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EIGENVALUES AND SCATTERING PROPERTIES OF
DIFFERENCE OPERATORS WITH IMPULSIVE CONDITION

IBRAHIM ERDAL AND ŞEYHMUS YARDIMCI

Abstract. In this work, we are concerned with difference operator of sec-
ond order with impulsive condition. By the help of a transfer matrix M , we
present scattering function of corresponding operator and examine the spectral
properties of this impulsive problem.

1. Introduction

Let us shortly give an overview on the existing literature of spectral theory of
Sturm—Liouville operators (SLO). Study of the spectral analysis of nonselfadjoint
SLO with continuous and discrete spectrum was begun by Naimark [1]. In [1], the
author proved that the spectrum of SLO consists of the continuous spectrum, the
eigenvalues and the spectral singularities. The spectral singularities are poles of
the kernel of the resolvent and are also embedded in the continuous spectrum, but
they are not eigenvalues. Then Marchenko investigated SLO in L2[0,∞) generated
by

− y′′ + q(x)y = λ2y, 0 ≤ x <∞, (1)

with boundary condition

y(0) = 0, (2)

where q is a real-valued function and λ is a spectral parameter [2]. He showed that
Jost function of (1) defined by

e(λ) := 1 +

∞∫
0

K(0, t)eiλtdt, λ ∈ C+ := {λ ∈ C : Imλ ≥ 0}
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has a finite number of simple zeros in open half complex plain and he also defined
scattering function of (1)-(2) by

S(λ) :=
e(λ)

e(λ)
, λ ∈ (−∞,∞) .

On the other hand, difference equations have become an interesting subject in this
field over the last century [3-5]. The modelling of certain problems from engi-
neering, economics, control theory and other areas of study has led to the rapid
development of the theory of the discrete equations. These developments gave rise
to the study of such equations. In recent years, some problems of spectral analysis
of non-selfadjoint difference operators with continuous and discrete spectrum have
been investigated by some authors [6],[7]. In [8], it is proved by examples that
nonselfadjoint difference operators of second order have spectral singularities. Also
some problems of spectral analysis of difference and other types of operators with
spectral singularities have been thoroughly studied in [9-12].
All of the studies mentioned above are of general boundary condition with-

out discontinuities. The spectral theory of some operators with discontinuities, i.e,
impulsive operators were studied in [13-15]. Also spectral properties of difference
operators with impulsive condition especially scattering problem were investigated
in [16]. This study is the general form of the [16], but the method used for deter-
mining the eigenvalues and spectral singularities is new and different from other
methods which are found in literature.
In this work, we are concerned with difference operator on the semi axis with

impulsive condition. We explore scattering theory of this problem and we give a
detailed example at the end of the paper.
Consider the following difference equation

an−1yn−1 + bnyn + anyn+1 = λyn, n ∈ N, (3)

with boundary condition

y0 = 0, (4)

where λ is a spectral parameter. Suppose that the real sequences {an}n∈N∪{0} and
{bn}n∈N satisfy the condition∑

n∈N
n (|1− an|+ |bn|) <∞. (5)

Under condition (5), equation (3) has the bounded solution satisfying the condition

lim
n→∞

e−inzen (z) = 1,

for λ = 2 cos z, where z ∈ C+. en (z) is called the Jost solution of (3). It is
analytic with respect to z in C+ := {z ∈ C : Im z > 0} , continuous in C+ and
en(z + 2π) = en(z) for all z in C+. Also the function en (z) has the representation
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[17]

en (z) = µne
inz

(
1 +

∞∑
m=1

Anme
imz

)
, n ∈ N, (6)

where µn andAnm are expressed in terms of the sequences {an}n∈N∪{0} and {bn}n∈N
as

µn =

{ ∞∏
k=n

ak

}−1
,

An1 = −
∞∑

k=n+1

bs,

An2 =
∞∑

k=n+1

{(
1− a2k

)
+ bk

∞∑
s=k+1

bs

}
,

An,m+2 = An+1,m +
∞∑

k=n+1

{(
1− a2k

)
Ak+1,m − bkAk,m+1

}
, m = 1, 2, ...;n ∈ N.

