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ABSTRACT. Applying the martingale transform and K-method of interpolation spaces, we investigate the inter-
changing relations between Hardy-Lorentz-Karamata spaces of predictable martingales. More precisely, let 0 <

p1 < p2 < ∞ and 0 < q1 ≤ q2 < ∞ and b be a slowly varying function, it is shown that the elements in
Hardy-Lorentz-Karamata spaces Hp1,q1,b are none others than the martingale transforms of those in Hp2,q2,b, where
Hpi,qi,b ∈ {Ppi,qi,b,Qpi,qi,b} for i = 1, 2. And it is also proved that a martingale is in Hp,q,b ∈ {Pp,q,b,Qp,q,b} for
0 < p, q < ∞, if and only if it is the transform of a martingale from BMO ∈ {BMO1, BMO2}.
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1. INTRODUCTION

As is well known, Lorentz spaces play an important role in classical Harmonic analysis
[2, 3, 10, 11, 31, 20, 13] and references therein. Lorentz-Karamata spaces, as a generalization
of Lorentz spaces and Lorentz-Zygmund spaces, were firstly introduced by Edmunds, Ker-
man and Pick in [16]. The feature of these spaces is that their construction encapsules both
the Lorentz-type structure of function spaces and the concept of so-called slowly varying func-
tions that had been studied by Karamata. We refer the reader to [15, 17, 18, 39, 40] for more
information on Lorentz-Karamata spaces.

The definition of martingale was first introduced to probability by Ville in the 1930s, Levy
researched the properties of the martingale sequence. Doob systematically studied and sum-
marized the previous results from the perspective of analytics in his famous monograph [14].
Thereafter, some outstanding researchers such as Burkholder, Davis, Gundy [6, 7, 8, 9], Gar-
sia [19] gave a further study in this field. The theory of martingale Hardy spaces, which was
regarded as an interdisciplinary field of probability and analysis, flourished over the past few
decades. In particular, the analytical properties of these martingale spaces become one of the
hot topics. With the development of various function spaces, such as Lebesgue space, Orlicz
space, Lorentz space and Lorentz-Karamata space et al., the research of the combinations of
these function spaces with the martingale theory has attracted more and more attentions, and
some meaningful works were established in [12, 30, 32, 34, 33, 38, 41, 42, 43] and so on.

In 2014, Ho [29] firstly introduced the Karamata theory to martingale spaces and inves-
tigated the atomic decompositions, duality and interpolations of martingale Hardy-Lorentz-
Karamata spaces. Subsequently, Jiao et al. [35] further studied the duality of the martingale
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Hardy-Lorentz-Karamata spaces via a generalized BMO martingale space, which improved
the results in [29]. Wu et al. [44] investigated the modular inequalities in martingale Orlicz-
Karamata spaces via the modular atomic decompositions, and Li et al. [36] reconsidered the
results in [44] without the constraint that the slowly varying functions b is non-decreasing. We
refer to [24, 25, 37] for more information on Lorentz-Karamata martingale spaces.

The main purpose of this paper aims to discuss the interchange between Hardy-Lorentz-
Karamata spaces of predictable martingales. Its motivation comes from the classical results of
Garsia [19], Chao and Long [12] and Weisz [42]. It is worth mentioning that the main technique
we rely on in this paper is martingale transform, which was first introduced by Burkholder [6].
Martingale transform is an analogue of a singular integral in classical harmonic analysis, which
is an important tool in stochastic analysis. In addition, we also need the so-called K-method of
interpolation space to construct the desired martingale transforms. The results obtained here
are regarded as a generalization of the corresponding Hardy-Lorentz predictable martingale
spaces by Yu and He [45]. It is shown that the martingale transforms are very useful to research
the relations between the "predictable" martingale Hardy-Lorentz spaces, such as Pp,q and Qp,q

(see the definitions in the next section). In [45], the author proved that for 0 < p1 < p2 < ∞
and 0 < q1 ≤ q2 < ∞, the elements in Hardy-Lorentz spaces Hp1,q1 are none others than the
martingale transforms of those in Hardy-Lorentz spaces Hp2,q2 , where Hpi,qi ∈ {Ppi,qi , Qpi,qi}
for i = 1, 2. We refer to [45] for more information. If p = q , then the martingale Hardy-
Lorentz spaces Pp,q and Qp,q return to the martingale Hardy space Pp and Qp. The analogue
of the interchange between these predictable martingale spaces was obtained by Garsia [19],
Weisz [42] and Chao and Long [12], respectively. All of those results can also be found in the
monographs of Long [38] and Weisz [43].

The paper is organized as follows. Some preliminaries used in the whole paper will be
stated in Section 2. In Section 3, we establish some boundedness of the martingale transform
operator on Hardy-Lorentz-Karamata spaces and BMO spaces, which will be used in the next
sections. The remaining Sections 4, 5 and 6 are respectively devoted to the characterization by
means of martingale transforms about the interchanging relationships between Hardy-Lorentz-
Karamata martingale spaces Hp1,q,b and Hp2,q,b, Hp1,q1,b and Hp2,q2,b, and that between Hp,q,b

and BMO, where Hp,q,b ∈ {Pp,q,b,Qp,q,b}. Throughout the paper, we use C to denote a positive
constant which may vary from line to line. The symbol f ≲ g stands for f ≤ Cg, we write f ≃ g
if f ≤ Cg and g ≤ Cf hold at the same time.

2. PRELIMINARIES

In this section, we present some necessary preliminaries used in the whole paper. Let
(Ω,F ,P) be a complete probability space and f be an F-measurable function defined on Ω.
The distribution function of f is defined by

λs(f) = P
(
{ω ∈ Ω : |f(ω)| > s}

)
, (s ≥ 0).

Denote by f∗ the decreasing rearrangement of f defined by

f∗(t) = inf{s ≥ 0 : λs(f) ≤ t}, (t ≥ 0),

with the convention that inf ∅ = ∞.

Lemma 2.1 ([22, Proposition 1.4.5]). Let f , g be F-measurable and 0 ≤ t, t1, t2 < ∞. Then the
following properties hold:

(i) (fg)∗(t1 + t2) ≤ f∗(t1)g
∗(t2);

(ii) (|f |p)∗(t) = (f∗(t))p when 0 < p < ∞.
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2.1. Slowly varying functions. We recall the definition of slowly varying functions in order to
define the Lorentz-Karamata spaces.

Definition 2.1. A Lebesgue measurable function b : [1,∞) −→ (0,∞) is said to be a slowly varying
function if for any given ϵ > 0, the function tϵb(t) is equivalent to a non-decreasing function and the
function t−ϵb(t) is equivalent to a non-increasing function on [1,∞).

The detailed study of Karamata theory, properties and examples of slowly varying functions
can be found in [5, 16].

Let b be a slowly varying function on [1,∞). We denote by γb the positive function defined
by

γb(t) = b(max {t, 1/t}), t ∈ (0,∞).

Lemma 2.2 ([15]). Let b be a slowly varying function. Then the following conclusions hold.
(i) For any given ϵ > 0, the function tϵγb(t) is equivalent to a non-decreasing function and the

function t−ϵγb(t) is equivalent to a non-increasing function on (0,∞).
(ii) If a > 0, then for any t > 0, ∫ t

0

sa−1γb(s)ds ≃ taγb(t)

and ∫ ∞

t

s−a−1γb(s)ds ≃ t−aγb(t).

(iii) For any r ∈ R, br is a slowly varying function and γbr = γr
b .

(iv) If ε and r are positive numbers, then there exists positive constants cε and Cε such that

cε min{rε, r−ε}b(t) ≤ b(rt) ≤ Cε max{rε, r−ε}b(t), t > 0.

