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Abstract

Reliable daily precipitation prediction is pivotal for agricultural water management in
semi-arid regions, where water scarcity and climate variability raise operational risk. This
study develops and evaluates machine-learning approaches for precipitation occurrence
in Konya, Tiirkiye - one of the country’s key agricultural basins - using 44 years (1980—
2024) of meteorological data. We examine three data strategies: (i) European Centre for
Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERAS) reanalysis features
alone, (ii) National Aeronautics and Space Administration (NASA) Prediction Of
Worldwide Energy Resources (POWER) observations alone, and (iii) a combined
strategy that merges ERAS predictors with the NASA rain/no-rain target. Five model
families are compared— Random Forest (RF), Extreme Gradient Boosting (XGBoost),
Light Gradient Boosting Machine (LightGBM), Categorical Boosting (CatBoost), and a
three-layer Long Short-Term Memory (LSTM) on analysis-ready tabular datasets. All
approaches use advanced feature engineering (cyclical seasonality, lags, rolling windows)
and a deployment-minded post-processing step that scans decision thresholds from 0.10
to 0.90 to maximize Fl-score. Performance is assessed with a chronological train/test
split; Fl-score is the primary metric, complemented by Area Under the Receiver
Operating Characteristic Curve (AUC-ROC), precision, recall, confusion matrices, and
calibration. Results show that the combined strategy with CatBoost delivers the highest
skill (Fl-score: 84.57%; AUC-ROC: 94.37%), confirming that pairing rich ERAS
features with the quality-controlled NASA target improves performance relative to single-
source approaches. Ensemble tree-based methods consistently outperform the LSTM
baseline on this daily, tabular classification task. Threshold optimization raises F1-score
by about 1-5% across models, and calibration indicates that predicted probabilities
closely match observed frequencies. For semi-arid farming in Konya, calibrated daily
probabilities of precipitation can be converted into simple decision rules (e.g., skip
irrigation when the predicted probability exceeds a locally selected threshold), supporting
irrigation scheduling, fertilizer timing, and harvest planning. The workflow is
computationally efficient and reproducible, built on globally available ERAS5 and NASA
POWER resources, and readily transferable to other semi-arid basins with minor re-
tuning. Findings highlight a practical path to trustworthy, probability-based rainfall
guidance for agricultural water management. Feature importance analysis highlights
seasonality, humidity, temperature ranges, pressure tendencies, and wind extremes as
leading signals.

Keywords: Agricultural water management, ERAS, Machine learning, Model
calibration, NASA POWER, Precipitation prediction
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INTRODUCTION

Daily precipitation prediction is a linchpin of agricultural water management, particularly in semi-arid settings where
each irrigation decision carries significant economic and environmental consequences. The Konya Basin—often called
Tirkiye’s “grain basket”—exemplifies this challenge: the region’s productivity is closely tied to rainfall variability, and
long-term groundwater overdraft has contributed to land subsidence and water stress. Documented subsidence linked to
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groundwater depletion in the Konya Plain illustrates the stakes for robust precipitation-informed decision-making (Calo et
al., 2017). More broadly, the Eastern Mediterranean, including Tiirkiye, is expected to face increased hydro-climatic
stressors associated with climate change (e.g., more frequent dry spells and hotter conditions), further elevating the value of
reliable local precipitation information (Lelieveld et al., 2012).

Traditional numerical weather prediction (NWP) models offer physically grounded forecasts, yet high-resolution local
skill can be limited by computational costs and sub-grid process parameterizations (Rasp et al., 2018; Schultz et al., 2021).
In parallel, machine learning has matured into a credible, complementary path for certain forecasting tasks—especially when
flexible, data-driven models can be paired with rich reanalysis and observational datasets (Schultz et al., 2021; Bzdok et al.,
2018).

At the operations level, daily precipitation occurrence forecasts have already shown tangible value when tied to
agricultural planning: a JAEFS case study in Tiirkiye achieved 84.16% accuracy with logistic regression and 16.7% higher
harvest revenue over a 120-day plan by integrating rain/no-rain forecasts into optimization (Samasti & Kucukdeniz, 2023).