Moreover Anm satisfy

|Anm| ≤ c
∞∑

k=n+[m2 ]

(|1− ak|+ |bk|) , (7)

where c > 0 is a constant and
[
m
2

]
is the integer part of m2 .

2. Scattering function of corresponding operator

Let L denote the difference operator of second order generated in `2(N) by the
equation

an−1yn−1 + bnyn + anyn+1 = 2 cos zyn, n ∈ N \ {k − 1, k, k + 1} (8)

with the boundary condition
y0 = 0 (9)

and the impulsive condition(
yk+1

∆yk+1

)
= B

(
yk−1
∇yk−1

)
, B =

(
α β
γ δ

)
, (10)

where α, β, γ, δ are complex numbers, ∇ denotes the backward difference operator
and ∆ denotes the forward difference operator defined by ∇yn := yn − yn−1 and
∆yn := yn+1 − yn, respectively. Assume that the real sequences {an}n∈N∪{0} and
{bn}n∈N satisfy the condition (5). Throughout the paper, we assume that an 6= 0,
for all n ∈ N ∪ {0} .
Furthermore, let us denote the solutions of equation (8) by y−n and y+n respec-

tively {
y−n := yn(z), n = 0, 1, 2, ..., k − 1
y+n := yn(z), n = k + 1, k + 2, ... .
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We shall define the semi-strip S0 :=

{
z : z = η + iξ,−π

2
≤ η ≤ 3π

2
, ξ > 0

}
and

S := S0 ∪
[
−π

2
,

3π

2

]
.

It is known that, Qn(z) and Pn(z) are the fundamental solutions of (8) satisfying

Q0(z) =
1

a0
, Q1(z) = 0

and
P0(z) = 0, P1(z) = 1

for n = 0, 1, 2, ..., k − 1 [18]. Since the Wronskian of two solutions y = {yn(z)} and
u = {un(z)} of the difference equation (8) is defined by

W [y, u] := an[yn(z)un+1(z)− yn+1(z)un(z)],

we have
W [Qn(z), Pn(z)] = 1,

for all z ∈ C. It is clear that Qn(z) and Pn(z) are entire functions of z.
On the other hand (8) admits another solution

en (−z) = µne
−inz

(
1 +

∞∑
m=1

Anme
−imz

)
, n = k + 1, k + 2, ... (11)

fulfilling the asymptotic condition

lim
n→∞

einzen (−z) = 1,

where z ∈ C− := {z ∈ C : Im z ≤ 0} . Besides for all z ∈
[
−π2 ,

3π
2

]
\ {0, π} ,

W [en(z), en(−z)] = −2i sin z.

Now let z ∈
[
−π2 ,

3π
2

]
\ {0, π} . By the help of linearly independent solutions of (8),

we can express the general solution of (8)by{
y−n (z) = A_Qn(z) +B−Pn(z), n = 0, 1, 2, ..., k − 1
y+n (z) = A+en(z) +B+en(−z), n = k + 1, k + 2, ... ,

where A± and B± are constant coeffi cients. By (6) and (11), we get yk+1(z),
∆yk+1(z), yk−1(z) and ∇yk−1(z). Next, from the impulsive condition (10), we
obtain (

A+
B+

)
= M

(
A−
B−

)
, (12)

where

M :=

(
M11 M12

M21 M22

)
= K−1BT

such that

T :=

(
Qk−1(z) Pk−1(z)
∇Qk−1(z) ∇Pk−1(z)

)
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and

K :=

(
ek+1(z) ek+1(−z)

∆ek+1(z) ∆ek+1(−z)

)
.

Since detK = −2i sin z

ak+1
, it is easy to obtain

M22 (z) = − ak+1
2i sin z

{−∆ek+1(z) [αPk−1(z) + β∇Pk−1(z)]

+ ek+1(z) [γPk−1(z) + δ∇Pk−1(z)]} , (13)

M12 (z) = − ak+1
2i sin z

{∆ek+1(−z) [αPk−1(z) + β∇Pk−1(z)]

− ek+1(−z) [γPk−1(z) + δ∇Pk−1(z)]} . (14)

We shall regard any two solutions of (8) denoting the coeffi cients A± and B± by
A±± and B

±
± which are stated as

En(z) =

{
A+−Qn(z) +B+−Pn(z), n = 0, 1, 2, ..., k − 1
A++en(z) +B++en(−z), n = k + 1, k + 2, ...

