Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. Volume 68, Number 1, Pages 672–685 (2019) DOI: 10.31801/cfsuasmas.459971 ISSN 1303-5991 E-ISSN 2618-6470

http://communications.science.ankara.edu.tr/index.php?series=A1

k-AUTOCORRELATION AND ITS APPLICATIONS

HAYRULLAH ÖZİMAMOĞLU, MURAT ŞAHIN, AND OKTAY ÖLMEZ

ABSTRACT. The standard autocorrelation measures similarities between a binary sequence and its any shifted form. In this paper, we introduce the concept of the k-autocorrelation of a binary sequence as a generalization of the standard autocorrelation. We give two applications of the k-autocorrelation. The first one is related the additive circulant codes over \mathbb{F}_4 in coding theory. We use the k-autocorrelation to determine the minimum distance of additive circulant codes over \mathbb{F}_4 . The second one is related the (7,3,1)-BIBD in design theory. The k-autocorrelation coefficients give us information about the lines in the (7,3,1)-BIBD.

1. Introduction

Autocorrelation is used to measure similarities between a sequence and its shifted forms. It has applications in communication systems and cryptography. Let $\mathbf{a} = (a_0, a_1, a_2, \dots, a_{n-1})$ be a binary sequence and $\mathbf{a}_{\tau} = (a_{-\tau}, a_{1-\tau}, a_{2-\tau}, \dots, a_{n-1-\tau})$ be its shifted forms for $\tau = 1, 2, \dots, n-1$. In this paper, indices of all sequences are in *modulo* n. The *standard autocorrelation* of the sequences \mathbf{a} and \mathbf{a}_{τ} is defined by

$$c_{\tau}(\mathbf{a}) = \sum_{i=0}^{n-1} (-1)^{a_i + a_{i-\tau}}.$$

 $\{c_{\tau}(\boldsymbol{a})\}_{\tau=0}^{n-1}$ sequence is called autocorrelation coefficients.

In this study, we introduce k-autocorrelation for a binary sequence and its k-1 shifted forms. This concept is the generalization of standard autocorrelation. For given $\tau_1, \tau_2, \ldots, \tau_{k-1} \in \mathbb{Z}$ such that $1 \leq \tau_1 < \tau_2 < \cdots < \tau_{k-1} \leq n-1$, we define k-autocorrelation of the sequence \boldsymbol{a} as follows:

$$c_{\tau_1,\tau_2,\dots,\tau_{k-1}}(\boldsymbol{a}) = \sum_{i=0}^{n-1} (-1)^{a_i + a_{i-\tau_1} + a_{i-\tau_2} + \dots + a_{i-\tau_{k-1}}},$$

Received by the editors: December 12, 2017; Accepted: March 27, 2018. 2010 Mathematics Subject Classification. Primary 62H20, 94B60; Secondary 94B05, 05B05. Key words and phrases. Autocorrelation, additive circulant codes, Fano plane.

©2018 Ankara University

where

$$a = (a_0, a_1, a_2, \dots, a_{n-1}),$$

$$a_{\tau_1} = (a_{-\tau_1}, a_{1-\tau_1}, a_{2-\tau_1}, \dots, a_{n-1-\tau_1}),$$

$$\vdots$$

$$a_{\tau_{k-1}} = (a_{-\tau_{k-1}}, a_{1-\tau_{k-1}}, a_{2-\tau_{k-1}}, \dots, a_{n-1-\tau_{k-1}}),$$

for any k = 2, 3, ..., n. The sequence $\{c_{\tau_1, \tau_2, ..., \tau_{k-1}}(\boldsymbol{a})\}$ is called *k-autocorrelation* coefficients. If we take k = 2, then we get the standard autocorrelation. Moreover, we call

$$s = a_{{m{ au}}_1} + a_{{m{ au}}_2} + \ldots + a_{{m{ au}}_{k-1}}$$

total shift sequence for any binary sequence a, the k-autocorrelation measures the similarity between the sequence a and the total shift sequence s.

For example, we calculate the standard autocorrelation and the 3-autocorrelation for the sequence $\mathbf{a} = (0, 0, 1, 0, 1, 1)$ in Table 1 and Table 2, respectively.

Table 1.

τ	$a_{ au}$	$c_{\tau}(\boldsymbol{a})$
1	(1,0,0,1,0,1)	-2
2	(1,1,0,0,1,0)	-2
3	(0,1,1,0,0,1)	2
4	(1,0,1,1,0,0)	-2
5	(0,1,0,1,1,0)	-2

Table 2.