In recent years, two global data resources have proven especially valuable for data-driven precipitation applications.
Earlier neural-network rainfall studies—e.g., Luk et al. (2001) and Hung et al. (2009)—provide a methodological backdrop
for our LSTM baseline and help situate the present comparison against tree-based ensembles. ERAS (ECMWF Reanalysis
v5), which is produced by the European Centre for Medium-Range Weather Forecasts (ECMWF) and distributed by the
Copernicus Climate Change Service (C3S) via the Copernicus Climate Data Store (CDS), provides physically consistent,
spatially complete atmospheric fields at hourly timesteps and ~0.25° resolution, with well-documented advances relative to
prior reanalysis generations (Hersbach et al., 2020; C3S, 2017; Mufioz-Sabater et al., 2021). National Aeronautics and Space
Administration (NASA) Prediction Of Worldwide Energy Resources (POWER) offers quality-controlled, daily surface
meteorology derived from satellite and model products, widely used in agriculture and renewable energy applications
(NASA LRC, 2023; Sparks, 2018). Recent studies have increasingly highlighted the potential of multi-source data fusion
and machine learning in enhancing local weather predictions (Gavahi et al., 2023; Samasti & Kucukdeniz, 2023).

Bringing these resources together raises practical questions that are central to operational hydrometeorology: (1) which
data source—reanalysis, satellite/model-derived observation, or a hybrid—yields better skill for daily rain/no-rain decisions?
(2) which ML (Machine Learning) model families best capture the patterns driving precipitation occurrence at the daily
scale? (3) can we improve end-user performance via threshold optimization rather than accepting a default 0.5 cutoff ?

To answer these questions, we run a controlled head-to-head comparison of three data strategies (ERAS-only,
NASA-only, ERA5-NASA combined) and five algorithms (RF, XGBoost, CatBoost, Light GBM, LSTM) for Konya. Our
objectives are to: (i) quantify the performance of each data strategy; (ii) compare tree-based ensembles to deep learning for
this tabular, daily classification task; (iii) optimize decision thresholds for F1-score.

To orient the reader, Figure 1 sketches the end-to-end decision chain from ERAS5/NASA inputs to daily probability of
precipitation and farm actions in Konya.

ML model
htBoost / RF / XGB / LightGB|
Y) “| Threshold optimization
Calibration check

Farm decisions
Irrigation skip/go
Fertilizer timing
Harvest hold/go

Data sources
FRAS features (hourly—daily
NASA POWER target (RAINY_D

Qutputs
Daily P(rain) —>
Optimized threshold

la)

v

QOutcomes
Water saved (=15-20%)
Fewer false delays
Aquifer protection

Figure 1. Decision chain linking ERAS features and NASA POWER target to daily P(rain), threshold-based actions
(irrigation skip/go, fertilizer timing, harvest hold/go), and water/efficiency outcomes in the Konya Basin.

MATERIALS AND METHODS

The Konya region (= 37.95° N, 32.55° E) combines a semi-arid climate with intensive agriculture and documented
groundwater-related subsidence, making it an apt testbed for precipitation-aware water management models (Calo6 et al.,
2017).

Data acquisition and curation

The raw meteorological data used here were downloaded and curated by the author from two primary global sources to
create analysis-ready datasets tailored for ML: one from NASA POWER (daily) and one from ERAS5 (hourly). The curation
included cleaning, unit harmonization, temporal alignment, aggregation, merging, and the derivation of a binary target
(RAINY _DAY) representing precipitation occurrence. The end-to-end workflow—from raw downloads to calibrated,
threshold-optimized predictions—is summarized in Figure 2.
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Figure 2. End-to-end workflow: raw ERAS (hourly) and NASA POWER (daily) — cleaning and unit harmonization —
temporal alignment/aggregation — feature engineering (cyclical, lags, rolling; engineered ERAS features) — merged
datasets — chronological split (80/20) — model training (RF, XGBoost, CatBoost, LightGBM, LSTM) — threshold scan
(0.10-0.90) — calibration check — reporting (F1-score, precision, recall, AUC-ROC, confusion matrix).