(v) For any a > 0, denote b1(t) = b(ta) on [1,∞), then b1 is also a slowly varying function.

2.2. Lorentz-Karamata spaces. We now recall the definition of the Lorentz-Karamata spaces.

Definition 2.2. Let 0 < p < ∞, 0 < q ≤ ∞ and b be a slowly varying function. The Lorentz-Karamata
space, denoted by Lp,q,b, consists of those measurable functions f with ∥f∥p,q,b < ∞, where

∥f∥p,q,b =


(∫ ∞

0

(
t1/pγb(t)f

∗(t)
)q dt

t

)1/q

, if 0 < q < ∞,

sup
t>0

t1/pγb(t)f
∗(t), if q = ∞.

Remark 2.1.

(1) It will be convenient for us to use an equivalent quasi-norm definition for ∥f∥p,q,b, namely

∥f∥p,q,b ≈


(∫ ∞

0

(
tP(|f | > t)1/pγb

(
P(|f | > t)

))q dt
t

)1/q

, if 0 < q < ∞,

sup
t>0

tP(|f | > t)1/pγb(P(|f | > t)), if q = ∞.

(2) The Lorentz-Karamata space is a rearrangement-invariant (r.-i.) quasi-Banach function space
(see [28]). When 1 ≤ p, q < ∞, Lp,q,b is a Banach space (see [15]). Note that if b ≡ 1, the space
Lp,q,b is the classical Lorentz space Lp,q . Also, if p = q and b ≡ 1, then the space Lp,q,b is the
usual Lebesgue space Lq .
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Lemma 2.3 ([40, Proposition 3.16]). Let b1, b2 be two slowly varying functions such that b2 ≲ b1, let
0 < p ⩽ ∞ and suppose 0 < q < r ⩽ ∞. Then

∥ · ∥p,r,b2 ≲ ∥ · ∥p,q,b1 .

Lemma 2.4 ([15, Theorem 3.4.48]). Set p1, p2 ∈ (0,∞), q1, q2 ∈ (0,∞] with p2 < p1 and let b1, b2
be slowly varying functions. Then

Lp1,q1,b1 ⊂ Lp2,q2,b2 .

Lemma 2.5. Let 0 < p < ∞, 0 < q ≤ ∞, s > 0 and b be a slowly varying function. For any
f ∈ Lsp,sq,b1/s , we have ∥|f |s∥p,q,b = ∥f∥s

sp,sq,b1/s
.

Proof. For any s > 0 and 0 < q < ∞, it follows from Lemma 2.2 (iii) and Lemma 2.1 (ii) that

∥|f |s∥p,q,b =
(∫ ∞

0

(
t1/pγb(t)(|f |s)∗(t)

)q dt
t

)1/q
=
(∫ ∞

0

(
t1/pγb(t)(f

∗)s(t)
)q dt

t

)1/q
=

((∫ ∞

0

(
t1/spγ

1/s
b (t)f∗(t)

)sq dt
t

)1/sq)s

=

((∫ ∞

0

(
t1/spγb1/s(t)f

∗(t)
)sq dt

t

)1/sq)s

= ∥f∥ssp,sq,b1/s .

For q = ∞, we have

∥|f |s∥p,∞,b = sup
t>0

t1/pγb(t)(|f |s)∗(t) = sup
t>0

t1/pγb(t)(f
∗)s(t)

=

(
sup
t>0

t1/spγ
1/s
b (t)f∗(t)

)s

=

(
sup
t>0

t1/spγb1/s(t)f
∗(t)

)s

= ∥f∥ssp,∞,b1/s .

The proof is complete. □

Hölder’s inequality for Hardy-Lorentz-Karamata space is given below.

Lemma 2.6. Let 0 < p, q, p1, q1, p2, q2 < ∞, b, b1, b2 be slowly functions and let 1
p1

= 1
p+

1
p2
, 1
q1

=
1
q + 1

q2
and b1(t) = b(t)b2(t). Then

∥fg∥p1,q1,b1 ≲ ∥f∥p,q,b∥g∥p2,q2,b2 .

Proof. By Lemma 2.1 (i), we have

∥fg∥p1,q1,b1 =

[∫ ∞

0

(
t1/p1γb1(t)(fg)

∗(t)

)q1 dt

t

]1/q1

≤

[∫ ∞

0

(
t1/p1γb1(t)f

∗(t/2)g∗(t/2)

)q1 dt

t

]1/q1

=

[∫ ∞

0

(
(2t)1/p1γb1(2t)f

∗(t)g∗(t)

)q1 dt

t

]1/q1
.
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Next, from Lemma 2.2 (iv), we get

∥fg∥p1,q1,b1 ≲

[∫ ∞

0

(
t1/p1γb1(t)f

∗(t)g∗(t)

)q1 dt

t

]1/q1

=

[∫ ∞

0

tq1/p1
(
γb(t)

)q1(
γb2(t)

)q1(
f∗(t)

)q1(
g∗(t)

)q1 dt
t

]1/q1

=

[∫ ∞

0

tq1/p
(
γb(t)

)q1(
f∗(t)

)q1
tq1/p2

(
γb2(t)

)q1(
g∗(t)

)q1 dt
t

]1/q1
.

Since q1
q + q1

q2
= 1, by Hölder’s inequality, we have

∥fg∥p1,q1,b1 ≲

[∫ ∞

0

tq1/p
(
γb(t)

)q1(
f∗(t)

)q1
tq1/p2

(
γb2(t)

)q1(
g∗(t)

)q1 dt
t

]1/q1

≲

[[ ∫ ∞

0

(
tq1/p

(
γb(t)

)q1(
f∗(t)

)q1)q/q1 dt

t

]q1/q

×
[ ∫ ∞

0

(
tq1/p2

(
γb2(t)

)q1(
g∗(t)

)q1)q2/q1 dt

t

]q1/q2]1/q1

=

[∫ ∞

0

(
t1/pγb(t)f

∗(t)

)q
dt

t

]1/q[∫ ∞

0

(
t1/p2γb2(t)g

∗(t)

)q2 dt

t

]1/q2
.

Thus

∥fg∥p1,q1,b1 ≲ ∥f∥p,q,b∥g∥p2,q2,b2 ,

which completes the proof. □

2.3. Hardy-Lorentz-Karamata martingale spaces. Now, we introduce some standard nota-
tions which can be referred to [19, 41, 43]. Let {Fn}n≥1 be a non-decreasing sequence of sub-σ-
algebras of F such that F = σ(∪n≥1Fn). The expectation operator and the conditional expec-
tation operator relative to Fn are denoted by E and En, respectively. A sequence of measurable
functions f = (fn)n≥1 ⊂ L1(Ω) is called a martingale with respect to {Fn}n≥1 if Enfn+1 = fn
for every n ≥ 1. Denote by M the set of all martingales f = (fn)n≥1 relative to {Fn}n≥1. For
f ∈ M, we define its martingale difference by dif = fi − fi−1 (i ≥ 1), with convention f0 = 0,
F0 = {∅,Ω}. Let T be the set of all stopping times relative to {Fn}n≥1. For f ∈ M and τ ∈ T ,
the stopped martingale fτ = (fτ

n)n≥1 is defined by

fτ
n =

n∑
i=1

χ{τ≥i}dif.

Moreover, if fn ∈ Lp for n ≥ 1, then f = (fn)n≥1 is called an Lp-martingale with respect to
{Fn}n≥1. In this case, we set

∥f∥p = sup
n≥1

∥fn∥p.