$ au_1, au_2$	$c_{ au_1, au_2}(\boldsymbol{a})$
$\tau_1 = 1, \ \tau_2 = 2$	0
$\tau_1 = 1, \ \tau_2 = 3$	-4
$\tau_1 = 1, \ \tau_2 = 4$	4
$\tau_1 = 1, \ \tau_2 = 5$	0
$\tau_1 = 2, \ \tau_2 = 3$	4
$\tau_1 = 2, \ \tau_2 = 4$	0
$\tau_1 = 2, \ \tau_2 = 5$	-4
$\tau_1 = 3, \ \tau_2 = 4$	-4
$\tau_1 = 3, \ \tau_2 = 5$	4
$\tau_1 = 4, \ \tau_2 = 5$	0

This paper is organized as follows: In Section 2, we give basic definitions and theorems. In Section 3, we determine the minimum distance of additive circulant codes over \mathbb{F}_4 by the k-autocorrelation. In Section 4, we would like to motivate

our definition by providing an example related to design theory. In this specific example, we explain the relation between k-autocorrelation values of a sequence and corresponding lines in the (7,3,1)-BIBD.

2. Preliminaries

The Hamming weight of $u \in \mathbb{F}_q^n$, denoted wt(u), is the number of nonzero components of u. The Hamming distance between u and v, denoted d(u,v), is wt(u-v). We assume that the binary sequence $\mathbf{a} = (a_0, a_1, a_2, \dots, a_{n-1})$ is a vector in \mathbb{F}_2^n . There is a relation between the standard autocorrelation $c_{\tau}(\mathbf{a})$ and the Hamming distance $d(\mathbf{a}, \mathbf{a}_{\tau})$. It is given in the next lemma.

Lemma 1. For any binary sequence $\mathbf{a} = (a_0, a_1, a_2, \dots, a_{n-1})$ of length n,

$$c_{\tau}(\boldsymbol{a}) = n - 2d(\boldsymbol{a}, \boldsymbol{a_{\tau}}),$$

where a_{τ} is the shifted form of the sequence a [2].

Since $d(\mathbf{a}, \mathbf{a_{\tau}}) = wt(\mathbf{a} + \mathbf{a_{\tau}})$ for any binary sequence \mathbf{a} , then we have the following corollary.

Corollary 2. For any binary sequence $\mathbf{a} = (a_0, a_1, a_2, \dots, a_{n-1})$ of length n,

$$2wt(\boldsymbol{a} + \boldsymbol{a_{\tau}}) + c_{\tau}(\boldsymbol{a}) = n,$$

where a_{τ} is the shifted form of the sequence a.

We generalize Corollary 2 in the next theorem.

Theorem 3. For any binary sequence $\mathbf{a} = (a_0, a_1, a_2, \dots, a_{n-1})$ of length n, and for any $k = 2, 3, \dots, n$, we have

$$2wt(\boldsymbol{a} + \boldsymbol{a_{\tau_1}} + \boldsymbol{a_{\tau_2}} + \dots + \boldsymbol{a_{\tau_{k-1}}}) + c_{\tau_1,\tau_2,\dots,\tau_{k-1}}(\boldsymbol{a}) = n,$$

where a_{τ_j} are the shifted forms of the sequence a for j = 1, 2, ..., k - 1.

Proof. Let

$$(\alpha_0, \alpha_1, \dots, \alpha_{n-1}) = a + a_{\tau_1} + a_{\tau_2} + \dots + a_{\tau_{n-1}},$$

where

$$\alpha_i = \begin{cases} 0, & if \ a_i + a_{i-\tau_1} + a_{i-\tau_2} + \dots + a_{i-\tau_{k-1}} \equiv 0 \pmod{2}, \\ 1, & if \ a_i + a_{i-\tau_1} + a_{i-\tau_2} + \dots + a_{i-\tau_{k-1}} \equiv 1 \pmod{2}, \end{cases}$$
(1)

for $i = 0, 1, \ldots, n - 1$. Moreover,

$$wt(a + a_{\tau_1} + a_{\tau_2} + \dots + a_{\tau_{k-1}}) = \sum_{i=0}^{n-1} \alpha_i.$$
 (2)

Let $\beta_i = (-1)^{a_i + a_{i-\tau_1} + a_{i-\tau_2} + \dots + a_{i-\tau_{k-1}}}$, for $i = 0, 1, \dots, n-1$, then we have

$$\beta_i = \begin{cases} 1, & \text{if } a_i + a_{i-\tau_1} + a_{i-\tau_2} + \dots + a_{i-\tau_{k-1}} \equiv 0 \pmod{2}, \\ -1, & \text{if } a_i + a_{i-\tau_1} + a_{i-\tau_2} + \dots + a_{i-\tau_{k-1}} \equiv 1 \pmod{2}, \end{cases}$$
(3)

for $i = 0, 1, \ldots, n - 1$. As a result, by (1), (2) and (3), we obtain

$$2wt(\mathbf{a} + \mathbf{a_{\tau_1}} + \mathbf{a_{\tau_2}} + \dots + \mathbf{a_{\tau_{k-1}}}) + c_{\tau_1,\tau_2,\dots,\tau_{k-1}}(\mathbf{a}) = \sum_{i=0}^{n-1} 2\alpha_i + \sum_{i=0}^{n-1} \beta_i$$

