�cult to obtain exact distribution of the test statistic de�ned in equation
2.3, we can approximate the distribution of this pivotal quantity by the Monte
Carlo simulation study. The following algorithm can be used to approximate the
distribution of 2.3.

Algorithm 1
For i = 1 to m
Generate values for Z ∼ N(0, 1), Ui ∼ χ2

(ni−1), i = 1, 2

Calculate T
(end i loop)

Ordering the m values of T will provide us approximate distribution of the pivotal
quantity.

If T (1 − α) denotes the 100(1 − α)%th percentile of T , then T (1 − α) is the
100(1−α)% generalized upper con�dence interval for θ. A 100(1−α)% generalized
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lower con�dence interval for θ can be similarly obtained as T (α). A two-sided
100(1−α)% generalized con�dence interval for θ is given by (T (α/2), T (1−α/2)).

2.2. First approach based on generalized approach. We will �nd a gener-
alized pivotal quantity, R, using generalized approach. Since a generalized pivotal
can be a function of all unknown parameters, we can construct R based on the ran-
dom quantities Z1 = (

√
n1(X̄1 − µ1))/σ1 ∼ N(0, 1), Z1 = (

√
n2(X̄2 − µ1))/σ1 ∼

N(0, 1), U1 = (n1S
2
1)/(σ2

1 ∼ χ(n1 − 1)2) and U2 = (n2S
2
2)/(σ2

2 ∼ χ(n2 − 1)2),
whose distribution are free of unknown parameters. Using

(2.5) θ = (X̄2−Z2σ2/
√
n2)−(X̄1−Z1σ1/

√
n1) = (X̄2−Z2S2/

√
U2)−(X̄1−Z1S1/

√
U1)

we can de�ne the following potential generalized pivotal;

(2.6)
R(X1, X2;x1, x2, µ1, µ2, σ2

1 , σ
2
2) = (x̄2 − x̄1)− (Z2s2/

√
U2 − Z1s1/

√
U1)

= (x̄2 − x̄1)− (T2s2/
√
n2 − 1− T1s1/

√
n1 − 1)

where s1, s2, x̄, ȳ are the observed value of S1, S2, X̄, Ȳ , respectively. Note that
T1 ∼ t(n1−1) is independent of T2 ∼ t(n2−1) and R(X,Y ;x, y, µ1, µ2, σ

2
1 , σ

2
2) = θ.

If R(1 − α) denotes the 100(1 − α)%th percentile of R, then R(1 − α) is the
100(1−α)% generalized upper con�dence interval for θ. A 100(1−α)% generalized
lower con�dence interval for θ can be similarly obtained as R(α). A two-sided
100(1−α)% generalized con�dence interval for θ is given by (R(α/2), R(1−α/2)).
The approach can be summarized by the following algorithm.

Algorithm 2
For i = 1 to m
Generate values for T1 ∼ t(n1 − 1) and T2 ∼ t(n2 − 1)
Calculate R
(end i loop)

Order the m values of R; �nd the 100α and 100(1 − α) percentiles; denote these
R(l) and R(u), respectively. A 100(1 − α) per cent con�dence interval for θ is
simply: [R(l), R(u)].

2.3. Second approach based on generalized approach. We will �nd a gen-
eralized pivotal quantity, R∗, using generalized approach.

(2.7)

R∗(X1, X2;x1, x2, µ1, µ2, σ
2
1 , σ

2
2) = x̄2 − x̄1 − X̄2−µ2√

σ22
n2

√
σ2
2s

2
2

n2S
2
2

+ X̄1−µ1√
σ21
n1

√
σ2
1s

2
1

n1S
2
1

= x̄2 − x̄1 − Z2

√
s22
U2

+ Z2

√
s22
U2

where
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(2.8) Zi =
X̄i − µi√

σ2
i

ni

∼ N(0, 1) , Ui =
niS

2
i

σ2
i

∼ χ2
ni−1, i = 1, 2

If R∗(1− α) denotes the 100(1− α)%th percentile of R∗, then R∗(1− α) is the
100(1−α)% generalized upper con�dence interval for θ. A 100(1−α)% generalized
lower con�dence interval for θ can be similarly obtained as R∗(α). A two-sided
100(1−α)% generalized con�dence interval for θ is given by (R∗(α/2), R∗(1−α/2)).
The approach can be summarized by the following algorithm.

Algorithm 3
For i = 1 to m
Generate values for Zi ∼ N(0, 1), Ui ∼ χ2

ni−1 ,i = 1, 2
Calculate R∗

(end i loop)

Order the m values of R∗; �nd the 100α and 100(1− α) percentiles; denote these
R∗(l) and R∗(u), respectively. A 100(1 − α) per cent con�dence interval for θ is

simply: [R∗(l), R
∗
(u)].