If ∥f∥p < ∞, then f is called a bounded Lp-martingale and it is denoted by f ∈ Lp.
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Define the maximal function, the square function and the conditional square function of a
martingale f , respectively, as follows:

Mn(f) = sup
1≤i≤n

|fi|, M(f) = sup
i≥1

|fi|;

Sn(f) =

( n∑
i=1

|dif |2
)1/2

, S(f) =

( ∞∑
i=1

|dif |2
)1/2

;

sn(f) =

( n∑
i=1

Ei−1|dif |2
)1/2

, s(f) =

( ∞∑
i=1

Ei−1|dif |2
)1/2

.

Let 0 < p < ∞, 0 < q ≤ ∞ and b be a slowly varying function. We usually define the Hardy-
Lorentz-Karamata martingale spaces as below:

HM
p,q,b =

{
f ∈ M : ∥f∥HM

p,q,b
= ∥M(f)∥p,q,b < ∞

}
;

HS
p,q,b =

{
f ∈ M : ∥f∥HS

p,q,b
= ∥S(f)∥p,q,b < ∞

}
;

Hs
p,q,b =

{
f ∈ M : ∥f∥Hs

p,q,b
= ∥s(f)∥p,q,b < ∞

}
.

Denote by Λp,q,b the collection of all sequences ρ = (ρn)n≥0 of non-decreasing, non-negative
and adapted functions with ρ∞ = limn→∞ ρn ∈ Lp,q,b. A martingale f = (fn)n≥1 is said to
have predictable control in Lp,q,b if there exists a sequence ρ = (ρn)n≥0 such that

|fn| ≤ ρn−1 and ρ ∈ Λp,q,b, n ≥ 1.

The other two types of Hardy-Lorentz-Karamata spaces for predictable martingales, denoted
by Qp,q,b and Pp,q,b, are defined respectively as follows:

Qp,q,b =
{
f ∈ M : ∃ ρ = (ρn)n≥0 ∈ Λp,q,b s.t. Sn(f) ≤ ρn−1

}
with ∥f∥Qp,q,b

= inf
ρ
∥ρ∞∥p,q,b;

Pp,q,b =
{
f ∈ M : ∃ ρ = (ρn)n≥0 ∈ Λp,q,b s.t. |fn| ≤ ρn−1

}
with ∥f∥Pp,q,b

= inf
ρ
∥ρ∞∥p,q,b.

For the above definitions, it is clear that Qp,q,b ⊂ HS
p,q,b and Pp,q,b ⊂ HM

p,q,b. Furthermore,
if b ≡ 1, we obtain the definitions of HM

p,q , HS
p,q , Hs

p,q , Qp,q and Pp,q , respectively; see [34]. In
addition, if p = q and b ≡ 1, we obtain the martingale Hardy spaces HM

p , HS
p , Hs

p , Qp and Pp,
respectively; see Weisz [41, 43].

Remark 2.2. It is obvious that the “ inf" taken in the Qp,q,b and Pp,q,b quasi-norms are attainable.
Indeed, let λk = (λk

n)n≥0 be a predictable majorant sequence of (fn)n≥1 for every k ∈ N such that
∥λk

∞∥ → ∥f∥Pp,q,b
as k → ∞. Setting λn = infk λ

k
n for all n ≥ 0, it is clear that λ = (λn)n≥0 is a

predictable majorant sequence of (fn)n≥1 and ∥f∥Pp,q,b
= ∥λ∞∥p,q,b. Such a sequence λ = (λn)n≥0

will be called the predictable least majorant of (fn)n≥1 for f ∈ Pp,q,b. The proof of Qp,q,b is similar.

We introduce the following definition which will be frequently used in the sequel.

Definition 2.3. Let 0 < p < ∞, 0 < q ≤ ∞ and b be a slowly varying function. Define the following
class of processes v = (vn)n≥0 adapted to {Fn}n≥1 (for each n ≥ 1, vn is measurable with respect to
Fn; for convention, v0 = v1) such that

Vp,q,b =
{
v = (vn)n≥0 : ∥v∥Vp,q,b

= ∥M(v)∥p,q,b < ∞
}
,
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where M(v) = supn≥0 |vn|. The martingale transform operator Tv for given martingale f and v ∈
Vp,q,b is defined by Tv(f) =

(
Tv(fn)

)
n≥1

, where

Tv(fn) =

n∑
k=1

vk−1dkf, n ≥ 1.

The following results are useful in this paper.

Lemma 2.7 ([1, Abel’s lemma]). For two arbitrary sequences (fk)k≥1 and (gk)k≥1, we have

n−1∑
k=m

(fk+1 − fk)gk =

n−1∑
k=m

fk+1(gk − gk+1) + fngn − fmgm.

Lemma 2.8 ([43, Corollary 2.64]). The spaces Pp and Qp are equivalent for all 0 < p < ∞, more
exactly,

C−1
p ∥f∥Pp ≤ ∥f∥Qp ≤ Cp∥f∥Pp ,

where Cp is a positive constant only depend on p.

Lemma 2.9 ([26, Theorem 3.2]). Let 1 < p < ∞, 0 < q ≤ ∞ and b be a slowly varying function.
Then we have

∥f∥p,q,b ≤ ∥M(f)∥p,q,b ≲ ∥f∥p,q,b, ∀ f = (fn)n≥1 ∈ Lp,q,b.

Lemma 2.10. Let 0 < θ < 1, 0 < p0 < p1 ≤ ∞, 0 < q ≤ ∞ and b be a slowly varying function. Then
we have

(Pp0
,Pp1

)θ,q,b = Pp,q,bα

and
(Qp0

,Qp1
)θ,q,b = Qp,q,bα ,

where 1
p = 1−θ

p0
+ θ

p1
, 1
α = 1

p0
− 1

p1
and bα(t) = b(t1/α).

Proof. The case p1 < ∞ was proved in [29, Theorem 7.12]. The case p1 = ∞ was given in [27,
Theorem 6.6]. □

The following lemma was proved by Gustavsson in [23].

Lemma 2.11. Let (X0, X1) be a compatible couple of (quasi)-normed spaces, 0 < θ0 < θ1 < 1,
0 < q0, q1 ≤ ∞ and b0, b1, b̄ be slowly varying functions. If 0 < η < 1, we have(

(X0, X1)θ0,q0,b0 , (X0, X1)θ1,q1,b1
)
η,q,b

= (X0, X1)θ̄,q,b̄,

where θ̄ = (1− η)θ0 + ηθ1 and b̄(t) = b1−η
0 (t)bη1(t)b

(
tθ1−θ0b0(t)/b1(t)

)
, ∀ t > 0.

By applying Lemma 2.10 and Lemma 2.11, we have the following lemma.

Lemma 2.12. Suppose that 0 < η < 1, 0 < p1 < p2 < ∞, 0 < p < ∞, 0 < q1, q2, q ≤ ∞ and b, b1,
b2 are slowly varying functions. If 1

p = 1−η
p1

+ η
p2

, then

(Pp1,q1,b1 ,Pp2,q2,b2)η,q,b = Pp,q,bη ,

(Qp1,q1,b1 ,Qp2,q2,b2)η,q,b = Qp,q,bη ,

where bη(t) = b1−η
1 (t)bη2(t)b

(
t1/p1−1/p2b1(t)/b2(t)

)
.
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Proof. Take 0 < s < p1 and put η0 = 1− s/p1, η1 = 1− s/p2, X0 = Ps, X1 = P∞, B1(t) = b1(t
s),

B2(t) = b2(t
s) for all t > 0. Then, by applying Lemma 2.10 and Lemma 2.11, we have

(Pp1,q1,b1 ,Pp2,q2,b2)η,q,b =
(
(Ps,P∞)η0,q1,B1

, (Ps,P∞)η1,q2,B2

)
η,q,b

= (Ps,P∞)η′,q,bη′ ,

where η′ = (1− η)η0 + ηη1 and

bη′(t) = B1−η
1 (t)Bη

2 (t)b
(
tη1−η0B1(t)/B2(t)

)
, ∀ t > 0.(2.1)

Firstly, one can verify that p satisfies the following equality

η′ = (1− η)(1− s/p1) + η(1− s/p2)

= 1−
(
1− η

p1
+

η

p2

)
s = 1− s

p
.