$$= \sum_{i=0}^{n-1} (2\alpha_i + \beta_i)$$

$$= \sum_{i=0}^{n-1} 1$$

$$= n.$$

For $x, y \in \mathbb{F}_2^n$, let $z = x \cap y \in \mathbb{F}_2^n$ such that

$$z_i = \begin{cases} 1, & if \ x_i = y_i = 1, \\ 0, & otherwise, \end{cases}$$
 (4)

for i = 0, 1, ..., n - 1. Then, we have Theorem 1.4.3 in [3] as follows:

$$wt(x+y) = wt(x) + wt(y) - 2wt(x \cap y). \tag{5}$$

A linear code C of length n over \mathbb{F}_q is a k dimensional subspace of \mathbb{F}_q^n , denoted [n,k], and the vectors in C are codewords of C. Specially, codes over \mathbb{F}_2 are called binary codes. The minimum distance d of the linear code C is the smallest Hamming distance between distinct codewords. For the linear code C, the minimum distance d is the same the minimum Hamming weight of the nonzero codewords of C. A generator matrix for the linear [n,k] code C is any $k \times n$ matrix G whose rows form a basis for C. The generator matrix of the form $[I_k|A]$, where I_k is the $k \times k$ identity matrix, is said to be in standard form. There is the $(n-k) \times n$ matrix H, called a parity check matrix for the [n,k] code C, defined by

$$C = \left\{ c \in \mathbb{F}_q^n \middle| Hc^T = 0 \right\}.$$

If $G = [I_k | A]$ is a generator matrix for the [n, k] code C in standard form, then $H = [-A^T | I_{n-k}]$ is a parity check matrix for C (Theorem 1.2.1 in [3]).

The minimum distance d of a linear code C is related to a parity-check matrix of C. Any d-1 columns of H are linearly independent and H has d columns that are linearly dependent if and only if C has minimum distance d (Corollary 4.5.7 in [4]).

Two linear codes C_1 and C_2 are permutation equivalent provided there is a permutation of coordinates which sends C_1 to C_2 . Thus, C_1 and C_2 are permutation equivalent provided there is a permutation matrix P such that G_1 is a generator matrix of C_1 if and only if G_1P is a generator matrix of C_2 . Then, if two linear codes C_1 and C_2 are permutation equivalent, the minimum distance of these codes are the same.

Let $B = \{b_1, b_2, \dots, b_p\}$ be any binary column set of the same length and $1 \le q \le p$. We define

$$\alpha_B = \sum_{j=1}^q b_{i_j}$$

for $1 \le i_i \le p$. Note that α_B contain all linear combinations of the set B.

Theorem 4. Let $G_{n\times 3n} = [I_{n\times n} : A_{n\times 2n}]$ be the generator matrix in the standard form of the binary [3n, n] code C, and

$$H_{2n\times 3n} = [A_{n\times 2n}^T : I_{2n\times 2n}] = [x_1 \ x_2 \ \cdots x_n : I_{2n\times 2n}],$$

be the parity check matrix of the C, where x_i is a binary column in the matrix A^T , and $wt(x_i) = m$ for $1 \le i \le n$.

Let S be any binary column set in the matrix A^T , and $1 \le s \le n$. We denote

$$\alpha_S = \sum_{i=1}^{s} x_{i_j}$$

for $1 \le i_j \le n$. Then, $wt(\alpha_S) \ge m - s + 1$ for all $1 \le s \le n$ if and only if the minimum distance d of the code C is m + 1.

Proof. (\Rightarrow): We choose a column x_i in the matrix A^T for any $1 \le i \le n$. Let e_{i_j} be a column in the identity matrix $I_{2n \times 2n}$ for any $1 \le i_j \le 2n$. Since $wt(x_i) = m$, there is a column set $\{e_{i_1}, e_{i_2}, \ldots, e_{i_m}\}$ in the matrix $I_{2n \times 2n}$ such that

$$x_i = e_{i_1} + e_{i_2} + \dots + e_{i_m}.$$

The set $\{x_i, e_{i_1}, e_{i_2}, \dots, e_{i_m}\}$ with m+1 elements is linearly dependent. Then, we need to show that any column set with m elements in the parity check matrix H is linearly independent.

(i) Let S be any column set with m elements in the matrix A^T and $1 \le s \le m$. $\alpha_S = x_{i_1} + x_{i_2} + \ldots + x_{i_s}$ is any linear combination of the columns in the set S for $1 \le i_j \le n$. Since by hypothesis

$$wt(\alpha_S) \geq m-s+1$$

> 1.

 α_S isn't equal to zero vector. Then the set S is linearly independent.

- (ii) Let T be any column set with m elements in the matrix $I_{2n\times 2n}$ and $1 \le t \le m$. $\alpha_T = e_{i_1} + e_{i_2} + \ldots + e_{i_t}$ is any linear combination of the columns in the set T for $1 \le i_j \le n$. Since $wt(\alpha_T) = t \ne 0$, α_T isn't equal to zero vector. Hence the set T is linearly independent.
- (iii) Let S be any column set with s elements in the matrix A^T , T be any column set with t elements in the matrix $I_{2n\times 2n}$, $1 \le s, t < m$ and s+t=m. We

have

$$\alpha_{S \cup T} = x_{i_1} + x_{i_2} + \ldots + x_{i_s} + e_{i_1} + e_{i_2} + \ldots + e_{i_t}$$

= $\alpha_S + \alpha_T$,

for $1 \le i_j \le n$, and so $\alpha_S + \alpha_T$ is any linear combination of the columns in the set $S \cup T$ with m elements.