3. Comparing the means of two log-normal distributions

Let X1 and X2 be two independent lognormal random variables and Y1 =
ln(X1) ∼ N(µ1, σ

2
1) and Y2 = ln(X2) ∼ N(µ2, σ

2
2). Considering that η1 = µ1 +

(σ2
1)/2 and η2 = µ2 + (σ2

2)/2, it may be expressed as E(X1) = exp(η1) and
E(X2) = exp(η2). Therefore the mean of two lognormal distributions can be
reduced to inference related with η1− η2 di�erence. Now let us handle hypotheses
for η1 − η2.

Let X1i, i = 1, ..., n1 and X2i, i = 1, ..., n2 express two random samples from
two independent lognormal distributions. Let Y1i = ln(X1i), i = 1, ..., n1 and
Y2i = ln(X2i), i = 1, ..., n2 be two random variables that distribute normally.
Accordingly

(3.1) Ȳi =
1

ni

ni∑
j=1

Yij , S2
i =

1

ni − 1

ni∑
j=1

(Yij − Ȳi)2, i = 1, 2

denotes the sample mean and sample variance of these two random variables,
respectively. Let us hypotheses

(3.2) H0 : η1 ≤ η2 vs H1 : η1 > η2

are considered.
We now will brie�y introduce Z score test based on large sample test, two tests

based on generalized p-value test, parametric bootstrap test and modi�ed �ducial
based approach.
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3.1. The Z test. Zhou et al. [32] proposed a large sample test for hypotheses in
3.2. This test was expressed as;

(3.3) Z =
Ȳ2 − Ȳ1 + 1

2 (S2
2 − S2

1)√
S2

1/n1 + S2
2/n2 + 1

2 (S4
1/(n1 − 1) + S2

2/(n2 − 1))

The Z test have almost normal distribution for large samples considering that
H0 hypothesis is correct.

3.2. The Krishnamoorthy and Mathew (KM) test. Krishnamoorthy and
Mathew [34] developed a new test for comparing the mean of two lognormal dis-
tributions using generalized p-value method. Let

(3.4) T3i = ȳi −
Zi

Ui/
√
ni − 1

si√
ni

+
1

2

s2
i

U2
i /(ni − 1)

, i = 1, 2

where Zi =
√
ni(Ȳi−µi)

σi
∼ N(0, 1), i = 1, 2 and U2

i = (ni−1)S2
i /σ

2
i ∼ χ2

ni−1, i = 1, 2
are independent random variables. Let

(3.5) T3 = T31 − T32 − (η1 − η2)

is the generalized test variables and the generalized p-value can be computed as;

(3.6) p = P (T3 ≤ 0|η1 − η2 = 0)

3.3. The test by Abdollahnezhad et al. (AB). Abdollahnezhad et al. [38]
proposed a generalized approach to obtain the p-value for hypotheses in 3.2. The
MLE's for µi and σ

2
i (i = 1, 2) are Ȳi and S

2
i , respectively, where

(3.7) Ȳi =
1

ni

n∑
i=1

Yij , S2
i =

1

ni

n∑
i=1

(Yij − Ȳi)2

A generalized variable uses the generalized p-value concept, expressed as;

(3.8)

T = ȳ1. − ȳ2. + Ȳ2.−Ȳ1.−(µ2−µ1)√
σ21
n1

+
σ22
n2

√
σ2
1s

2
1

n1S
2
1

+
σ2
2s

2
1

n2S
2
2

+
σ2
1s

2
1

2S2
1
− σ2

2s
2
1

2S2
2
− (η1 − η2)

= ȳ1. − ȳ2. + Z

√
s21
u1

+
s22
u2

+
n1s

2
1

2U1
− n2s

2
2

2U2
− (η1 − η2)

where

(3.9) Z =
Ȳ2. − Ȳ1. − (µ2 − µ1)√

σ2
1

n1
+

σ2
2

n2

∼ N(0, 1) , Ui =
niS

2
i

σ2
i

∼ χ2
(ni−1) , i = 1, 2
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and, (ȳ1, ȳ2) and (s2
1, s

2
2) are observed values of (Ȳ1, Ȳ2) and (S2

1 , S
2
2), respectively.

Thus the generalized p-value for the null hypothesis in 3.1 is given by

(3.10) p = P (T ≤ tobs|η1 − η2 = 0) = E

Φ

 ȳ2. − ȳ1. +
n2s

2
2

2U2
− n1s

2
1

2U1√
s21
U1

+
s22
u2


where Φ(.) is the standard normal distribution function and the expectation is
taken with respect to independent chi-square random variables, U1 and U2.

3.4. The parametric bootstrap (PB) test. The Parametric bootstrap (PB)
is widely used in many statistical inferential procedures. The PB approach is a
type of Monte Carlo method which can be applied in situations where samples or
sample statistics are not easy to derive. Krishnamoorthy et al. [42] used the PB
method to test the equality of several means when the variances are unknown and
arbitrary.