Moreover, since η1 − η0 = s/p1 − s/p2, we see from (2.1) that

bη′(t1/s) = b1−η
1 (t)bη2(t)b

(
t1/p1−1/p2b1(t)/b2(t)

)
= bη(t)

for all t > 0. Therefore, form Lemma 2.10, we have (Ps,P∞)η′,q,bη′ = Pp,q,bη and the result
follows. The proof of Qp,q,b is similar. □

Lemma 2.13 ([29, Theorem 7.14]). Let 0 < p < ∞, 0 < q ≤ ∞ and b be a slowly varying function.
Then

Pp,q,b = Qp,q,b

with equivalent (quasi)-norms, namely, ∥f∥Pp,q,b
≃ ∥f∥Qp,q,b

.

Therefore, the results obtained in the following sections for the type of spaces Pp,q,b are also
effective for the type of spaces Qp,q,b. Thus, for the sake of simplicity, in the following sections,
we will only state and prove our results with respect to the space Pp,q,b.

3. BOUNDEDNESS OF MARTINGALES TRANSFORM OPERATORS

Let 0 < p, q < ∞, b be a slowly varying function and v ∈ Vp,q,b. The boundedness of the
martingale transform operator Tv on Hardy-Lorentz-Karamata spaces and BMO spaces will
be investigated in this section.

The spaces of martingales with bounded mean oscillation are defined for 1 ≤ p < ∞ by

BMOp =

{
f = (fn)n≥1 : ∥f∥BMOp = sup

n≥1

∥∥∥En−1|f − fn−1|p
∥∥∥1/p
∞

< ∞
}
.

It is well known that BMOp spaces are all equivalent for 1 ≤ p < ∞ by the John-Nirenberg
theorem.

The subsequent Lemma ensures that distributional inequality (the so called good λ-inequality)
can be switched to the norm inequality for Lp,q,b (see proof in [29]).

Lemma 3.14 ([29, Proposition 4.3]). Let α > 1, β > 0, 0 < p < ∞, 0 < q ≤ ∞, b be a slowly varying
function and F, G be locally integrable functions. If there exist ϵα,β , kα,β > 0 satisfying limβ→0 ϵα,β = 0
and

P(F > αλ) ≤ ϵα,βP(F > λ) + kα,βP(G > βλ), ∀ λ > 0,(3.2)

then
∥F∥p,q,b ≤ C∥G∥p,q,b

for some C > 0 independent of F and G.



26 Zhiwei Hao, Mei Li, Yao Wang and Ferenc Weisz

Remark 3.3. As usual, we say that the pair (F,G) satisfies the “good λ-inequality" if F and G satisfy
the inequality (3.2).

The generalization of the famous Burkholder-Gundy inequalities for martingale Hardy-
Lorentz-Karamata spaces is given below.

Lemma 3.15 ([30, Theorem 3.2]). Let 1 < p < ∞, 0 < q ≤ ∞ and b be a slowly varying function.
Then for every martingale f = (fn)n≥1,

C1∥M(f)∥p,q,b ≤ ∥S(f)∥p,q,b ≤ C2∥M(f)∥p,q,b
for some constant C2 ≥ C1 > 0.

Theorem 3.1. Let 0 < p, q < ∞, b, b1, b2 be slowly varying functions and v ∈ Vp,q,b. If 0 < p1, q1 <
∞, 1

p1
= 1

p + 1
p2

, 1
q1

= 1
q + 1

q2
and b1(t) = b(t)b2(t), then Tv is of types (HS

p2,q2,b2
, HS

p1,q1,b1
) and

(Pp2,q2,b2 ,Pp1,q1,b1) (resp.(Qp2,q2,b2 ,Qp1,q1,b1)) with ∥Tv∥ ≲ ∥v∥Vp,q,b
.

Proof. For every v ∈ Vp,q,b and f ∈ HS
p2,q2,b2

, using the pointwise estimation, we obtain

S(Tv(f)) ≤ M(v) · S(f), a.e.

Combining this with Lemma 2.6, we have

∥Tv(f)∥HS
p1,q1,b1

= ∥S(Tv(f))∥p1,q1,b1 ≤ ∥M(v) · S(f)∥p1,q1,b1(3.3)

≲ ∥M(v)∥p,q,b∥S(f)∥p2,q2,b2 ≈ ∥v∥Vp,q,b
∥f∥HS

p2,q2,b2

.

This implies that Tv is of type (HS
p2,q2,b2

, HS
p1,q1,b1

) with ∥Tv∥ ≤ C∥v∥Vp,q,b
.

For every v ∈ Vp,q,b and f ∈ Pp1,q1,b1 . Let λ =
(
λn)n≥0 be the non-decreasing, predictable

least majorant of f = (fn)n≥1. Then, for all n ≥ 1, we have

|dnf | = |fn − fn−1| ≤ |fn|+ |fn−1| ≤ λn−1 + λn−2 ≤ 2λn−1(3.4)

and

(3.5) |dn(Tv(f))| = |vn−1dnf | ≤ 2Mn−1(v)λn−1 ≜ ρn−1.

Therefore,

(3.6) |Tv(fn)| = |Tv(fn−1) + dn(Tv(f))| ≤ Mn−1(Tv(f)) + ρn−1, ∀ n ≥ 1.

Since the sequence
(
Mn(Tv(f)) + ρn

)
n≥0

is adapted to
{
Fn

}
n≥0

, it follows from (3.6) that(
Mn(Tv(f))+ρn

)
n≥0

is a non-decreasing, predictable least majorant of martingale
(
Tv(fn)

)
n≥1

.
By Lemma 2.6, (3.5) and the definition of ρn, we get

∥ρ∞∥p1,q1,b1 ≈ ∥M(v)λ∞∥p1,q1,b1(3.7)

≲ ∥M(v)∥p,q,b∥λ∞∥p2,q2,b2

≲ ∥v∥Vp,q,b
∥f∥Pp2,q2,b2

.

As in [7], the pairs
(
S(f),M(f) + λ∞

)
and

(
M(Tv(f)), S(Tv(f)) + ρ∞

)
satisfy the good λ-

inequality. Hence, by Lemma 3.14, we obtain

∥S(f)∥p2,q2,b2 ≲ ∥M(f) + λ∞∥p2,q2,b2(3.8)

≲ ∥M(f)∥p2,q2,b2∥+ ∥λ∞∥p2,q2,b2

≲ ∥f∥Pp2,q2,b2
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and

∥M(Tv(f))∥p1,q1,b1 ≲ ∥S(Tv(f)) + ρ∞∥p1,q1,b1(3.9)

≲ ∥S(Tv(f))∥p1,q1,b1 + ∥ρ∞∥p1,q1,b1 .

Combining (3.3), (3.7), (3.8) and (3.9), we get

∥M(Tv(f))∥p1,q1,b1 ≲ ∥S(Tv(f))∥p2,q2,b2 + ∥ρ∞∥p1,q1,b1(3.10)

≲ ∥v∥Vp,q,b

(
∥S(f)∥p2,q2,b2 + ∥f∥Pp2,q2,b2

)
≲ ∥v∥Vp,q,b

(
∥f∥Pp2,q2,b2

+ ∥f∥Pp2,q2,b2

)
≲ ∥v∥Vp,q,b

∥f∥Pp2,q2,b2
.