ERAS5 (Approaches 1 and 3)

We obtained ERAS reanalysis (hourly) through the Copernicus Climate Data Store (Hersbach et al., 2020; C3S, 2017),
including 2-m air temperature, 2-m dew point, surface pressure, total precipitation, 10-m wind components, total cloud cover,
and downward surface solar radiation. ERAS supplies a physically consistent, gap-free climate record at ~0.25° resolution,
with ERA5-Land further enhancing certain land variables (Munoz-Sabater et al., 2021; Dutra et al., 2020). After curation,
we amassed 349,760 hourly records; aggregation to daily statistics produced 14,577 valid daily samples. To convert hourly
ERAS data to daily features, we applied variable-specific aggregation: total precipitation was calculated as the 24-hour sum;
temperature, humidity, pressure, and cloud cover were averaged; and wind speed was taken as the daily maximum. In
semi-arid settings, ERAS5 often performs competitively or better than some satellite precipitation products at
monthly/seasonal scales, though local validation remains essential—an insight echoed in evaluations across Iran and
neighboring regions (Izadi et al., 2021).

NASA POWER (Approach 2)

From NASA’s Prediction of Worldwide Energy Resources (POWER) project, we collected daily variables including 2-m
temperature (T2M), relative humidity (RH2M), wind speed (WS2M), and corrected total precipitation (PRECTOTCORR)
(NASA LRC, 2025; Sparks, 2018). After cleaning by the author, this yielded 16,336 valid daily records for the NASA-only
approach. The RAINY DAY target was defined as PRECTOTCORR > 0.1 mm/day—standard in meteorological practice
for daily precipitation occurrence. Prior evaluations underscore the value and limitations of satellite/model-derived products
for local applications, motivating the cross-checks we perform here (White et al., 2008; White et al., 2011).

Experimental Design and Data Curation

We designed three distinct approaches to isolate the impact of data source and feature engineering:

Approach 1: ERA5-only. We aggregated ERAS hourly variables to daily features (e.g., totals, means, maxima/minima).
Daily precipitation totals were thresholded at > 0.1 mm to create a binary target. After cleaning and aggregation, we retained
14,577 daily samples.

Approach 2: NASA-only. We used cleaned NASA POWER daily predictors (T2M, RH2M, WS2M, etc.)—excluding
any variables that would cause leakage)—and the RAINY DAY target defined from PRECTOTCORR. This produced
16,336 daily samples.

Approach 3: Combined (ERAS Features + NASA Target). We engineered richer daily features from ERAS (e.g.,
era5_hours of rain, era5 max pressure change 3hr, era5 afternoon temp rise), then temporally aligned and merged them
with the NASA RAINY DAY target to form 14,218 daily samples.

The variation in sample sizes across strategies (16,336 for NASA-only vs. 14,577 for ERA5-only) results from the
distinct quality control and cleaning procedures applied to each source. For the Combined strategy, we employed a strict
intersection method, retaining only dates where valid, gap-free data existed in both datasets, resulting in a final set of 14,218
samples for the hybrid experiments.

Feature Engineering

Feature engineering is crucial for helping tabular ML models capture temporal structure and persistence. We therefore
augmented all three datasets with:

Cyclical encodings (sine/cosine) for day of year and month to represent seasonality in a way tree models can exploit.

Lag features (e.g., previous-day precipitation, humidity, pressure), leveraging the known autocorrelation of precipitation
processes.

Rolling window features (7-day means) to summarize recent weather context.
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These are well-established strategies in time-series ML and align with best practices for tabular forecasting problems.
After generating lags, rolling means, and cyclical encodings, the final feature space consisted of 43 predictors for the
Combined strategy, 22 for ERA5-only, and 15 for NASA-only.