Let us consider hypotheses in 3.2. It is well known that Yi and S
2
i are indepen-

dent and

(3.11) Yi ∼ N(µi, σ
2
i /ni),

(ni − 1)S2
i

σ2
i

∼ χ2
(ni−1) , i = 1, 2

The natural (unbiased) estimators of η1 and η2 are

(3.12) η̂1 = Ȳ1 +
S2

1

2
and η̂2 = Ȳ2 +

S2
2

2

Note that

(3.13) var(η̂1 − η̂2) =
σ2

1

n1
+
σ2

2

n2
+

1

2

(
σ4

1

(n1 − 1)
+

σ4
2

(n2 − 1)

)
and an unbiased estimator of 3.13 is

(3.14) var

(
Ȳ1 − Ȳ2 +

S2
1

2
− S2

2

2

)
=
S2

1

n1
+
S2

2

n2
+

1

2

(
S4

1

n1 + 1
+

S4
2

n2 + 1

)
under the null hypothesis in 3.1 the natural test statistic,

(3.15) T =
(η̂1 − η̂2)√
var(η̂1 − η̂2)

=
Ȳ1 − Ȳ2 +

S2
1

2 −
S2
2

2√
S2
1

n1
+

S2
2

n2
+ 1

2

(
S4
1

n1+1 +
S4
2

n2+1

)
To �nd approximate the distribution of T in Equation 3.15 using a PB approach,

we can take common mean to be zero. The parametric bootstrap pivot variable
can be proposed as follows. The PB pivot variable based on the test statistic in
Equation 3.15 is given by
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(3.16) TPB =
(η̂1 − η̂2)− (η1 − η2)√

var(η̂1 − η̂2)
=
ȲB1 − ȲB2 + 1

2 (S2
B1 − S2

B2)− 1
2 (s2

1 − s2
2)√

var(η̂1 − η̂2)

where

(3.17) ȲBi ∼ N

(
0,
S2
i

ni

)
, S2

Bi ∼
S2
i χ

2
(ni−1)

ni − 1

(3.18) varB(η̂1 − η̂2) =
S2
B1

n1
+
S2
B2

n2
+

1

2

(
(S2
B1)2

(n1 + 1)
+

(S2
B2)2

(n2 + 1)

)
, i = 1, 2

Given s2
1 and s2

2 are the observed values of S2
1 and S2

2 , the PB p-value can be
computed as,

(3.19) P (TPB(s2
i ;χ

2
(ni−1)) > tPB) < α , i = 1, 2

where tPB is the observed of T in Equation 3.15. The above probability does not
depend on any unknown parameters and so it can be estimated using Monte Carlo
simulation given in the following algorithm.

Algorithm 4
For a given (n1, n2), (x̄1, x̄2) and (s2

1, s
2
2)

Compute T in (18) and call it tPB
For j = 1,m
Compute TPB in 3.16
If TPB > tPB set Kj = 1
(end loop)
(1/m)

∑m
j=1Kj is a Monte-Carlo estimate of the PB p-value in 3.19.

3.5. The modi�ed �ducial based (MFB) test. In this section, the �ducial
approach of Fisher [43] and generalized p-value approach are combined and mod-
i�cation of KM test is proposed for the means of two lognormal distributions.

Let U1i ∼ N(0, 1) and U2i ∼ χ(ni − 1)2, i = 1, 2 be two di�erent independent

variables. It is known that Ȳi ∼ N(µi, (σ
2
i )/
√
ni) and (ni− 1)S2

i /σ
2
i ∼ χ(ni− 1)2.

Let us express Yi and (ni − 1)S2
i expressions as the functions of U1i and U2i;

(3.20) Ȳi = µi +
σi√
ni
, (ni − 1)S2

i = σ2
iU2i , i = 1, 2

when (ȳi, s
2
i ) and (u1i, u2i) observation values are given, equations in 3.20 can be

written in the form of ȳi = µi +
σ2
i

ni
u1i and (ni − 1)s2

i = σ2
i u2i. From these two

equations

(3.21) µi = yi −
u1i√

u2i/(ni − 1)

√
s2
i

ni
, σ2
i =

(ni − 1)s2
i

u2i
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when (ȳi, s
2
i ) is given the �ducial test statistics of µi and σ

2
i ;

(3.22) Tµi = ȳi − ti
√
s2
i /ni , Tσ2

i
=

(ni − 1)s2
i

2(qi)

where ti ∼ t(ni − 1) and qi ∼ σ2
ni−1 , i = 1, 2. Let

(3.23) Ti = ȳi − ti
√
s2
i /ni + (ni − 1)s2

i /2(qi) , i = 1, 2

The test statistics becomes;

(3.24) TF = T1 − T2

Accordingly the �ducial p-value depending on the �ducial approach for the hy-
potheses in 3.2 becomes;

(3.25) p = P (TF ≤ 0|η1 − η2 = 0)

4. Simulation study

In this section, A Monte Carlo simulation study is conducted to evaluate per-
formances of the proposed methods under di�erent scenarios. The three proposed
con�dence intervals for the BF problem are compared to evaluate expected lengths
and coverage probabilities. The nominal level of the con�dence intervals is 95%.
Two con�guration factors were taken into account to evaluate the performance of
con�dence intervals; sample size and variance. To obtain two generalized con�-
dence intervals, we used a two-step simulation. For each step, we used simulation
consisting of 2000 runs.