Moreover, it follows from (3.6), (3.7) and (3.10) that

∥Tv(f)∥Pp1,q1,b1
≤ ∥M(Tv(f)) + ρ∞∥p1,q1,b1(3.11)

≲ ∥M(f)∥p1,q1,b1 + ∥ρ∞∥p1,q1,b1

≲ ∥v∥Vp,q,b
∥f∥Pp2,q2,b2

,

which implies Tv is of type (Pp2,q2,b2 ,Pp1,q1,b1) with ∥Tv∥ ≲ ∥v∥Vp,q,b
. □

Corollary 3.1. Let 0 < p, q < ∞, b be a slowly varying function, v ∈ Vp,q,b, 0 < p1 < p2 < ∞ with
1
p1

= 1
p + 1

p2
. Then Tv is of type (Pp2,q,b,Pp1,q,b) (resp. (Qp2,q,b,Qp1,q,b)) with ∥Tv∥ ≲ ∥v∥Vp,q,b

.

Proof. Since 1
q = 1

2q + 1
2q , it follows from Lemma 2.3 and Theorem 3.1 that

∥Tv(f)∥Pp1,q,b
≲ ∥v∥Vp,2q,b

∥f∥Pp2,2q,b

≲ ∥v∥Vp,q,b
∥f∥Pp2,q,b

.

The proof is complete. □

Lemma 3.16 ([38, Fefferman’s inequality]). Let f = (fn)n≥1 ∈ HS
1 and φ = (φn)n≥1 ∈ BMO2.

Then ∣∣E(fnφn)
∣∣ ≤√2

p

∥∥f∥∥
HS

1

∥∥φ∥∥
BMO2

.

Lemma 3.17. Let 1 < p, q < ∞, b be a slowly varying function and v ∈ Vp,q,b. Then Tv is of types
(BMO2, H

S
p,q,b) and (BMO2, H

M
p,q,b) with ∥Tv∥ ≲ ∥v∥Vp,q,b

.

Proof. Note that Tv is selfadjoint in the sense that for nice martingales f and g (for example,
both f and g are in L2), we have E

(
gTv(f)

)
= E

(
fTv(g)

)
(see [12] as well as [42]). We know

that BMO2 ⊂ L2, HS
p,q,b ⊂ L2 when 2 < p < ∞, and L2 is dense in HS

p,q,b for 1 < p ≤ 2. Then
for any martingale f ∈ BMO2 and g ∈ HS

p,q,b, it follows from Lemma 3.16 that

(3.12) |E(gTv(f))| = |E(fTv(g))| ≤
√
2∥f∥BMO2

∥Tv(g)∥HS
1
.

Set 1
p + 1

p′ = 1 and 1
q + 1

q′ = 1. For any v ∈ Vp,q,b, by Theorem 3.1, we have

(3.13) ∥Tv(g)∥HS
1
≲ ∥v∥Vp,q,b

∥g∥HS
p′,q′,1/b

.

Both (3.12) and (3.13) give that

(3.14) |E(gTv(f))| ≲ ∥v∥Vp,q,b
∥f∥BMO2

∥g∥HS
p′,q′,1/b

.
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Now, from Lemma 3.15, we have HS
p′,q′,1/b ≈ HM

p′,q′,1/b ≈ Lp′,q′,1/b. Then (3.14) implies that
Tv(f) ∈ (HM

p′,q′,1/b)
′ ≈ (Lp′,q′,1/b)

′ ≈ Lp,q,b ≈ HS
p,q,b and

∥Tv(f)∥HS
p,q,b

≲ ∥v∥Vp,q,b
∥f∥BMO2 ,

which means that Tv is of type (BMO2, H
S
p,q,b) with ∥Tv∥ ≲ ∥v∥Vp,q,b

. Since HS
p,q,b ≈ HM

p,q,b for
1 < p, q < ∞, Tv is also of type (BMO2, H

M
p,q,b). □

In fact, the above lemma still holds for the exponents p and q in a larger range.

Theorem 3.2. Let 0 < p, q < ∞ and b be a slowly varying function. If v ∈ Vp,q,b, then Tv is of types
(BMO2, H

S
p,q,b) and (BMO2, H

M
p,q,b) with ∥Tv∥ ≲ ∥v∥Vp,q,b

.

Proof. Take some p1 > max{1, p, p
q } and set q1 = p1

p q. Then q1 > max{1, q}. Since p1 > p and
q1 > q, set 0 < p2, q2 < ∞ such that 1

p = 1
p1

+ 1
p2

and 1
q = 1

q1
+ 1

q2
. In addition, let b1, b2 be

slowly varying functions satisfying b(t) = b1(t)b2(t) with b(t) = b
1/r
1 (t) = b

1/(1−r)
2 (t).

For every v ∈ Vp,q,b, we suppose v(1) =
(
v
(1)
n

)
n≥0

with v
(1)
n = vrn and v(2) =

(
v
(2)
n

)
n≥0

with

v
(2)
n = v1−r

n for all n ≥ 0, where 0 < r = p
p1

< 1. Thus, v = v(1) · v(2). With the help of Lemma
2.5, we conclude that

∥v(1)∥Vp1,q1,b1
= ∥M(v(1))∥p1,q1,b1 = ∥M(vr)∥p1,q1,b1(3.15)

= ∥(M(v))r∥p1,q1,b1 = ∥M(v)∥r
rp1,rq1,b

1/r
1

= ∥M(v)∥rp,q,b = ∥v∥rVp,q,b
< ∞

and

∥v(2)∥Vp2,q2,b2
= ∥M(v(2))∥p2,q2,b2 = ∥M(v1−r)∥p2,q2,b2(3.16)

= ∥(M(v))1−r∥p2,q2,b2 = ∥M(v)∥1−r

(1−r)p2,(1−r)q2,b
1/(1−r)
2

= ∥M(v)∥1−r
p,q,b = ∥v∥1−r

Vp,q,b
< ∞.

This implies that v(1) ∈ Vp1,q1,b1 and v(2) ∈ Vp2,q2,b2 .
Since 1 < p1, q1 < ∞, it follows from Lemma 3.17 that

(3.17) ∥Tv(1)(f)∥HS
p1,q1,b1

≲ ∥v(1)∥Vp1,q1,b1
· ∥f∥BMO2 < ∞, f ∈ BMO2,

which means that ∥Tv(1)(f)∥ ∈ HS
p1,q1,b1

.
It is easy to observe that b(t) = b1(t)b2(t) and v(2) ∈ Vp2,q2,b2 . Applying Theorem 3.1, we

obtain Tv(2)(f) is of type (HS
p1,q1,b1

, HS
p,q,b) with ∥Tv(2)∥ ≲ ∥v(2)∥Vp2,q2,b2

. Therefore, combining
(3.15), (3.16) and (3.17), we get

∥Tv(f)∥HS
p,q,b

= ∥Tv(1)(Tv(2)(f))∥HS
p,q,b

≲ ∥v(2)∥Vp2,q2,b2
∥Tv(1)(f)∥HS

p1,q1,b1

≲ ∥v(2)∥Vp2,q2,b2
∥v(1)∥Vp1,q1,b1

∥f∥BMO2

≲ ∥v∥1−r
Vp,q,b

∥v∥rVp,q,b
∥f∥BMO2

= C∥v∥Vp,q,b
∥f∥BMO2

,

which implies that Tv is of type (BMO2, H
S
p,q,b) with ∥Tv∥ ≲ ∥v∥V p,q,b. The type (BMO2, H

M
p,q,b)

of Tv can be proved similarly. □

Theorem 3.3. Set 0 < p, q < ∞, b be a slowly varying function and v ∈ Vp,q,b. Then Tv is of type
(BMO1,Pp,q,b) (resp. (BMO2,Qp,q,b)) with ∥Tv∥ ≲ ∥v∥Vp,q,b

.
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Proof. Given any f ∈ BMO2. For all n ≥ 1, |dnf | = |fn − fn−1| ≤ ∥f∥BMO2
. Thus, we obtain

|Tv(fn)| = |Tv(fn−1) + dn(Tv(f))|
≤Mn−1(Tv(f)) + |dn(Tv(f))|
=Mn−1(Tv(f)) + |vn−1dnf |
≤Mn−1(Tv(f)) +Mn−1(v)∥f∥BMO2

.