Since $wt(\alpha_T) = t$, by the definition in (4) we have

$$wt(\alpha_S \cap \alpha_T) \le t. \tag{6}$$

Since by hypothesis, (5) and (6),

$$wt(\alpha_S + \alpha_T) = wt(\alpha_S) + wt(\alpha_T) - 2wt(\alpha_S \cap \alpha_T)$$

$$\geq m - s + 1 + t - 2t$$

= 1.

 $\alpha_S + \alpha_T$ isn't equal to zero vector. Then the set $S \cup T$ is linearly independent. (\Leftarrow) : Let S be any column set in the matrix A^T , and $1 \leq s \leq n$. $\alpha_S = x_{i_1} + x_{i_2} + \ldots + x_{i_s}$ is any linear combination of the columns in the set S for $1 \leq i_j \leq n$. Assume that for any $1 \leq s \leq n$,

$$wt(\alpha_S) < m - s + 1 \tag{7}$$

Let $r_{i_j} = [e_{i_j} : x_{i_j}]$ be a row of the generator matrix G, where e_{i_j} is a row in the identity matrix $I_{n \times n}$, and x_{i_j} is a row in the matrix $A_{n \times 2n}$ for any $1 \le i_j \le n$. By (7), we have

$$wt(r_{i_1} + r_{i_2} + \dots + r_{i_s}) < s + m - s + 1$$

= $m + 1$,

and this is contrary to the fact that the minimum distance of the code C is m+1. Then the proof is completed.

3. FINDING MINIMUM DISTANCE OF THE ADDITIVE CIRCULANT CODES OVER \mathbb{F}_4

Given a finite field \mathbb{F} and a subfield $\mathbb{K} \subseteq \mathbb{F}$ such that $[\mathbb{F} : \mathbb{K}] = e$, a \mathbb{K} -linear subset $C \subseteq \mathbb{F}^n$ is called \mathbb{F}/\mathbb{K} -additive code (Definition 1 in [6]). We denote $\mathbb{F}_4 = \{0, 1, w, w^2\}$, where $w^2 = w + 1$. An additive code C over \mathbb{F}_4 of length n is additive subgroup of \mathbb{F}_4^n . C contains 2^k codewords for some $0 \le k \le 2n$, and can be defined by a $k \times n$ generator matrix with entries from \mathbb{F}_4 , whose rows span C additively. C is called an $(n, 2^k)$ code. The minimum distance d of the code C is the minimal Hamming distance between any two distinct codewords of C. Since C is an additive code, the minimum distance is also given by the smallest nonzero weight of any codeword in C.

An additive $(n, 2^n)$ code C over \mathbb{F}_4 with generator matrix

$$G = \begin{bmatrix} w & g_1 & g_2 & \cdots & g_{n-1} \\ g_{n-1} & w & g_1 & \cdots & g_{n-2} \\ g_{n-2} & g_{n-1} & w & \cdots & g_{n-3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ g_1 & g_2 & g_3 & \cdots & w \end{bmatrix}_{n \times n}$$

is called additive circulant code, where $g_i \in \{0,1\} \subseteq \mathbb{F}_4$ for i = 1, 2, ..., n-1. The vector $g = (w, g_1, g_2, ..., g_{n-1})$ is called generator vector for the code C [1].

The additive $(n, 2^k)$ code C over \mathbb{F}_4 is transformed into a [3n, k] binary code by the isometric embedding technique. There is a relation between the minimum distances of these two codes as follows:

Lemma 5. (Isometric Embedding Technique) The isometric monomorphism is given by $\sigma: \mathbb{F}_4 \longrightarrow \mathbb{F}_2^3, \ 0 \longrightarrow (0,0,0), \ 1 \longrightarrow (1,1,0), \ w \longrightarrow (1,0,1), \ w^2 \longrightarrow (0,1,1)$. The minimum distance of an additive code C over \mathbb{F}_4 is given by

$$d(C) = \frac{d(\sigma(C))}{2}$$

[6].

Let

$$g = (w, g_1, g_2, \dots, g_{n-1}) \tag{8}$$

be the generator vector of an additive circulant code C with length n over \mathbb{F}_4 , where $g_i \in \{0,1\} \subseteq \mathbb{F}_4$ for $i=1,2,\ldots,n-1$. Now we construct a binary sequence by the vector g as follows:

We apply the map $\phi: \mathbb{F}_4 \longrightarrow \mathbb{F}_2^2$, $0 \longrightarrow (0,0)$, $1 \longrightarrow (1,1)$, $w \longrightarrow (1,0)$, $w^2 \longrightarrow (0,1)$ to the coordinates of the generator vector g, and so we define the binary sequence

$$\mathbf{a} = (\phi(w), \phi(g_1), \phi(g_2), \dots, \phi(g_{n-1})). \tag{9}$$

Note that the length of the sequence a is 2n, and

$$wt(a) = 2wt(q) - 1 \tag{10}$$

We determine whether the minimum distance of additive circulant code C over \mathbb{F}_4 is wt(g).