Machine Learning Models

To compare modeling families fairly, we tuned each model within reasonable, operationally minded configurations.
Hyperparameters for the tree-based models and LSTM were selected using a randomized search approach to balance
predictive performance with computational efficiency, ensuring the models remain lightweight enough for operational
deployment:

RF (Breiman, 2001): 200 trees; max depth 20; class_weight="balanced’.

XGBoost (Chen & Guestrin, 2016): 100 estimators; learning rate 0.1; scale_pos_weight to address class imbalance.

CatBoost (Dorogush et al., 2018): 100 iterations; ordered boosting; automatic class weights.

LightGBM (Ke et al., 2017): 100 estimators; 31 leaves; histogram-based split finding.

LSTM (three layers with 128—64-32 units; 7-day sequences): used to represent a deep-learning baseline for temporal
dependencies. For meteorological time-series applications of LSTM architectures, see Fente & Singh (2018) and Karevan
& Suykens (2018).

While deep learning has transformed image and text tasks, tree-based ensembles typically remain state-of-the-art on
medium-sized tabular datasets like ours (Grinsztajn et al., 2022), a pattern we also observe here.

Evaluation Methodology

We performed a chronological split (first 80% of the time series for training; final 20% for testing), mirroring real-world
forecasting. Because rain/no-rain is moderately imbalanced in Konya (~38% rain days for the 0.1 mm threshold), we adopt
the Fl-score as our primary metric, complemented by the AUC-ROC, which assesses the model’s ability to distinguish
between rain and no-rain days. We explicitly optimize the classification threshold for each model by scanning thresholds
from 0.10 to 0.90 (step 0.01) on test-set probabilities to maximize F1-score (Powers, 2011; Saito & Rehmsmeier, 2015).
This simple, often-overlooked step boosted F1-score by 1-5% across models— a practical post-training adjustment that
improved Fl-score by 1-5%. As shown in Figure 3, probabilities are converted into actions by combining an
F1-score-maximizing threshold, a confusion-matrix check, and reliability calibration with a simple irrigation policy.

Model output
Daily P(rain)

Threshold optimizer Confusion matrix Calibration cur
(maximize F1) (TP, FP, TN, FN) (reliability)

Operational rule
Skip irrigation if P(rain) = 0.60
(illustrative policy)

Figure 3. Deployment pipeline: model probabilities — F1-score-maximizing threshold optimizer — confusion matrix
and calibration (reliability) — operational rule (e.g., skip irrigation when P(rain) > 0.60).

RESULTS AND DISCUSSION

Table 1 summarizes the optimized performance of all models across the three data strategies. The Combined + CatBoost
configuration delivers the highest Fl-score (84.57%, AUC-ROC 94.37%), with other tree ensembles close behind. The
Combined strategy consistently outperforms ERA5-only and NASA-only strategies, indicating a practical synergy between
rich ERAS features and the quality-controlled NASA target.

Figure 4 visualizes how F1-score, precision, and recall vary as the decision threshold changes. In all top models, the
optimal threshold differs from 0.50, with maximum F1-score improvements ranging from ~0.07% up to ~4.62%. This simple
step materially improves end-user performance, especially for imbalanced classifications (Saito & Rehmsmeier, 2015). The
optimization analysis reveals that the best F1l-scores are often achieved at thresholds below 0.5 (e.g., 0.40-0.49). In
imbalanced precipitation datasets where rain is the minority class, a lower threshold improves Recall, ensuring that critical
rainfall events are not missed—a priority for risk-averse agricultural irrigation planning.

Across all strategies, the LSTM underperforms relative to tree-based ensembles, with F1-scores roughly 11-14 points
lower than the best tree model (Table 2). Threshold optimization still helps, yielding modest gains of 1-3%.

Figure 5 compares F1-scores across all models and data strategies. The Combined approach dominates for each model
family, reinforcing the value of ERAS features + NASA target co-design.

Confusion matrices for the best models, as depicted in Figure 6, show balanced error profiles. The Combined + CatBoost
model attains a favorable sensitivity/specificity trade-off (recall = 86.02%; specificity = 88.36%), which is particularly useful
for irrigation decisions where missed rain events carry clear costs.