A Monte Carlo simulation study also is performed on the proposed methods
in order to compare and evaluate them in terms of type I error probabilities and
powers for the nominal value α = 0.05. To estimate the type I error rates and
power of Z test, we used simulation consisting of 100,000 runs for each of the
sample size and parameter con�gurations. To estimate the type I error rates and
power of the KM, AB, PB and MFB tests, we have used a two-step simulation.
For a given sample size and parameter con�guration, we generated 2500 observed
vectors (x̄1, x̄2, s

2
1, s

2
2) and used 5000 runs to estimate the p-value in Equations 3.6,

3.10, 3.19 and 3.25.
Table 1 shows that the generalized con�dence interval based on equation 2.7

has the good expected length when sample sizes are equal or large. However, its
coverage probabilities perform very poorly, especially when the sample sizes are
unequal. The expected lengths of generalized con�dence interval based on equation
2.6 are shorter than GCI method. Its coverage probabilities have satisfactory,
especially when the simple sizes are moderate and large. The coverage probability
of the GCI method performs second.

Table 2 and Table 3 illustrate the type I errors of the proposed tests for compar-
ing the mean of two lognormal distributions when variances are equal and unequal
respectively. Table 2 and Table 3 show that,
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1. The type I error rates of the Z test seems to be very conservative when equal
and small sample sizes are associated with large variances. However, its type
I error rate is very close to nominal level for large samples. It is noted that Z
test is either too conservative or too liberal when the sample sizes are di�erent.

2. Results reveal that AB test performs extremely poor in respect to its type I
error rates when the heteroscedasticity is present.

3. It is noted that the KM and MFP tests are performing satisfactory in respect
to their type I error rates and results close to each other in all cases.

4. For the small samples and unequal sample sizes, PB overestimates the type I
error rate.

The powers of the �ve tests are presented in Table 3. These result shows that
the power of the AB test is smallest among the �ve tests. The MFB test appears
to be more powerful than the other tests in most cases. As expected, for n1 and
n2 large (> 25), the powers of the Z, KM, PB and MFB tests are nearly identical.
The PB test is the second best after MFB test in most case.
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Table 1: Expected length (EL) and coverage probability (CP) of the proposed
methods for θ = µ1 − µ2 with nominal 95%.

(n1, n2) (σ2
1 , σ

2
2)

Algorithm 1 Algorithm 2 GCI
EL CP EL CP EL CP

(5,5)
(1,1) 3.822 0.988 3.828 0.985 3.823 0.988
(1,5) 6.503 0.980 6.520 0.981 6.509 0.980
(1,10) 8.734 0.975 8.754 0.975 8.740 0.973

(10,10)
(1,1) 2.096 0.970 2.096 0.975 2.097 0.971
(1,5) 3.606 0.967 3.606 0.969 3.610 0.967
(1,10) 4.870 0.964 4.869 0.966 4.874 0.965

(10,20)
(1,1) 1.756 0.968 2.102 0.990 1.759 0.969
(1,5) 2.591 0.966 3.636 0.996 2.589 0.969
(1,10) 3.348 0.963 4.920 0.998 3.348 0.964

(20,10)
(1,1) 1.754 0.969 1.340 0.905 1.758 0.966
(1,5) 3.419 0.963 2.301 0.859 3.426 0.962
(1,10) 4.738 0.960 3.105 0.846 4.748 0.960

(25,25)
(1,1) 1.181 0.953 1.182 0.956 1.184 0.960
(1,5) 2.042 0.957 2.041 0.957 2.047 0.954
(1,10) 2.760 0.953 2.761 0.954 2.769 0.954

(25,50)
(1,1) 1.013 0.957 1.183 0.982 1.014 0.956
(1,5) 1.524 0.950 2.049 0.993 1.528 0.954
(1,10) 1.987 0.952 2.773 0.994 1.991 0.949

(50,25)
(1,1) 1.011 0.955 0.807 0.900 1.013 0.958
(1,5) 1.949 0.955 1.392 0.867 1.951 0.954
(1,10) 2.697 0.949 1.882 0.854 2.699 0.950

(50,50)
(1,1) 0.808 0.950 0.808 0.953 0.809 0.951
(1,5) 1.398 0.950 1.398 0.952 1.399 0.949
(1,10) 1.891 0.950 1.890 0.950 1.893 0.947

(50,100)
(1,1) 0.698 0.954 0.809 0.976 0.698 0.954
(1,5) 1.058 0.951 1.400 0.991 1.058 0.952
(1,10) 1.381 0.949 1.894 0.993 1.382 0.950

(100,50)
(1,1) 0.695 0.948 0.562 0.890 0.696 0.951
(1,5) 1.335 0.955 0.971 0.868 1.335 0.949
(1,10) 1.845 0.952 1.314 0.853 1.846 0.948