Thus
(
Mn(Tv(f))+Mn(v)∥f∥BMO2

)
n≥0

is a predictable and non-decreasing majorant of
(
Tv(fn)

)
n≥1

.
By Theorem 3.2, we get that

∥Tv(fn)∥Pp,q,b
≤ ∥M(Tv(f)) +M(v)∥f∥BMO2

∥p,q,b
≲ ∥M(Tv(f))∥p,q,b + ∥M(v)∥p,q,b∥f∥BMO2

≲ ∥v∥Vp,q,b
∥f∥BMO2

,

which proves that Tv(f) =
(
Tv(fn)

)
n≥1

∈ Pp,q,b and Tv is of type (BMO2,Pp,q,b) with ∥Tv∥ ≲

∥v∥Vp,q,b
. Since BMOp spaces are equivalent for 1 ≤ p < ∞ by John-Nirenberg’s theorem, we

obtain that Tv is also of type (BMO1,Pp,q,b). □

4. RELATIONS BETWEEN Pp1,q,b AND Pp2,q,b (RESP. Qp1,q,b AND Qp2,q,b)

Set 0 < p1 < p2 < ∞ and 0 < q < ∞. From Lemma 2.4, we know that Lp2,q,b ⊂ Lp1,q,b, then
it is obvious that Pp2,q,b ⊂ Pp1,q,b (resp. Qp2,q,b ⊂ Qp1,q,b). In this section, we will prove that
any martingale f ∈ Pp1,q,b (resp. Qp1,q,b) can be represented as a martingale transform of some
element in f ∈ Pp2,q,b (resp. Qp2,q,b).

Firstly, let (A0, A1) be a compatible couple of quasi-normed spaces A0 and A1, that is, we as-
sume that both A0 and A1 are continuously, embedded in some common quasi-normed spaces.
Then the spaces A0 + A1 are defined as the set of all f , which can be written as f = f0 + f1

with f0 ∈ A0 and f1 ∈ A1. The interpolation spaces between A0 and A1 are defined by means
of the so-called K-functional K(t, f ;A0, A1), which can be found in [4].

Definition 4.4. Let (A0, A1) be a compatible couple of quasi-normed spaces A0 and A1. For any
f ∈ A0 +A1, the K-functional is defined as

K(t, f ;A0, A1) = inf{∥f0∥A0
+ t∥f1∥A1

: f = f0 + f1},

where the infimum is taken over all f = f0 + f1 with fi ∈ Ai, i = 0, 1.

Definition 4.5 ([21]). Let 0 < θ < 1, 0 < q ≤ ∞ and let b be a slowly varying function. Suppose that
A0 and A1 are two quasi-normed spaces. The space (A0, A1)θ,q,b consist of all f ∈ A0 + A1 such that
∥f∥(A0,A1)θ,q,b < ∞, where

∥f∥(A0,A1)θ,q,b =


(∫ ∞

0

(
t−θγb(t)K(f, t)

)q dt
t

)1/q

, if 0 < q < ∞,

sup
t>0

t−θγb(t)K(f, t), if q = ∞.

Theorem 4.4. Let 0 < p, q < ∞, 0 < p1 < p2 < ∞ with 1
p1

= 1
p + 1

p2
, 0 < α,α′ < ∞ and b, b0

be slowly varying functions. Then for each martingale f = (fn)n≥1 ∈ Pp1,q,bα (resp. Qp1,q,bα), there
exist a martingale g = (gn)n≥1 ∈ Pp2,q,bα′ (resp. Qp2,q,bα′ ) and multiplier sequence v = (vn)n≥0 ∈
Vp,

p2q
p2−p1

,b0 such that f is the martingale transform of g by Tv , that is, f = Tv(g).
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Proof. First of all, we construct an appropriate martingale g = (gn)n≥1 ∈ Pp2,q,bα′ , which is
associated with the martingale f = (fn)n≥1 ∈ Pp1,q,bα .

Taking a suitable number p′1 such that 0 < p′1 < min{p1

p2
, p1} and set θ = 1− p′

1

p1
, 1
α = 1

p′
1

with

bα(t) = b(t1/α), by applying Lemma 2.10, we obtain

(4.18) (Pp′
1
,P∞)θ,q,b = Pp1,q,bα .

Then, for any f = (fn)n≥1 ∈ Pp1,q,bα , we have the following decomposition

(4.19) f = f0 + f1 with f0 ∈ Pp′
1

and f1 ∈ P∞.

Denote by λ = (λn)n≥0 the non-decreasing and predictable least majorant of the martingale
f0 = (f0

n)n≥1. We pick β such that β = p2−p1

p2
= 1− p1

p2
and vn = max{λβ

n, 1} for all n ≥ 0, then
the sequence v = (vn)n≥0 is adapted to {Fn}n≥1. Now, we define the martingale g = (gn)n≥1

by

(4.20) gn =

n∑
k=1

v−1
k−1dkf, n ≥ 1.

By (4.19) and (4.20), it is easy to know that the martingale g has also the corresponding decom-
position g = g0 + g1 with g0 = (g0n)n≥1 and g1 = (g1n)n≥1 such that

(4.21) gn = g0n + g1n, g
0
n =

n∑
k=1

v−1
k−1dkf

0, g1n =

n∑
k=1

v−1
k−1dkf

1, n ≥ 1.

Taking p′2 = p2

p1
p′1, then we conclude that 0 < p′1 < p′2 < 1 and 1

p2
= 1−θ

p′
2

. Therefore, according
to Lemma 2.10 again, we also get

(4.22) (Pp′
2
,P∞)θ,q,b = Pp2,q,bα′ ,

where α′ = p′2.
For any n ≥ 1, from Lemma 2.7, g0n can be written in the form of

g0n =

n∑
k=1

(f0
k − f0

k−1)v
−1
k−1(4.23)

= f0
n · v−1

n − f0
1 · v−1

0 +

n∑
k=1

f0
k (v

−1
k−1 − v−1

k )

= f0
n · v−1

n−1 +

n−1∑
k=1

f0
k (v

−1
k−1 − v−1

k ).

On the one hand, since β = 1 − p1

p2
> 0 and 0 < v−1

n = 1

max{λβ
n,1}

= min{λ−β
n , 1} ≤ λ−β

n for all

n ≥ 0, the sequence (v−1
n )n≥1 is non-increasing. Then v−1

k−1 − v−1
k ≥ 0 for all k ≥ 1. From (4.23)
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and the definition of (λn)n≥1, for any n ≥ 1, we have

g0n ≤ |f0
n| · v−1

n−1 +

n−1∑
k=1

|f0
k |(v−1

k−1 − v−1
k )(4.24)

≤ λn−1 · λ−β
n−1 +

n−1∑
k=1

λk−1(v
−1
k−1 − v−1

k )

= λ

p′1
p′2
n−1 +

n−1∑
k=1

λk−1(v
−1
k−1 − v−1

k ).

Since (λ−β
n )n≥0 is decreasing, without loss of generality, we can suppose that there exists a

number m ≥ 1 such that λ−β
m−1 > 1 and λ−β

m ≤ 1. Then we get
n−1∑
k=1

λk−1(v
−1
k−1 − v−1

k ) =

n−1∑
k=1

λk−1(1− 1) = 0, n < m+ 1,

and
n−1∑
k=1

λk−1(v
−1
k−1 − v−1

k ) =

n−1∑
k=m

λk−1

(
λ−β
k−1 − λ−β

k

)
≤

n−1∑
k=1

λk−1

(
λ

p′1
p′2

−1

k−1 − λ

p′1
p′2

−1

k

)
, n ≥ m+ 1.