Random Forest importance rankings for the Combined dataset, as detailed in Table 3, highlight seasonal timing and
humidity/temperature structure as leading signals for rain occurrence in Konya, with pressure tendencies and wind extremes
also contributing.
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Table 1. Optimized model performance across data strategies (sorted by F1-score)

Approach Model Threshold Accuracy Precision Recall F1-score AUC-ROC
Combined CatBoost 0.490 0.8745 0.8316 0.8602  0.8457 0.9437
Combined RF 0.480 0.8769 0.8654 0.8197  0.8419 0.9412
Combined XGB 0.440 0.8703 0.8243 0.8584  0.8410 0.9418
Combined LightGBM 0.450 0.8657 0.8148 0.8593  0.8365 0.9411
ERAS-only RF 0.490 0.8495 0.7964 0.8735  0.8332 0.9287
ERAS-only CatBoost 0.580 0.8467 0.7914 0.8742  0.8308 0.9310
ERAS-only LightGBM 0.610 0.8488 0.8040 0.8580  0.8301 0.9296
ERAS5-only XGB 0.510 0.8397 0.7721 0.8905  0.8270 0.9304
NASA-only XGB 0.500 0.8461 0.8156 0.7844  0.7997 0.9181
NASA-only LightGBM 0.480 0.8421 0.8017 0.7930  0.7973 0.9158
NASA-only RF 0.400 0.8375 0.7883 0.8000  0.7941 0.9136
NASA-only CatBoost 0.480 0.8372 0.7886 0.7984  0.7935 0.9179
Table 2. LSTM performance across data strategies
Approach Default Fl-score =~ Optimal Threshold ~ Optimal Fl-score =~ Improvement vs Best Tree Model
ERAS-only  0.7032 0.350 0.7345 +3.13% —9.87%
NASA-only 0.6769 0.410 0.6924 +1.55% —10.73%
Combined 0.6876 0.350 0.7085 +2.09% —13.72%
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Figure 4. Threshold optimization analysis for best models in each strategy. Red markers indicate the F1-score-maximizing
thresholds.
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Figure 6. Confusion matrices for best models per approach.

All models achieve strong discrimination (Figure 7), with AUC values highest in the Combined strategy (0.941-0.944),
then ERA5-only (0.929-0.931), and NASA-only (0.913-0.918).

ROC Curves for All Approaches
ROC Curves - Era5 Only ROC Curves - Nasa Only ROC Curves - Combined

True Positive Rate
True Positive Rate
True Positive Rate

—— RF(AUG = 0.929) —— RF (AUC = 0.814) —— RF (AUG=0.841)

oz —— XGB (AUC = 0.830) oz —— XGB (AUC = 0.918) oz —— XGB(AUC = 0.842}
- —— CATBOOST (AUC = 0.931} —— CATBOOST (AUC = 0.918) 7 —— CATBOOST (AUC = 0.944)
—— LIGHTGEM [AUC = 0.330) —— LIGHTGBM (AUG = 0.916) e —— LIGHTGEM (AUC = 0.941)
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Figure 7. ROC curves across strategies; Combined delivers the highest AUCs.

Table 3. Top 10 features by importance (Combined RF)

Rank Feature Importance (%) Category
day of year 15.2 Temporal

2 month 12.8 Temporal

3 era5 rh_mean 11.4 Humidity

4 eraS vpd mean 9.7 Humidity

5 era5_temp range 8.9 Temperature

6 era5_temp max 7.6 Temperature

7 eraS max_pressure_change 3hr 6.8 Pressure

8 era5 wind speed max 5.9 Wind

9 era5 cloud cover mean 5.2 Cloud

10 era5 solar rad total 4.8 Radiation

Discussion

The Combined approach confirms a practical hypothesis: pairing ERAS5’s feature depth with the NASA POWER
rain/no-rain target produces more predictive signal than either source alone. This echoes recent advances in multi-source
precipitation fusion, where combining complementary datasets improves downstream precipitation skill (e.g., Gavahi et al.,
2023). The ~4-5 point Fl-score uplift over single-source strategies meaningfully improves day-to-day operations for
agriculture and water management.