(100,100)
(1,1) 0.562 0.952 0.562 0.953 0.562 0.954
(1,5) 0.972 0.951 0.973 0.951 0.974 0.953
(1,10) 1.316 0.948 1.317 0.948 1.318 0.948

(100,200)
(1,1) 0.486 0.954 0.561 0.977 0.487 0.955
(1,5) 0.740 0.950 0.974 0.990 0.741 0.950
(1,10) 0.968 0.951 1.319 0.992 0.969 0.951

(200,100)
(1,1) 0.485 0.953 0.394 0.883 0.486 0.956
(1,5) 0.930 0.950 0.682 0.851 0.931 0.948
(1,10) 1.286 0.946 0.922 0.849 1.287 0.946

(200,200)
(1,1) 0.395 0.951 0.394 0.952 0.395 0.952
(1,5) 0.683 0.949 0.683 0.950 0.684 0.949
(1,10) 0.925 0.947 0.924 0.946 0.926 0.947
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Table 2: Type I error probabilities for �ve tests at 5% signi�cance level when
H0 : η1 ≤ η2 vs H1 : η1 > η2 and (µ1, µ2) = (0, 0).

(σ2
1 , σ

2
2) Z KM AB PB MFB Z KM AB PB MFB

(n1, n2) = (5, 5) (n1, n2) = (20, 10)

(2,2) 0.049 0.046 0.042 0.091 0.032 0.074 0.049 0.046 0.072 0.043
(4,4) 0.032 0.046 0.044 0.124 0.039 0.075 0.048 0.045 0.090 0.041
(6,6) 0.023 0.046 0.046 0.130 0.041 0.076 0.046 0.044 0.091 0.042
(8,8) 0.019 0.048 0.046 0.136 0.047 0.076 0.044 0.043 0.091 0.045
(10,10) 0.015 0.047 0.045 0.142 0.048 0.077 0.045 0.044 0.092 0.047

(n1, n2) = (10, 10) (n1, n2) = (25, 50)

(2,2) 0.043 0.044 0.046 0.069 0.033 0.050 0.047 0.054 0.060 0.045
(4,4) 0.032 0.044 0.045 0.068 0.042 0.046 0.047 0.059 0.059 0.041
(6,6) 0.025 0.039 0.048 0.077 0.046 0.046 0.046 0.055 0.060 0.043
(8,8) 0.020 0.040 0.048 0.079 0.048 0.044 0.048 0.054 0.062 0.043
(10,10) 0.018 0.041 0.048 0.081 0.047 0.044 0.048 0.053 0.063 0.043

(n1, n2) = (25, 25) (n1, n2) = (50, 25)

(2,2) 0.045 0.041 0.045 0.059 0.037 0.066 0.046 0.057 0.068 0.042
(4,4) 0.041 0.049 0.049 0.060 0.044 0.069 0.051 0.058 0.066 0.046
(6,6) 0.037 0.045 0.049 0.064 0.050 0.069 0.051 0.058 0.069 0.049
(8,8) 0.035 0.045 0.047 0.065 0.050 0.070 0.052 0.058 0.072 0.052
(10,10) 0.034 0.046 0.048 0.064 0.050 0.070 0.052 0.059 0.071 0.051

(n1, n2) = (50, 50) (n1, n2) = (25, 100)

(2,2) 0.047 0.043 0.045 0.055 0.044 0.028 0.058 0.055 0.051 0.046
(4,4) 0.045 0.043 0.042 0.055 0.043 0.021 0.051 0.051 0.053 0.046
(6,6) 0.042 0.044 0.045 0.053 0.044 0.018 0.050 0.050 0.048 0.042
(8,8) 0.043 0.043 0.046 0.055 0.045 0.016 0.047 0.052 0.046 0.040
(10,10) 0.042 0.046 0.047 0.056 0.045 0.015 0.045 0.053 0.051 0.040

(n1, n2) = (100, 100)

(2,2) 0.049 0.046 0.042 0.052 0.044 0.056 0.046 0.040 0.051 0.051
(4,4) 0.048 0.046 0.049 0.056 0.041 0.056 0.052 0.039 0.053 0.058
(6,6) 0.047 0.046 0.050 0.054 0.043 0.057 0.050 0.038 0.048 0.055
(8,8) 0.045 0.043 0.050 0.057 0.044 0.059 0.049 0.040 0.046 0.055
(10,10) 0.046 0.042 0.049 0.060 0.045 0.058 0.049 0.040 0.051 0.056

(n1, n2) = (200, 200)

(2,2) 0.049 0.046 0.052 0.056 0.044 0.060 0.042 0.051 0.059 0.045
(4,4) 0.047 0.046 0.052 0.050 0.041 0.064 0.046 0.052 0.054 0.049
(6,6) 0.050 0.044 0.054 0.052 0.045 0.065 0.045 0.049 0.056 0.044
(8,8) 0.048 0.044 0.056 0.055 0.046 0.066 0.045 0.050 0.062 0.047
(10,10) 0.049 0.044 0.052 0.053 0.047 0.066 0.049 0.050 0.062 0.048