(15)

and

Fn(z) =

{
A−−Qn(z) +B−−Pn(z), n = 0, 1, 2, ..., k − 1
A−+en(z) +B−+en(−z), n = k + 1, k + 2, ... ,

(16)

where A±± and B
±
± are complex coeffi cients. Let En and Fn are correlated with the

Jost solution of boundary value problem (8)-(10) and the boundary condition (9),
respectively. Then we find

A++ = 1, B++ = 0, A−− = 0, B−− = 1. (17)

Furthermore considering the expression (12) and (15), we find

A+− =
M22

detM
, B+− = − M21

detM
(18)

for the solution En. Similarly, for the solution Fn, considering (12) and (16), we
obtain

A−+ = M12, B−+ = M22. (19)

Clearly, inserting the coeffi cients A+−, B
+
− , A

+
+, B

+
+ in (15) and coeffi cients A−−,

B−− , A
−
+, B

−
+ in (16) , we find the solutions En and Fn satisfying the following

asymptotics respectively

En(z) =

{
M22

detM
Qn(z)− M21

detM
Pn(z), n→ 0

en(z), n→∞
(20)

and

Fn(z) =

{
Pn(z), n→ 0

M12en(z) +M22en(−z), n→∞ . (21)

Now by (20) and (21), we can give the following lemma.
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Lemma 1. The following equations hold for all z ∈
[
−π2 ,

3π
2

]
\ {0, π} .

(i) W [En(z), Fn(z)] =
M22

detM
, n→ 0,

(ii) W [En(z), Fn(z)] = −2iM22 sin z, n→∞.

Moreover, by means of (5) and (7), it is understood that M22 has an analytic

continuation from
[
−π

2
,

3π

2

]
to S0 and continuous up to

[
−π

2
,

3π

2

]
. By Lemma 1,

we have the following.

Corollary 2. A necessary and suffi cient condition to investigate the eigenvalues
and spectral singularities of the difference operator L with impulsive condition is to
investigate the zeros of the function M22.

Thus, from the definition of spectral singularities and eigenvalues [18], we can
introduce the sets of spectral singularities and eigenvalues of operator L,

σss(L) =

{
λ ∈ C : λ = 2 cos z, z ∈

[
−π

2
,

3π

2

]
\ {0, π} , M22(z) = 0

}
and

σd(L) = {λ ∈ C : λ = 2 cos z, z ∈ S0, M22(z) = 0} ,
respectively.

Theorem 3. Under the condition (5), the function M22 satisfy the following as-
ymptotics for ξ →∞, where z = η + iξ,

(i) If α+ β + γ + δ 6= 0,

M22 = e4iz
(
k−2∏
n=1

an

)−1 [
(α+ β + γ + δ)µk+1 + o(1)

]
. (22)

(ii) If α+ β + γ + δ = 0,

M22 = e5iz
(
k−3∏
n=1

an

)−1 [
−a−1k−2 (α+ β)µk+2 − (β + δ)µk+1 + o(1)

]
. (23)

Proof. From (13), we get

M22 = − ak+1
2i sin z

{βek+2 (z)Pk−2 (z)− (α+ β) ek+2 (z)Pk−1 (z)

+ (α+ β + γ + δ) ek+1 (z)Pk−1 (z)− (β + δ) ek+1 (z)Pk−2 (z)} .(24)
Also it is known that

en (z) = µne
inz [1 + o(1)] , n ∈ N, z = η + iξ, ξ →∞. (25)

By (24) and (25), we obtain asymptotic equations of M22. This completes the
proof. �

Theorem 4. Let α, β, γ, δ ∈ R. For all z ∈
[
−π

2
,

3π

2

]
\ {0, π} , M22 (z) 6= 0.
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Proof. Since En and Fn are the solutions of (8) − (10) impulsive boundary value
problem, it follows from (13), (14), (18) and (19) that

B−+ = M22 (z) = M12 (z) = A−+, (26)

for z ∈
[
−π2 ,

3π
2

]
\{0, π} . Assume that, there exists a z0 ∈

[
−π2 ,

3π
2

]
\{0, π} such that

M22 (z0) = 0. According to (26), we find A−+ (z0) = B−+(z0) = 0. Then the solution
Fn (z0) is equal to zero identically. So, Fn is a trivial solution of (8)-(10) which
gives a contradiction with our assumption, i.e., M22 (z) 6= 0 for all α, β, γ, δ ∈ R
and z ∈

[
−π2 ,

3π
2

]
\ {0, π} . �

Corollary 5. Let α, β, γ, δ ∈ R. The operator L has no spectral singularities.