As a result, we have
n−1∑
k=1

λk−1(v
−1
k−1 − v−1

k ) ≤
n−1∑
k=1

λk−1

(
λ

p′1
p′2

−1

k−1 − λ

p′1
p′2

−1

k

)
, n ≥ 1.(4.25)

From (4.24) and (4.25), we have

|g0n| ≤ λ

p′1
p′2
n−1 +

n−1∑
k=1

λk−1

(
λ

p′1
p′2

−1

k−1 − λ

p′1
p′2

−1

k

)
(4.26)

=

n∑
k=1

λ

p′1
p′2

−1

k−1 (λk−1 − λk−2)

≤
∫ λn−1

0

t
p′1
p′2

−1 dt

t
=

p′2
p′1

λ

p′1
p′2
n−1, ∀n ≥ 1,

which means that the sequence

(
p′
2

p′
1
λ

p′1
p′2
n

)
n≥0

is a non-decreasing and predictable majorant of

the martingale g0 = (g0n)n≥1. Moreover, by (4.26) we obtain that

∥g0∥Pp′2
≤ p′2

p′1

(
E
(
λ

p′1
p′2∞

)p′
2

) 1
p′2

=
p′2
p′1

∥f0∥
p′1
p′2
Pp′1

(4.27)

≤ C1 max{1, ∥f0∥Pp′1
}.

On the other hand, denote by λ̂ = (λ̂n)n≥0 the non-decreasing and predictable least majorant
of the martingale f1 = (f1

n)n≥1. Then |
∑n

k=1 dkf
1| = |f1

n| ≤ λ̂n−1 ≤ λ̂∞ for all n ≥ 1 and
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∥f1∥P∞ = ∥λ̂∞∥∞. Since 0 < v−1
k = min{λ−β

k , 1} ≤ 1 and the sequence (v−1
n )n≥0 is decreasing,

according to Lemma 2.7, we have

|g1n| =
∣∣∣∣ n∑
k=1

v−1
k−1dkf

1

∣∣∣∣ = ∣∣∣∣f1
n · v−1

n−1 +

n−1∑
k=1

f1
k (v

−1
k−1 − v−1

k )

∣∣∣∣
≤ 3 sup

1≤k≤n
|v−1

k−1| · sup
0≤m≤n

∣∣∣∣ m∑
k=1

dkf
1

∣∣∣∣ ≤ 3λ̂∞, ∀n ≥ 1.

This implies that ∥g1∥P∞ ≤ 3∥f1∥P∞ .

According to (4.27), it is easy to know that ∥g0∥Pp′2
≤ C1 when ∥f0∥Pp′1

< 1. Set f̃ = 1 + f1,
since f1 ∈ P∞, we have

∥f̃∥Pp1,q,bα
= ∥1 + f1∥Pp1,q,bα

≤ C2(1 + ∥f1∥Pp1,q,bα
)

≤ C2(1 + ∥f1∥P∞) ≤ ∞,

which implies that the martingale f̃ ∈ Pp1,q,bα . Then we have

∥g0∥Pp′2
+ t∥g1∥P∞ ≤ C1∥1∥Pp′1

+ 3t∥f1∥P∞ , t > 0.

Therefore, we get

K(t, g;Pp′
2
,P∞) ≤ C3K(t, f̃ ;Pp′

1
,P∞), t > 0,

then we obtain

∥g∥Pp2,q,b
α′

= ∥g∥(Pp′2
,P∞) ≤ C∥f̃∥(Pp′2

,P∞) = C∥f̃∥Pp1,q,bα
< ∞,

which yields g ∈ Pp2,q,bα′ when ∥f0∥Pp′1
< 1.

Next, if ∥f0∥Pp′1
≥ 1, it follows from (4.27) that ∥g0∥Pp′2

≤ C1∥f0∥Pp′1
. Then we have

∥g0∥Pp′2
+ t∥g1∥P∞ ≤ max{C1, 3}(∥f0∥Pp′1

+ t∥f1∥P∞), t > 0.

Hence

K(t, g;Pp′
2
,P∞) ≤ C2K(t, f ;Pp′

1
,P∞), t > 0.

Consequently,

∥g∥Pp2,q,b
α′

= ∥g∥(Pp′2
,P∞)θ,q,b

=
(∫ ∞

0

(
t−θγb(t)K(t, g;Pp′

2
,P∞)

)q dt
t

)1/q
≤ C2

(∫ ∞

0

(
t−θγb(t)K(t, f ;Pp′

1
,P∞)

)q dt
t

)1/q
= C2∥f∥(Pp′1

,P∞)θ,q,b = C2∥f∥Pp1,q,bα
< ∞.

As a result, g ∈ Pp2,q,bα′ when ∥f0∥Pp′1
≥ 1. In conclusion, we get g ∈ Pp2,q,bα′ whether

∥f0∥Pp′1
< 1 or ∥f0∥Pp′1

≥ 1.
Secondly, we verify that the multiplier sequence v = (vn)n≥0 ∈ Vp,

p2q
p2−p1

,b0 . Applying
Minkowski’s inequality, we obtain

∥v∥V
p,

p2q
p2−p1

,b0
= ∥M(v)∥p, 1β q,b0 = ∥max{λβ

∞, 1}∥p, 1β q,b0

≤ C1(∥λβ
∞∥p, 1β q,b0 + 1).
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Let b1/β0 (t) = bα(t), from Lemma 2.5 and (4.19), we easily conlude that

∥λβ
∞∥p, 1β q,b0 = ∥λ∞∥β

βp,q,b
1/β
0

= ∥λ∞∥βp1,q,bα

= ∥f0∥βPp1,q,bα
= ∥f − f1∥βPp1,q,bα

≤ C2(∥f∥Pp1,q,bα
+ ∥f1∥Pp1,q,bα

)β

≤ C2(∥f∥Pp1,q,bα
+ ∥f1∥P∞)β < ∞.

Hence

∥λβ
∞∥p, 1β q,b0 ≤ C1(C2(∥f∥p1,q,bα + ∥f∥P∞)β + 1) < ∞.

This implies that v = (vn)n≥0 ∈ Vp,
p2q

p2−p1
,b0 .

Finally, according to (4.20), we get

f = Tv(g) with fn =

n∑
k=1

v−1
k−1dkg, n ≥ 1.

It is clearly shown that f is the martingale transform of g by Tv . The proof is complete. □

5. RELATIONS BETWEEN Pp1,q1,b AND Pp2,q2,b (RESP. Qp1,q1,b AND Qp2,q2,b)

We will extend our discussion to the relationship between Pp1,q1,b and Pp2,q2,b (resp. Qp1,q1,b

and Qp2,q2,b) in this section, where 0 < p1 < p2 < ∞ and 0 < q1 < q2 < ∞.

Theorem 5.5. Let 0 < p1 < p2 < ∞, 0 < q1 < q2 < ∞, 0 < p, q < ∞, 1
p1

= 1
p + 1

p2
, 1
q1

= 1
q + 1

q2
,

0 < α < ∞ and b, b′ be slowly varying functions. Then for each martingale f = (fn)n≥1 ∈ Pp1,q1,bα

(resp. Qp1,q1,bα), there exist a martingale g̃ = (n)n≥1 ∈ Pp2,q2,b′α
(resp. Qp2,q2,b′α

) and multiplier
sequence v = (vn)n≥0 ∈ Vp,q,b such that f is the martingale transform of g̃ by Tv , that is, f = Tv(g̃).