(n1, n2) = (10, 20)

(2,2) 0.051 0.043 0.047 0.054 0.040 0.050 0.049 0.041 0.047 0.048
(4,4) 0.045 0.044 0.051 0.056 0.040 0.047 0.050 0.041 0.051 0.044
(6,6) 0.043 0.042 0.050 0.059 0.042 0.048 0.052 0.043 0.054 0.046
(8,8) 0.042 0.044 0.050 0.059 0.041 0.046 0.052 0.043 0.054 0.045
(10,10) 0.041 0.045 0.051 0.059 0.040 0.048 0.049 0.045 0.054 0.045
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Table 3: Type I error probabilities for �ve tests at 5% signi�cance level when
H0 : η1 ≤ η2 vs H1 : η1 > η2.

(µ1, µ2) (σ2
1 , σ

2
2) Z KM AB PB MFB Z KM AB PB MFB

(n1, n2) = (5, 5) (n1, n2) = (10, 25)
(1,0) (2,4) 0.101 0.056 0.097 0.128 0.040 0.047 0.050 0.294 0.055 0.042
(1,0) (6,8) 0.053 0.055 0.091 0.148 0.043 0.020 0.048 0.243 0.061 0.036
(1,0) (12,14) 0.029 0.053 0.086 0.119 0.045 0.010 0.048 0.198 0.055 0.042
(2,0) (2,6) 0.142 0.061 0.173 0.124 0.050 0.068 0.056 0.626 0.066 0.053
(2,0) (10,14) 0.053 0.058 0.141 0.132 0.051 0.018 0.049 0.472 0.066 0.044
(2,0) (16,20) 0.033 0.057 0.129 0.128 0.051 0.011 0.047 0.401 0.058 0.044

(n1, n2) = (10, 10) (n1, n2) = (50, 25)
(1,0) (2,4) 0.089 0.056 0.168 0.091 0.049 0.090 0.051 0.362 0.070 0.057
(1,0) (6,8) 0.059 0.047 0.147 0.109 0.044 0.083 0.053 0.304 0.072 0.055
(1,0) (12,14) 0.042 0.048 0.125 0.090 0.044 0.080 0.052 0.255 0.073 0.054
(2,0) (2,6) 0.115 0.052 0.330 0.086 0.055 0.102 0.056 0.724 0.066 0.059
(2,0) (10,14) 0.062 0.054 0.259 0.101 0.049 0.088 0.052 0.569 0.075 0.052
(2,0) (16,20) 0.048 0.052 0.226 0.094 0.048 0.084 0.054 0.489 0.076 0.049

(n1, n2) = (25, 25) (n1, n2) = (100, 25)
(1,0) (2,4) 0.076 0.054 0.332 0.069 0.056 0.097 0.052 0.372 0.052 0.058
(1,0) (6,8) 0.060 0.051 0.284 0.077 0.050 0.097 0.052 0.292 0.055 0.055
(1,0) (12,14) 0.052 0.050 0.227 0.069 0.047 0.097 0.049 0.232 0.062 0.054
(2,0) (2,6) 0.092 0.055 0.694 0.065 0.055 0.106 0.057 0.747 0.054 0.056
(2,0) (10,14) 0.064 0.055 0.511 0.065 0.049 0.102 0.051 0.585 0.059 0.053
(2,0) (16,20) 0.056 0.053 0.443 0.072 0.049 0.101 0.051 0.509 0.061 0.055

(n1, n2) = (50, 50) (n1, n2) = (10, 100)
(1,0) (2,4) 0.068 0.054 0.549 0.053 0.057 0.019 0.060 0.475 0.053 0.036
(1,0) (6,8) 0.059 0.047 0.455 0.057 0.048 0.003 0.053 0.359 0.042 0.038
(1,0) (12,14) 0.053 0.051 0.346 0.053 0.049 0.001 0.045 0.282 0.037 0.041
(2,0) (2,6) 0.080 0.055 0.945 0.048 0.055 0.028 0.056 0.930 0.055 0.043
(2,0) (10,14) 0.061 0.051 0.799 0.054 0.052 0.002 0.046 0.702 0.042 0.039
(2,0) (16,20) 0.056 0.052 0.713 0.055 0.050 0.001 0.045 0.595 0.033 0.039

(n1, n2) = (100, 100) (n1, n2) = (25, 100)
(1,0) (2,4) 0.063 0.051 0.836 0.043 0.053 0.040 0.049 0.621 0.048 0.048
(1,0) (6,8) 0.057 0.047 0.712 0.052 0.045 0.024 0.046 0.478 0.045 0.045
(1,0) (12,14) 0.053 0.046 0.567 0.059 0.047 0.017 0.048 0.377 0.042 0.042
(2,0) (2,6) 0.072 0.054 0.997 0.051 0.049 0.052 0.058 0.989 0.056 0.056
(2,0) (10,14) 0.059 0.048 0.980 0.053 0.049 0.023 0.052 0.893 0.046 0.046
(2,0) (16,20) 0.055 0.048 0.941 0.059 0.047 0.018 0.048 0.801 0.048 0.048