Definition 6. Let α, β, γ, δ ∈ R. Then the scattering function of the operator L is
defined by

S (z) :=
E (0,−z)
E (0, z)

.

Since {an}n∈N∪{0} and {bn}n∈N are real sequences, it can be easily seen from (15)
that

En(z) = En(−z)
for all z ∈

[
−π2 ,

3π
2

]
\ {0, π} . Then the scattering function transforms

S (z) =
E (0, z)

E (0, z)
=
M22 (z)

M22 (z)
=
M12 (z)

M22 (z)
. (27)

Theorem 7. Let α, β, γ, δ ∈ R. For all z ∈
[
−π

2
,

3π

2

]
\ {0, π} , the scattering

function satisfies
S (−z) = S−1 (z) = S (z).

Proof. By (27), we obtain

S (−z) =
M12 (−z)
M22 (−z) .

SinceM22 (−z) = M22 (z) andM12 (−z) = M12 (z) for all z ∈
[
−π2 ,

3π
2

]
\{0, π} and

α, β, γ, δ ∈ R, we get
S (−z) = S−1 (z) = S (z).

It completes the proof. �

3. An example

Let us consider the difference operator L0 in `2(N) created by the following
difference equation

yn−1 + yn+1 = 2 cos zyn, N \ {1, 2, 3} (28)

and boundary condition
y0 = 0, (29)



670 IBRAHIM ERDAL AND ŞEYHMUS YARDIMCI

with impulsive condition(
y3

∆y3

)
= B

(
y1
∇y1

)
, B =

(
α β
γ δ

)
, (30)

where α, β, γ, δ are complex numbers. Here, since an = 1 and bn = 0 for all n ∈ N.
We obtain directly from (13) and (14) that

M22(z) = − e3iz

2i sin z

[
− (α+ β) eiz + α+ β + γ + δ

]
(31)

and

M12(z) = − e−3iz

2i sin z

[
(α+ β) e−iz + α+ β − γ − δ

]
(32)

for k = 2. In order to examine eigenvalues and spectral singularities of L0, we
investigate zeros of M22. For this purpose, we see

eiz = 1 +
γ + δ

α+ β

by (31). Using the last equation, we find

zm = −i ln |1 +H|+Arg (1 +H) + 2mπ, m ∈ Z, (33)

where H =
γ + δ

α+ β
. Now we need to investigate some special cases.

Case 1: Let H = eiθ − 1, where θ ∈ R. Since Arg (1 +H) = θ, we get

zm = θ + 2mπ, m ∈ Z.

In this case zm ∈ R. Thus, the numbers are spectral singularities of L0 in
{zm : m ∈ Z} ∩

{[
−π

2
,

3π

2

]
\ {0, π}

}
.

Case 2: Let D := {z ∈ C : |z + 1| = 1} . In this case, since |1 +H| = 1, we get

zm = θ + 2mπ, m ∈ Z.
From (33) and this implies that spectral singularities of L0 are in {zm : m ∈ Z}∩D.
Furthermore, let D∗ := {z ∈ C : |z + 1| < 1} . Since |1 +H| < 1, then it is easy to
see that the eigenvalues of L0 are in S0 ∩D∗.
Case 3: Let H ∈ R. If −2 < H < 0, then the operator has eigenvalues.

Otherwise, the operator has no eigenvalues. Note that, the operator has spectral
singularities for H = −2.
Moreover, let α, β, γ, δ ∈ R. Then using (27), (31) and (32), we get the scattering

function of impulsive boundary value problem (28)-(30) by

S(z) = e−6iz
[

(α+ β) e−iz + (α+ β − γ − δ)
− (α+ β) eiz + (α+ β + γ + δ)

]
for z ∈

[
−π2 ,

3π
2

]
\ {0, π} .
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