Lemma 6. Let g be defined in (8), and \mathbf{a} be defined in (9). For even integers τ_i such that $2 \leq \tau_1 < \tau_2 < \ldots < \tau_{k-1} \leq 2n-2$, we have $wt(\mathbf{a} + \mathbf{a}_{\tau_1} + \mathbf{a}_{\tau_2} + \ldots + \mathbf{a}_{\tau_{k-1}}) \geq k$.

Proof. Let $\alpha = (\alpha_0, \alpha_1, \alpha_2, \alpha_3, \dots, \alpha_{2n-2}, \alpha_{2n-1}) = \mathbf{a} + \mathbf{a_{\tau_1}} + \mathbf{a_{\tau_2}} + \dots + \mathbf{a_{\tau_{k-1}}}$. Since $\phi(w) = (1, 0)$ and $\phi(g_i) = (0, 0)$ or (1, 1) for $i = 1, 2, \dots, n-1$, there are exactly k pair $(\alpha_j, \alpha_{j+1}) = (1, 0)$ or (0, 1) for some $j = 0, 2, \dots, 2n-2$ in the vector α . Then, we have $wt(\alpha) > k$.

Lemma 7. Let g be defined in (8), and \mathbf{a} be defined in (9). For even integers τ_i such that $2 \leq \tau_1 < \tau_2 < \ldots < \tau_{k-1} \leq 2n-2$, if $k \geq wt(g)$, we have $c_{\tau_1,\tau_2,\ldots,\tau_{k-1}}(\mathbf{a}) \leq s_k$, where $s_k = 2n-2wt(\mathbf{a})+2k-2$.

Proof. By hypothesis and (10),

$$k \ge wt(g) \Rightarrow -2k \le -wt(a) - 1$$
 (11)

$$\Rightarrow 0 \le 2k - wt(\mathbf{a}) - 1, \tag{12}$$

and since $wt(a + a_{\tau_1} + a_{\tau_2} + \ldots + a_{\tau_{k-1}}) \ge k$ by Lemma 6, we get

$$-2wt(a + a_{\tau_1} + a_{\tau_2} + \ldots + a_{\tau_{k-1}}) \le -2k. \tag{13}$$

By Theorem 3, (11), (12) and (13), we obtain

$$\begin{array}{lcl} c_{\tau_{1},\tau_{2},\dots,\tau_{k-1}}(\boldsymbol{a}) & = & 2n - 2wt(\boldsymbol{a} + \boldsymbol{a_{\tau_{1}}} + \boldsymbol{a_{\tau_{2}}} + \dots + \boldsymbol{a_{\tau_{k-1}}}) \\ & \leq & 2n - 2k \\ & \leq & 2n - wt(\boldsymbol{a}) - 1 \\ & \leq & (2n - wt(\boldsymbol{a}) - 1) + (2k - wt(\boldsymbol{a}) - 1) \\ & = & s_{k}. \end{array}$$

Theorem 8. Let g be defined in (8), and a be defined in (9). For even integers τ_i such that $2 \le \tau_1 < \tau_2 < \ldots < \tau_{k-1} \le 2n-2$, if for all $k = 2, 3, \ldots, wt(g)-1$

$$c_{\tau_1,\tau_2,\ldots,\tau_{k-1}}(\boldsymbol{a}) \leq s_k,$$

where $s_k = 2n - 2wt(\mathbf{a}) + 2k - 2$, the minimum distance d of the additive circulant code C over \mathbb{F}_4 is equal to wt(g), otherwise the minimum distance d isn't equal to wt(g).

Proof. Let G_1 be a generator $n \times n$ matrix of the additive circulant code C. If we apply the map σ in Lemma 5 to G_1 , we have a $n \times 3n$ matrix G_2 . Let $\sigma(C)$ be the generated code with matrix G_2 . If we apply one permutation to columns of the matrix G_2 , so we can obtain the generator matrix in the standard form

$$G_3 = \left[egin{array}{ccc} & oldsymbol{a} \ & oldsymbol{a_2} \ & I_{n imes n} & oldsymbol{a_4} \ & dots \ & oldsymbol{a_{2n-2}} \end{array}
ight].$$

Since the generated codes by G_2 and G_3 are equivalent, the minimum distances $d(\sigma(C))$ of these codes are the same. The parity check matrix of the generated code by G_3 is

$$H_3 = [\begin{array}{cccc} \boldsymbol{a} & \boldsymbol{a_2} & \boldsymbol{a_4} & \cdots & \boldsymbol{a_{2n-2}} & : I_{2n \times 2n} \end{array}], \ wt(\boldsymbol{a_{\tau_i}}) = wt(\boldsymbol{a}).$$