(n1, n2) = (5, 25) (n1, n2) = (50, 100)
(1,0) (2,4) 0.025 0.050 0.264 0.054 0.030 0.054 0.051 0.758 0.047 0.049
(1,0) (6,8) 0.004 0.050 0.218 0.051 0.029 0.042 0.048 0.623 0.054 0.045
(1,0) (12,14) 0.001 0.049 0.176 0.040 0.031 0.037 0.049 0.486 0.058 0.045
(2,0) (2,6) 0.040 0.061 0.590 0.066 0.038 0.064 0.055 0.996 0.044 0.056
(2,0) (10,14) 0.002 0.051 0.405 0.052 0.034 0.043 0.047 0.949 0.056 0.048
(2,0) (16,20) 0.001 0.051 0.354 0.039 0.037 0.038 0.049 0.893 0.058 0.048
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Table 4: Powers of �ve tests for H0 : η1 ≤ η2 vs H1 : η1 > η2 hypothesis and
(µ1, µ2) = (0, 0).

(σ2
1 , σ

2
2) Z KM AB PB MFB Z KM AB PB MFB

(n1, n2) = (5, 5) (n1, n2) = (50, 50)

(4,2) 0.060 0.106 0.067 0.240 0.114 0.547 0.592 0.206 0.606 0.581
(6,2) 0.069 0.166 0.086 0.367 0.208 0.890 0.915 0.397 0.917 0.910
(8,2) 0.078 0.232 0.100 0.482 0.270 0.976 0.987 0.546 0.989 0.986
(10,2) 0.082 0.354 0.116 0.557 0.390 0.994 1.00 0.667 0.998 1.00
(12,2) 0.085 0.380 0.129 0.620 0.422 0.999 1.00 0.742 1.00 1.00

(n1, n2) = (10, 10) (n1, n2) = (25, 100)

(4,2) 0.125 0.190 0.085 0.285 0.226 0.350 0.506 0.197 0.561 0.474
(6,2) 0.219 0.352 0.126 0.472 0.458 0.674 0.810 0.336 0.903 0.785
(8,2) 0.311 0.498 0.171 0.621 0.642 0.843 0.930 0.448 0.989 0.921
(10,2) 0.394 0.602 0.200 0.714 0.744 0.921 0.969 0.545 0.992 0.967
(12,2) 0.462 0.668 0.249 0.781 0.794 0.958 0.986 0.611 1.00 0.984

(n1, n2) = (10, 20) (n1, n2) = (100, 25)

(4,2) 0.111 0.256 0.109 0.267 0.328 0.593 0.512 0.148 0.564 0.644
(6,2) 0.218 0.446 0.170 0.459 0.592 0.928 0.880 0.323 0.914 0.948
(8,2) 0.317 0.610 0.226 0.596 0.772 0.991 0.982 0.467 0.991 0.996
(10,2) 0.405 0.706 0.281 0.709 0.824 0.999 1.00 0.570 1.00 1.00
(12,2) 0.477 0.762 0.321 0.779 0.916 1.00 1.00 0.650 1.00 1.00

(n1, n2) = (25, 25) (n1, n2) = (50, 100)

(4,2) 0.312 0.360 0.134 0.390 0.522 0.602 0.692 0.240 0.676 0.882
(6,2) 0.608 0.684 0.241 0.707 0.842 0.921 0.968 0.447 0.954 0.996
(8,2) 0.793 0.876 0.317 0.879 0.958 0.986 0.994 0.608 0.990 0.998
(10,2) 0.890 0.958 0.392 0.941 0.990 0.997 1.00 0.733 0.999 1.00
(12,2) 0.940 0.976 0.462 0.972 0.996 0.999 1.00 0.809 1.00 1.00

(n1, n2) = (25, 50) (n1, n2) = (100, 100)

(4,2) 0.335 0.456 0.166 0.441 0.636 0.820 0.854 0.310 0.853 0.966
(6,2) 0.648 0.782 0.285 0.772 0.932 0.993 0.998 0.602 0.997 1.00
(8,2) 0.826 0.932 0.394 0.908 0.986 0.999 1.00 0.785 1.00 1.00
(10,2) 0.912 0.968 0.474 0.956 0.996 1.00 1.00 0.892 1.00 1.00
(12,2) 0.953 0.986 0.553 0.982 0.996 1.00 1.00 0.939 1.00 1.00

(n1, n2) = (50, 25) (n1, n2) = (200, 200)

(4,2) 0.545 0.592 0.194 0.580 0.756 0.977 0.988 0.487 0.966 0.966
(6,2) 0.890 0.932 0.371 0.923 0.990 1.00 1.00 0.860 1.00 1.00
(8,2) 0.978 0.982 0.515 0.981 0.996 1.00 1.00 0.973 1.00 1.00
(10,2) 0.995 1.00 0.644 0.996 1.00 1.00 1.00 0.996 1.00 1.00
(12,2) 0.998 1.00 0.719 1.00 1.00 1.00 1.00 0.998 1.00 1.00
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Figure 1: For n1 = 10, n2 = 10 powers of Z, KM, AB, PB and FP tests.