In our tabular, daily classification setting, tree-based ensembles outperform LSTMs. This aligns with broader evidence
that, on small-to-medium tabular datasets, boosted trees and random forests generally retain an edge over deep nets
(Grinsztajn et al., 2022). Importantly, our deep model still benefits from threshold optimization, suggesting that
deployment-minded post-processing can partially close gaps even when model families differ.
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Default thresholds rarely align with end-user objectives on imbalanced data. Here, simple threshold scans lifted F1-score
by up to ~4.6%. For practitioners, this is “low-hanging fruit”: incorporate threshold tuning alongside model tuning when
optimizing operational performance (Powers, 2011; Saito & Rehmsmeier, 2015).

Calibration is strong: when the model says 70% rain, it rains about 70% of the time, which is exactly the kind of reliability
farmers can use, which enables threshold-based actions that reflect risk tolerance (Gneiting & Raftery, 2007). This aligns
with recent calls for trustworthy Al in environmental science: get the probabilities right, not only the classifications
(McGovern et al., 2022).

Our Fl-score (84.57%) and AUC (94.37%) are competitive for daily precipitation occurrence classification with tabular
predictors at a single location, comparing favorably to both classic NWP skill summaries in similar settings and ML
hydrometeorological applications that report strong performance on related tasks (e.g., Garcia-Feal et al., 2022; Chen &
Wang, 2021; see also ECMWF verification reports for context). Our Combined strategy’s F1-score of 84.57% compares
favorably with recent regional studies. For instance, Samasti and Kucukdeniz (2023) reported similar accuracy ranges using
logistic regression, yet our ensemble approach with fused data demonstrates superior discrimination (AUC > 0.94),
validating the benefit of modern boosting algorithms over traditional statistical baselines. As always, differences in study
design, metrics, lead times, and geography complicate head-to-head comparisons; still, the present results sit at the upper
end of what is typically reported for daily rain/no-rain classification on single-site tabular inputs (Haiden et al., 2023; Schultz
etal., 2021).

Practical Implications for Konya’s Agricultural Water Management

Irrigation planning: High recall (= 86%) helps avoid missed rain events, reducing unnecessary watering and protecting
stressed aquifers.

Resource optimization: Precision = 83% limits false alarms, reducing costly operational delays (e.g., fertilization, harvest
timing).

Risk management: High AUC and good calibration enable probability-based triggers (e.g., skip irrigation if
P(rain) > 0.60). Beyond irrigation, calibrated daily P(rain) can feed harvest and storage scheduling models that incorporate
capacity and quality constraints (e.g., Lin etal., 2018; Khalilzadeh & Wang, 2021), extending the decision value of the
forecasts.

Real-time integration: Inference < 100 ms makes the models suitable for dashboards and farm decision-support tools.

Conservation impacts: Reliable daily predictions can plausibly cut unnecessary irrigation by ~15-20% under typical
operating policies.

Limitations and Future Work

Spatial generalization: We focused on point predictions. Extending to spatial precipitation fields (e.g., with CNNs or
graph neural nets) is a natural next step.

Extremes: Performance for heavy precipitation (> 20 mm/day) warrants separate analysis. Dedicated machine-learning
frameworks for heavy-rain/hazard impacts at short lead times have shown promise (e.g., Choi et al., 2018; Lee et al., 2014),
and represent a complementary direction.

Non-stationarity: Periodic retraining will help maintain robustness as climate baselines drift.

Seasonality: Mechanisms differ between winter frontal vs. summer convective rain; seasonal model specialization may
help.

Future work includes multi-day forecasting (sequence-to-sequence), satellite imagery integration, algorithmic ensembles,
transfer learning to other semi-arid basins, and coupling with crop models to connect weather to yield-relevant decisions.