If k = 1, we have

$$wt(\mathbf{a}_{\tau_i}) = wt(\mathbf{a}) - k + 1. \tag{14}$$

By Lemma 7, if $k \geq wt(g)$,

$$c_{\tau_1,\tau_2,\dots,\tau_{k-1}}(\boldsymbol{a}) \le s_k,\tag{15}$$

and by hypothesis, for all k = 2, 3, ..., wt(g) - 1

$$c_{\tau_1,\tau_2,\dots,\tau_{k-1}}(\boldsymbol{a}) \le s_k. \tag{16}$$

Since by Theorem 3, (15) and (16), for all k = 2, 3, ..., n,

$$c_{\tau_1,\tau_2,...,\tau_{k-1}}(\mathbf{a}) = 2n - 2wt(\mathbf{a} + \mathbf{a}_{\tau_1} + \mathbf{a}_{\tau_2} + ... + \mathbf{a}_{\tau_{k-1}})$$

 $< 2n - 2wt(\mathbf{a}) + 2k - 2,$

we have

$$wt(a + a_{\tau_1} + a_{\tau_2} + \ldots + a_{\tau_{k-1}}) \ge wt(a) - k + 1.$$
 (17)

Since for all $k = 1, 2, \ldots, n$,

$$wt(a + a_{\tau_1} + a_{\tau_2} + \ldots + a_{\tau_{k-1}}) \ge wt(a) - k + 1$$
 (18)

by (14) and (17), and so by Theorem 4, $d(\sigma(C)) = wt(a) + 1$. Then by Lemma 5 and (10), the minimum distance d of the code C is equal to

$$d(C) = \frac{wt(\boldsymbol{a}) + 1}{2} = wt(g).$$

Assume that for $\exists k=2,3,\ldots,wt(g)-1,\ c_{\tau_1,\tau_2,\ldots,\tau_{k-1}}(\boldsymbol{a})>s_k.$ Since by Theorem 3

$$c_{\tau_1,\tau_2,...,\tau_{k-1}}(\mathbf{a}) = 2n - 2wt(\mathbf{a} + \mathbf{a}_{\tau_1} + \mathbf{a}_{\tau_2} + ... + \mathbf{a}_{\tau_{k-1}})$$

> $2n - 2wt(\mathbf{a}) + 2k - 2$,

we get

$$wt(a + a_{\tau_1} + a_{\tau_2} + \dots + a_{\tau_{k-1}}) < wt(a) - k + 1.$$
 (19)

By Theorem 4 and (19), $d(\sigma(C)) \neq wt(a) + 1$ and then by Lemma 5, the minimum distance d(C) of the code C isn't equal to wt(g).

Example 9. Let g = (w, 1, 1, 1, 0, 0) be a generator vector of the additive circulant code C of length 6 over \mathbb{F}_4 . So, the generator matrix of the code C is

$$G_1 = \begin{bmatrix} w & 1 & 1 & 1 & 0 & 0 \\ 0 & w & 1 & 1 & 1 & 0 \\ 0 & 0 & w & 1 & 1 & 1 \\ 1 & 0 & 0 & w & 1 & 1 \\ 1 & 1 & 0 & 0 & w & 1 \\ 1 & 1 & 1 & 0 & 0 & w \end{bmatrix}_{6 \times 6}.$$

Now we determine whether this code has a minimum distance of wt(g) = 4. If we apply the map σ in Lemma 5 to the matrix G_1 , we have the matrix

If we apply the permutation p to the columns of the matrix G_2 , where

we obtain the generator matrix in the standard form

Then, the parity check matrix of generated code by the matrix G_3 is

$$H_{3} = \begin{bmatrix} \mathbf{a} & \mathbf{a_{2}} & \mathbf{a_{4}} & \mathbf{a_{6}} & \mathbf{a_{8}} & \mathbf{a_{10}} : I_{12 \times 12} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

In Table 3, we calculate the 2-autocorrelation coefficients of the sequence

$$\mathbf{a} = (\phi(w), \phi(1), \phi(1), \phi(1), \phi(0), \phi(0)) = (1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0).$$

Hence, 2-autocorrelation coefficients of the sequence a are

$$(c_2(\mathbf{a}), c_4(\mathbf{a}), c_6(\mathbf{a}), c_8(\mathbf{a}), c_{10}(\mathbf{a})) = (4, -4, -8, -4, 4).$$

Since $s_2 = 0$ by Theorem 8, for k = 2, and $c_{\tau}(\mathbf{a}) > s_2$ for $\tau = 2, 10$, the minimum distance of the code C isn't equal to 4.

Table 3.

τ	$a_{ au}$	$c_{\tau}(\boldsymbol{a})$
2	(0,0,1,0,1,1,1,1,1,1,0,0)	4
4	(0,0,0,0,1,0,1,1,1,1,1,1)	-4
6	(1,1,0,0,0,0,1,0,1,1,1,1)	-8
8	(1,1,1,1,0,0,0,0,1,0,1,1)	-4
10	(1,1,1,1,1,1,0,0,0,0,1,0)	4

Example 10. In Table 4, we calculate the 2-autocorrelation coefficients of all the additive circulant codes of length 6 over \mathbb{F}_4 such that wt(g) = 4.

