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SGLT inhibitors (SGLTi), used by a large number of patients
worldwide, are now regarded by researchers as having
pharmacological potential beyond glycemic control due to
their pleiotropic effects. In humans, cellular transport of
glucose is mediated by glucose transporters (GLUTSs). These
are divided into two groups: Sodium-glucose co-transporters
(SGLT), which actively transport sodium-dependent glucose,
and GLUTs, which operate on the principle of facilitated
diffusion. GLUTs, which are divided into three subfamilies,
are present in all body cells to facilitate the transport of
glucose into cells (1, 2). SGLTs, on the other hand, have been
identified in many different tissues, including the kidneys,
human umbilical cord cells, coronary arteries and vascular
smooth muscle cells, brain, thyroid, and uterus. Although
many isoforms of SGLTs have been identified, the most
commonly known isoforms are SGLT-1 and SGLT-2 (3).
Selecting a receptor group present in numerous tissues as a
therapeutic target may seem concerning; however,
fortunately, the distribution of these receptors varies across
tissues.

When the historical development of SGLTi is
examined, this time the story begins not with the apple, but
with the bark of the apple tree. Although phlorizin, isolated
from the bark of apple trees by French chemists, was
proposed for the treatment of malaria, fever, and certain
infectious diseases, experiments revealed that it caused
glucosuria. Strikingly, it was proposed as an experimental
animal model of diabetes because symptoms characteristic of
diabetic patients, such as glucosuria, polyuria, and weight
loss, were observed (4). In the 1900s, phlorizin, which was
used to induce diabetes in animals, was later understood
through concomitant studies following the characterization of
SGLTs to be able to regulate fasting and postprandial glucose
levels (5-7). So what happened to phlorizin? After a series of
experiments, it was determined to be a potent inhibitor of both
SGLT-1 and SGLT-2. Administration of 15-20 g of phlorizin
to individuals with diabetes has been reported to cause
glucosuria. However, subsequent studies showed that
phlorizin’s low oral bioavailability, its causing
gastrointestinal complaints, and its being an SGLT-1i
prevented it from becoming a drug candidate (8).
Nevertheless, important data had been recorded, and

phlorizin-based analogs began to be synthesized. First, O-
glucoside analogs of phlorizin were synthesized, but none
were successful. Subsequently, C-glucoside derivatives of
phlorizin began to be investigated, and finally, in 2008,
dapagliflozin was developed. The first gliflozin to enter
clinical use is dapagliflozin. Dapagliflozin received its first
approval for clinical use from the EMA in 2012 and from the
FDA in 2014. This approval was for achieving glycemic
control, in conjunction with diet and exercise, in adult patients
diagnosed with Type 2 Diabetes Mellitus (however, this
would not be the only approval obtained from the FDA).
Shortly thereafter, empagliflozin and canagliflozin also took
their place among the gliflozins (8-10).

It was recognized during the testing of phlorizin that
SGLT-2i act through the kidney (4). In subsequent studies,
their glucose-lowering effects in the kidneys were
demonstrated (11). One of the most important clinical risks of
developing a drug that aims to reduce blood glucose is
hypoglycemia. However, the risk of hypoglycemia associated
with SGLT-2i is low. In the kidney of a healthy individual,
glucose filtered from the glomerulus enters the tubules and is
reabsorbed by SGLT-1 and SGLT-2. SGLT-2 is more densely
expressed in the S1 and S2 segments of the renal proximal
tubule. It is responsible for a substantial portion of sodium
and glucose reabsorption in the renal tubules. By contrast,
SGLT-1 is a low-capacity glucose transporter and is present
in tissues other than the kidney as well. Thus, even when
SGLT-2 is inhibited, it enables a small amount of glucose to
be reabsorbed from the renal tubules, thereby reducing the
risk of hypoglycemia (12). Several hypotheses have been
proposed regarding the renoprotective effects of SGLT-2i.
The most notable include activation of tubuloglomerular
feedback, reduction of proximal tubular metabolic stress,
reduction of hypoxia, reduction of mitochondrial injury,
reduction of hyperglycemia-driven inflammation, and
reduction of oxidative stress (13). Numerous clinical reports
indicate that SGLT-2i reduces the risk of kidney failure and
other major renal outcomes by 30-40% not only in patients
with diabetes but also in individuals with chronic kidney
disease (CKD) without diabetes (14). In a randomized,
multicenter clinical trial with 4,289 participants, it was
reported that, compared with placebo, those receiving
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dapagliflozin had a lower risk of death due to kidney disease
or cardiovascular causes. In this study centered on patients
with CKD, lower risks of hospitalization related to
cardiovascular causes and lower mortality rates were reported
in those treated with dapagliflozin (15). The effects of SGLT-
2i in combination with other drugs or in individuals with
multiple chronic conditions also remain a subject of interest.
In a study investigating the effects of 12-week empagliflozin
therapy, in addition to angiotensin-converting enzyme
inhibitors, on the molecular dynamics of the renin angiotensin
system, it was determined that it induced activation of the
alternative renin angiotensin system axis in patients with
CKD and diabetes (16). In another study involving 507
intensive care patients with acute organ dysfunction, the
hypothesis was proposed that dapagliflozin therapy might
reduce composite outcomes such as in-hospital mortality,
initiation of renal replacement therapy, and length of stay in
the intensive care unit. However, the investigators reported
that dapagliflozin did not improve clinical outcomes in
critically ill patients (17).