Figure 2: For n1 = 10, n2 = 20 powers of Z, KM, AB, PB and FP tests.
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Figure 3: For n1 = 25, n2 = 25 powers of Z, KM, AB, PB and FP tests.

Figure 4: For n1 = 25, n2 = 50 powers of Z, KM, AB, PB and FP tests.
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Figure 5: For n1 = 50, n2 = 25 powers of Z, KM, AB, PB and FP tests.

Figure 6: For n1 = 50, n2 = 50 powers of Z, KM, AB, PB and FP tests.

5. Two illustrative examples

In this section, we give two examples to illustrate the proposed approaches.
The �rst example is about the BF problem and second example is about means of
log-normal distribution.

Example 1. For illustrating the practical use of the proposed generalized con�-
dence intervals, we present the result an example. The data in Table 3 is taken
from Jarvis et al. [44] and Pagano and Gauvreau [45] to measure the relative level
of carboxyhemoglobin for a group of nonsmokers and a group of cigarette smokers.
We are interested in the interval estimation for µ2 − µ1 where µ1 and µ2 are the
true means of carboxyhemoglobin levels for nonsmokers and cigarette smokers,
respectively. The summary data is given in Table 5 and the interval limits as well
as interval widths for four con�dence intervals are demonstrated in Table 6. It
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is seen that the expected lengths of generalized approach based on algorithm 2 is
shorter than the other methods.

Table 5: Carboxyhemoglobin for nonsmokers and smokers groups, percent

Group ni x̄i s2
i

Nonsmokers 121 1.3 1.704
Smokers 75 4.1 4.054

Table 6: % 95 con�dence interval for µ2 − µ1

Method Interval limits Interval width
Algorithm 1 (2.258, 3.330) 1.072
Algorithm 2 (2.368, 3.244) 0.876

GCI (2.283, 3.314) 1.031

Example 2. We illustrate the application of the proposed tests for comparing
means of two lognormal distributions. This example is discussed in Krishnamoor-
thy and Mathew [34] and data is the amount of rainfall (in acre-feet) from 52
clouds, of which 26 were chosen at random and seeded with silver nitrate. It was
shown that normal models do not �t the data whereas lognormal models �t the
data sets very well. The summary statistics for the log-transformed data are given
in Table 7.

Table 7: The summary statistics for the log-transformed data of rainfall

Clouds ni x̄i s2
i

Seeded clouds 26 5.134 2.46
Unseeded clouds 26 3.990 2.60

Let ηx and ηy be the mean rainfall for the seeded clouds and the mean rainfall for
the unseeded clouds respectively. The p-values for testing,

(5.1) H0 : ηx = ηy vs. H1 : ηx > ηy

are presented in Table 8.

Table 8: p-values for testing H0 : ηx = ηy vs. H1 : ηx > ηy for the rainfall
example.

Test p-values
MFB test 0.076
PB test 0.064
AB test 0.079
KM test 0.078
Z test 0.060
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For the signi�cance level 5% �ve tests will conclude that H0 is not rejected. In
terms of the research question we conclude that seeded clouds do not produce more
rain than unseeded clouds.

6. Concluding remarks

In this study, we revisited the BF problem and developed two simple meth-
ods based on generalized approach for this problem. The developed con�dences
intervals were compared with GCI in terms of the expected lengths and cover-
age probabilities. Simulation study reveal that the generalized con�dence interval
based on equation 2.7 has the good expected length when sample sizes are balanced
or large. However, its coverage probabilities perform very poorly, especially when
sample sizes are unbalance. The expected lengths of generalized con�dence inter-
val based on equation 2.6 are shorter than GCI method. Its coverage probabilities
are satisfactory, especially when simple sizes are moderate and large.

We also conducted a Monte Carlo simulation study to evaluate type I error
probabilities and powers of the proposed tests for comparing the means of two
lognormal distributions under di�erent scenarios. For a range of choices of the
sample size and parameter con�gurations, we have investigated the performance
of the above tests using Monte Carlo simulation. Numerical results show that
when variances are unequal the size of the AB test exceeds the nominal level and
its power is very weak even for large sample sizes. The type I type error rate of
the Z score test underestimates the nominal level and Z test appears to be less
powerful than the KM, PB and MFB tests. Regarding the problem of hypothesis
testing of the ratio of two lognormal means, it is noted that the modi�ed �ducial
based test performs better than the considered tests in respect to type I error rate
and power in most cases.
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