Table 4.

	The generator vectors	2-autocorrelation coefficients
1	(w, 1, 1, 1, 0, 0)	(4, -4, -8, -4, 4)
2	(w, 1, 1, 0, 1, 0)	(-4,0,0,0,-4)
3	(w, 1, 1, 0, 0, 1)	(0, -4, 0, -4, 0)
4	(w, 1, 0, 1, 1, 0)	(-4, -4, 8, -4, -4)
5	(w, 1, 0, 1, 0, 1)	(-8, 8, -8, 8, -8)
6	(w, 1, 0, 0, 1, 1)	(0, -4, 0, -4, 0)
7	(w, 0, 1, 1, 1, 0)	(0,0,-8,0,0)
8	(w,0,1,1,0,1)	(-4, -4, 8, -4, -4)
9	(w,0,1,0,1,1)	(-4,0,0,0,-4)
10	(w,0,0,1,1,1)	(4, -4, -8, -4, 4)

In Table 4, since $c_{\tau}(\mathbf{a}) > s_2 = 0$ for the codes in 1, 4, 5, 8 and 10, these codes haven't the minimum distance of 4. We calculate the 3-autocorrelation coefficients for remained codes in Table 5.

Table 5.

	The generator vectors	3-autocorrelation coefficients
1	(w, 1, 1, 0, 1, 0)	(2,6,-2,2,-2,-6,6,6,-2,2)
2	(w, 1, 1, 0, 0, 1)	(-2, -2, 6, -2, 6, 6, -2, -2, 6, -2)
3	(w, 1, 0, 0, 1, 1)	(-2,6,-2,-2,-2,6,6,6,-2,-2)
4	(w, 0, 1, 1, 1, 0)	(2,2,2,2,2,-6,2,2,2,2)
5	(w,0,1,0,1,1)	(2, -2, 6, 2, 6, -6, -2, -2, 6, 2)

 $For\ example,\ 3-autocorrelation\ coefficients\ are$

$$(c_{2,4}(\boldsymbol{a}), c_{2,6}(\boldsymbol{a}), c_{2,8}(\boldsymbol{a}), c_{2,10}(\boldsymbol{a}), c_{4,6}(\boldsymbol{a}), c_{4,8}(\boldsymbol{a}), c_{4,10}(\boldsymbol{a}), c_{6,8}(\boldsymbol{a}), c_{6,10}(\boldsymbol{a}), c_{8,10}(\boldsymbol{a})) = (2, 6, -2, 2, -2, -6, 6, 6, -2, 2)$$

for the vector (w, 1, 1, 0, 1, 0) in 1. Since by Theorem 8, $c_{2,6}(\mathbf{a}), c_{4,10}(\mathbf{a}), c_{6,8}(\mathbf{a}) > s_3 = 2$, the generated code by this vector hasn't the minimum distance of 4. As a result, since by Theorem 8, $s_3 = 2$ for k = 3 and $c_{\tau_1,\tau_2}(\mathbf{a}) > 2$ for the codes in the 1, 2, 3 and 5, the minimum distances of these codes aren't equal to 4. The generated code by the vector (w, 0, 1, 1, 1, 0) in 4 have only the minimum distance of 4.

4. Cases of the lines in the (7,3,1)-BIBD

Let v, k and λ be positive integers such that $v > k \ge 2$. A (v, k, λ) -balanced incomplete block design (which we abbreviate to (v, k, λ) -BIBD) is a design (X, A) such that the following properties are satisfied:

- (1) |X| = v,
- (2) Each block contains exactly k points,
- (3) Every pair of distinct points is contained in exactly λ blocks (Definition 1.2 in [5]).

Now, we can give (7,3,1)-BIBD. The (7,3,1)-BIBD is the set of points and blocks, respectively

$$X = \{0, 1, 2, 3, 4, 5, 6\},\$$

 $A = \{013, 124, 235, 346, 045, 156, 026\}.$

We denote the block $x_1x_2x_3 \in A$ by the binary sequence $\mathbf{a} = (a_0, a_1, a_2, a_3, a_4, a_5, a_6)$ such that

$$a_i = \begin{cases} 1, & if \ i \in \{x_1, x_2, x_3\}, \\ 0, & otherwise, \end{cases}$$

for i = 0, 1, ..., 6. The shifted forms of the sequence $\mathbf{a} = (1, 1, 0, 1, 0, 0, 0)$ corresponds the blocks of (7, 3, 1)-BIBD by this method. It is shown in Table 6.

Table 6.

τ	$a_{ au}$	Blocks
0	(1,1,0,1,0,0,0)	013
1	(0,1,1,0,1,0,0)	124
2	(0,0,1,1,0,1,0)	235
3	(0,0,0,1,1,0,1)	346
4	(1,0,0,0,1,1,0)	045
5	(0,1,0,0,0,1,1)	156
6	(1,0,1,0,0,0,1)	026

The (7,3,1)-BIBD consists of seven points and seven blocks (lines). It is shown in Figure 1. The k-autocorrelation coefficients of the sequence \boldsymbol{a} give us the information about intersections of these lines.