Since SGLT-2i has found a place in clinical use,
research has focused, in addition to diabetic control, on their
protective effects on both the kidney and the cardiovascular
system. What actually enabled this to take shape rapidly was
the FDA’s 2008 guidance, “Diabetes Mellitus-Evaluating
Cardiovascular Risk in New Antidiabetic Therapies to Treat
Type 2 Diabetes” (18). Because SGLT-2i were in the
development phase, cardiovascular risks were also evaluated
during the studies, and a substantial amount of data was
recorded. After they began to be used in the treatment of type
2 diabetes, the diversity of data increased. Zinman and
colleagues, in a randomized, double-blind study involving
7,028 patients with type 2 diabetes and lasting approximately
three years, reported that once-daily empagliflozin (10 mg or
25 mg) significantly reduced the primary composite
cardiovascular endpoint and all-cause mortality compared
with placebo (19). In a study including 309,056 patients
across six countries, treatment with SGLT-2i in patients with
type 2 diabetes and atherosclerotic cardiovascular disease
was associated with a lower risk of cardiovascular death and
hospitalization for heart failure compared with other glucose-
lowering drugs (20). In a study involving 10,142 patients with
type 2 diabetes and high cardiovascular risk, canagliflozin
therapy was observed to provide a significant reduction in
rates of cardiovascular death or hospitalization for heart
failure. In this study, regarding the provision of effective
outcomes by 100 mg or 300 mg canagliflozin therapy versus
placebo, the extent to which treatment duration had an effect
is quite striking, debatable, yet inspiring, because the patients
were followed for approximately 188 weeks (21).

Owing to its success and mechanism in diabetes
treatment, its effects on obesity and metabolic syndrome have
also been investigated. In a randomized clinical study
involving 24 individuals diagnosed with prediabetes who
were not receiving pharmacological therapy, it was
determined that after 12 weeks of 10 mg dapagliflozin
treatment, patients’ body weight, body mass index, waist
circumference, fasting blood glucose, and uric acid decreased
(22). In overweight and obese women with polycystic ovary
syndrome, it was recorded that combination therapy with
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canagliflozin and metformin, compared with the group
receiving metformin monotherapy, resulted in significantly
lower total testosterone, area under the curve for glucose, and
area under the curve for insulin. On the other hand, they
reported that no significant difference was found between the
two groups in improving menstrual frequency, weight
control, hyperandrogenemia, and alleviating insulin
resistance. At the end of this 12-week study, the emphasis in
the article is quite valuable: we do not yet fully know the
long-term outcomes of SGLT-2 inhibition (23). It has long
been known that metabolic alterations affect cellular genomic
stability. It has been proposed that the regulation of cellular
energy by antidiabetic drugs may, in relation to this, modify
the direct and indirect epigenetic effects caused by
oncometabolites (24). Indeed, it has been reported that SGLT-
2 expression is increased in various cancer types such as
prostate, pancreatic, lung, and cervical cancer. In a preclinical
study, canagliflozin was shown to significantly suppress the
growth of pancreatic cancer cells in vitro and in vivo (25).
The results of a meta-analysis suggested that SGLT-2i may
reduce the likelihood of anthracycline-induced cardiac
problems (26). Meta-analyses report that they are an effective
and safe tool for improving the prognosis of patients with
cancer and diabetes, and they are in agreement that further
research is needed (27,28). The number and diversity of
studies on SGLT-2i are increasing by the day. In addition to
their beneficial effects in patients, SGLT-2i, which are
generally considered safe, are closely monitored for adverse
events. We know that SGLT isoforms are present at varying
levels across different tissues in the body and that SGLT-2i
such as dapagliflozin can cross the blood—brain barrier. In this
context, a comprehensive network meta-analysis has
proposed that dapagliflozin exerts a novel and specific
prophylactic effect against Parkinson’s disease (29). In
conclusion, this story that began with the bark of the apple
tree speaks volumes about the discovery of new drug
molecules and the potential to expand the indications of
established drugs, and it continues to be rewritten every day.
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