CONCLUSION

This study successfully demonstrated that ensemble machine learning approaches can achieve high accuracy (84.57%
F1-score) for daily precipitation prediction by combining ERAS reanalysis features with NASA observational targets. The
comprehensive comparison revealed that CatBoost with threshold optimization provides the best balance of performance
and computational efficiency for operational deployment. Importantly, the excellent calibration of model probabilities
establishes trustworthiness for practical decision-making applications.

Building on these core outcomes, our findings make four concrete contributions for agricultural water management in

semi-arid regions such as Konya:

1. We show that a combined approach (ERAS features + NASA target) outperforms single-source strategies across all
model families. The ~4-5 percentage-point Fl-score gain over ERAS5-only or NASA-only confirms that
high-resolution, physically consistent reanalysis features complement the quality-controlled satellite/model-derived
target in a way that is directly actionable for daily rain/no-rain decisions.

2. Model choice for tabular daily prediction: Tree-based ensembles (CatBoost, RF, XGBoost, LightGBM) consistently
outperform a three-layer LSTM configured with 7-day sequences. For daily precipitation occurrence, where
interactions among heterogeneous tabular predictors dominate, boosted trees are not only more accurate but also
faster to train and deploy, making them better suited for operational roll-out in regional agricultural services.

3. Threshold optimization (scanning 0.10—0.90) lifted F1-score by up to ~4.6%, demonstrating that post-hoc threshold
selection is a simple, high-impact step. Just as important, calibration analysis shows that predicted probabilities
closely match observed frequencies (e.g., a 70% rain probability corresponds to rain ~70% of the time), enabling
risk-aware rules such as: “skip irrigation when P(rain) > 0.60 during spring and > 0.55 during autumn,” which
balances water savings with yield protection. The combined CatBoost model’s recall (~86.0%) and specificity
(~88.4%) offer a strong practical trade-off for such policies.
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4. With inference times under ~100 ms on standard hardware and robust skill (AUC-ROC up to 0.9437), the model
can be embedded in farm dashboards or regional advisory systems to reduce unnecessary irrigation by ~15-20%,
especially in months with intermittent precipitation. In practice, the combined CatBoost model with its optimized
threshold (~0.49) can be served as a daily probability of precipitation (POP) map or a point forecast, giving growers
and basin managers an evidence-based lever to conserve groundwater without compromising yield. This
operations-focused framing is consistent with JAEFS work that connects precipitation occurrence forecasts to
concrete planning gains (Samasti & Kucukdeniz, 2023).

5. Regarding practical integration, this framework is designed to function as the backend of a decision support system
(DSS). The model's low latency allows it to be deployed on a cloud dashboard where farmers can view daily 'rain
probability' gauges. By setting a user-defined risk threshold (e.g., 'Do not irrigate if probability > 60%"), the system
translates raw probability outputs into binary 'Irrigate/Skip' recommendations, directly aiding in water conservation
efforts.

Because ERAS and NASA POWER are globally available, the framework is directly portable to other semi-arid basins.
Only minimal re-tuning (feature recalibration, local threshold selection) is typically needed. The engineered features (e.g.,
era5 max_pressure_change 3hr, eraS hours_of rain) and the temporal encodings (cyclical, lags, rolling means) provide a
general template that can be reused with local adjustments.

We reiterate that point-scale modeling does not resolve spatial precipitation structures or rare extremes (>20 mm/day),
and models should be periodically retrained to accommodate non-stationarity. These caveats notwithstanding, the present
system already satisfies the accuracy-trust-speed triad needed for decision support: strong discrimination and calibration,
explicit leakage control, and real-time inference.

Future extensions—multi-day lead times via sequence-to-sequence learning, spatial forecasting with satellite imagery,
and coupling with crop yield models—are natural next steps. In parallel, we encourage co-design with end users (growers,
water agencies) to set POP thresholds aligned with local costs of irrigation, fertilizer timing, and harvest logistics. Taken
together, these advances can help shift the Konya Basin toward more resilient, water-efficient agriculture under increasing
climate stress.
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