FIGURE 1. The Fano Plane: A (7,3,1)-BIBD

Case 11. $c_{\tau}(a) = -1$ means that the any two lines intersect in a unique point:

Since $c_{\tau}(\mathbf{a}) = -1$ by Corollary 2 and the equation (5), we have $wt(\mathbf{a} \cap \mathbf{a_{\tau}}) = 1$. Hence, any two lines intersect in a unique point.

 $\textbf{Case 12.} \ \textit{In Table 7} \ , \ \textit{we calculate the 3-autocorrelation coefficients of the sequence} \ \textbf{a}.$

Table 7.

$ au_1, au_2$	$c_{ au_1, au_2}(oldsymbol{a})$
$\tau_1 = 1, \ \tau_2 = 2$	1
$\tau_1 = 1, \ \tau_2 = 3$	1
$\tau_1 = 1, \ \tau_2 = 4$	1
$\tau_1 = 1, \ \tau_2 = 5$	-7
$\tau_1 = 1, \ \tau_2 = 6$	1
$\tau_1 = 2, \ \tau_2 = 3$	-7
$\tau_1 = 2, \ \tau_2 = 4$	1
$\tau_1 = 2, \ \tau_2 = 5$	1
$\tau_1 = 2, \ \tau_2 = 6$	1
$\tau_1 = 3, \ \tau_2 = 4$	1
$\tau_1 = 3, \ \tau_2 = 5$	1
$\tau_1 = 3, \ \tau_2 = 6$	1
$\tau_1 = 4, \ \tau_2 = 5$	1
$\tau_1 = 4, \ \tau_2 = 6$	-7
$\tau_1 = 5, \ \tau_2 = 6$	1

(i) $c_{\tau_1,\tau_2}(a)=1$ means that any three lines don't intersect in any point:

Let $c_{\tau_1,\tau_2}(\mathbf{a}) = 1$. We can easily obtain $wt(\mathbf{a} \cap (\mathbf{a}_{\tau_1} + \mathbf{a}_{\tau_2})) = 2$ by Theorem 3 and the equation (5). Also, we get

$$wt(a \cap (a_{\tau_1} + a_{\tau_2})) = |a \cap a_{\tau_1}| + |a \cap a_{\tau_2}| - 2|a \cap a_{\tau_1} \cap a_{\tau_2}|$$

= 1 + 1 - 2|a \cap a_{\tau_1} \cap a_{\tau_2}|

and so $|\mathbf{a} \cap \mathbf{a_{\tau_1}} \cap \mathbf{a_{\tau_2}}| = 0$. Then the lines \mathbf{a} , $\mathbf{a_{\tau_1}}$ and $\mathbf{a_{\tau_2}}$ don't intersect in any point.

(ii) $c_{\tau_1,\tau_2}(a) = -7$ means that any three lines intersect in a unique point:

Let $c_{\tau_1,\tau_2}(\mathbf{a}) = -7$. Similarly in the (i), we have $|\mathbf{a} \cap \mathbf{a_{\tau_1}} \cap \mathbf{a_{\tau_2}}| = 1$, and so these lines intersect in a unique point.

References

- [1] Danielsen, L.E. and Parker, M.G., Directed Graph Representation of Half-Rate Additive Codes over GF(4), Des. Codes Cryptogr., 59(2011), 119-130.
- [2] Hertel, D., Crosscorrelation Properties between Perfect Sequences, Sequences and Their Applications-SETA, 2004.
- [3] Huffman, W.C. and Pless, V., Fundamentals of Error Correcting Codes, Cambridge University Press, 2003.
- [4] Ling, S. and Xing, C., Coding Theory, U.K.:, Cambridge Univ. Press, 2004.
- [5] Stinson, D.R., Combinatorial Designs:, Construction and Analysis, Springer, 2003.
- [6] White, G. and Grassl, M., A New Minimum Weight Algorithm for Additive Codes, International Symposium on Information Theory; (2006), 1119-1123.

Current address: Hayrullah Özimamoğlu: Department of Mathematics, Faculty of Arts and Sciences, Nevşehir Haci Bektaş Veli University, Nevşehir, Turkey.

E-mail address: h.ozimamoglu@nevsehir.edu.tr

ORCID Address: http://orcid.org/0000-0001-7844-1840

Current address: Murat Şahin: Department of Mathematics, Faculty of Science, Ankara University, Ankara, Turkey.

E-mail address: msahin@ankara.edu.tr

ORCID Address: http://orcid.org/0000-0002-9480-0433

Current address: Oktay Ölmez: Department of Mathematics, Faculty of Science, Ankara University, Ankara, Turkey.

 $E ext{-}mail\ address: oolmez@ankara.edu.tr}$

ORCID Address: http://orcid.org/0000-0002-9130-0038