Proof. Let 0 < p1 < p2 < ∞, 0 < q1 < q2 < ∞, 1
q1

= 1
q + 1

q2
and b be a slowly varying function

with bα(t) = b(t1/α). For any 0 < η < 1, select positive numbers p′1(̸= p1), p′′1 and p′′2 such that
1
p1

= 1−η
p′
1

+ η
p′′
1

and 0 < p′′2 < min{p′
1

p′
2
, p′1}. It is easy to check that p′1 ̸= p′′1 . Set q′ = p′

1q
p and

q′′ =
p′′
1 q
p , then 0 < q′, q′′ < ∞. By Lemma 2.12, we get

(Pp′
1,q

′,b′α
,Pp′′

1 ,q
′′,b′′α

)η,q1,b = Pp1,q1,bα ,

where bα(t) = b′1−η
α (t)b′′ηα (t)b(t1/p

′
1−1/p′′

1 b′α(t)/b
′′
α(t)). Therefore, for any martingale f = (fn)n≥1 ∈

Pp1,q1,bα , we have a suitable decomposition as below

f = f0 + f1, where f0 ∈ Pp′
1,q

′,b′α
and f1 ∈ Pp′′

1 ,q
′′,b′′α

.

Since 1
p1

− 1
p2

= 1
p > 0 and 1

p1
= 1−η

p′
1

+ η
p′′
1

, we can also take two positive numbers p′2 > p′1
and p′′2 > p′′1 such that

1

p1
− 1

p2
=

1

p′1
− 1

p′2
=

1

p′′1
− 1

p′′2
=

1

p
and p′′2 =

p′2
p′1

· p′′1 .
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Then we obtain p′
1p

′
2

p′
2−p′

1
= p and p′

2q
′

p′
2−p′

1
=

p′
2

p′
2−p′

1
· p

′
1q
p = q, p′′

1 p
′′
2

p′′
2 −p′′

1
= p and p′′

2 q
′′

p′′
2 −p′′

1
=

p′′
2

p′′
2 −p′′

1
· p

′′
1 q
p = q.

We can also get

1

p1
− 1

p2
= (1− η)

(
1

p′1
− 1

p′2

)
+ η

(
1

p′′1
− 1

p′′2

)
=

(
1− η

p′1
+

η

p′′1

)
−
(
1− η

p′2
+

η

p′′2

)
=

1

p1
−
(
1− η

p′2
+

η

p′′2

)
,

which implies 1
p2

= 1−η
p′
2

+ η
p′′
2

. Applying Theorem 4.4 to f0 ∈ Pp′
1,q

′,b′α
and f1 ∈ Pp′′

1 ,q
′′,b′′α

,
respectively, it is easy to find that there exist two sequences v′ = (v′n)n≥0 and v′′ = (v′′n)n≥0

such that

v′ ∈ V p′1p′2
p′2−p′1

,
p′2q′

p′2−p′1
,b0

= Vp,q,b0 and v′′ ∈ V p′′1 p′′2
p′′2 −p′′1

,
p′′2 q′′

p′′2 −p′′1
,b′0

= Vp,q,b′0
,

where β = 1 − p′
1

p′
2

, b0(t) = bβα(t) and b′0(t) = bβα′(t). Furthermore, there exist two martingales
g0 ∈ Pp′

2,q
′,b′

α′
and g1 ∈ Pp′′

2 ,q
′′,b′′

α′
, respectively, such that

g0n =

n∑
k=1

v′−1
k−1dkf

0 and g1n =

n∑
k=1

v′′−1
k−1dkf

1, n ≥ 1.

Let vk = max{v′k, v′′k}, or equivalently v−1
k = min{v′−1

k , v′′−1
k } for all k ≥ 0 and let b be a slowly

varying function with b = max{b0, b′0}. Then it is obvious that v = (vk)k≥0 ∈ Vp,q,b.
We define that

g̃0n =

n∑
k=1

v−1
k−1dkf

0 and g̃1n =

n∑
k=1

v−1
k−1dkf

1, n ≥ 1.

Since 0 < v−1
k ≤ v′−1

k and 0 < v−1
k ≤ v′′−1

k , we have

∥g̃0n∥Pp′2,q′,b′
α′

≤ ∥g0n∥Pp′2,q′,b′
α′
,

∥g̃1n∥Pp′′2 ,q′′,b′′
α′

≤ ∥g1n∥Pp′′2 ,q′′,b′′
α′
.

This means that g̃0n = (g̃0n)n≥1 ∈ Pp′
2,q

′,b′
α′

and g̃1n = (g̃1n)n≥1 ∈ Pp′′
2 ,q

′′,b′′
α′
.

For all n ≥ 1, we set g̃ = (g̃n)n≥1 with

g̃n = g0n + g1n =

n∑
k=1

v−1
k−1dkf

0 +

n∑
k=1

v−1
k−1dkf

1

=

n∑
k=1

v−1
k−1(dkf

0 + dkf
1) =

n∑
k=1

v−1
k−1dkf.

Then we obtain g̃ = Tv−1(f) or equivalently f = Tv(g̃).
Using Lemma 2.12, we get

(Pp′
2,q

′,b′
α′
,Pp′′

2 ,q
′′,b′′

α′
)η,q2,b′ = Pp2,q2,b′α

,

then g̃ = (g̃n)n≥1 ∈ Pp2,q2,b′α
.
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Hence, similarly to the proof of Theorem 4.4, we can show that f = Tv(g̃) with

fn =

n∑
k=1

vk−1dkg̃

for all k ≥ 1. This completes the proof. □

6. RELATIONS BETWEEN Pp,q,b AND BMO1 (RESP. Qp,q,b AND BMO2)

Theorem 6.6. Let 0 < p, q < ∞, b be a slowly varying function and f = (fn)n≥1 ∈ Pp,q,b

(resp. Qp,q,b). Then there exist a martingale g = (gn)n≥1 ∈ BMO1 (resp. BMO2) with ∥g∥BMO1
≤

4 (resp. ∥g∥BMO2 ≤
√
2), and a non-decreasing and non-negative sequence v = (vn)n≥1 ∈ Vp,q,b with

∥v∥Vp,q,b
≤ C∥f∥Pp,q,b

(resp. ∥v∥Vp,q,b
≤ C∥f∥Qp,q,b

) such that f is the martingale transform of g by
Tv , that is, f = Tv(g).

Conversely, for any v ∈ Vp,q,b and g ∈ BMO1 (resp. g ∈ BMO2), the martingale transform
f = Tv(g) belongs to Pp,q,b (resp. Qp,q,b) and ∥f∥Pp,q,b

≤ C∥v∥Vp,q,b
∥g∥BMO1 (resp. ∥f∥Qp,q,b

≤
C∥v∥Vp,q,b

∥g∥BMO2
).

Proof. By using Theorem 3.3, we can prove the converse assertion immediately.
For any martingale f = (fn)n≥1 ∈ Pp,q,b, denote by λ = (λn)n≥0 the non-decreasing and

predictable least majorant of the sequence (fn)n≥1. Taking a suitable position number p0 <
min{p, q, 1}, define the sequence v = (vk)k≥0 and martingale g = (gn)n≥1 by

vk = sup
m≤k

(
E(λp0

∞|Fm)
) 1

p0 ; gn =

n∑
k=1

v−1
k−1dkf, k ≥ 1, n ≥ 1.

Then we have f = Tv(g) with fn =
∑n

k=1 vk−1dkg for all n ≥ 1. What we need to prove is that
v ∈ Vp,q,b and g ∈ BMO1.

It is easy to check that the sequence
(
E(λp0

∞|Fn)
)
n≥0

is a martingale. In what follows, for the
sake of convenience in writing, we will still denote by λp0

∞ the martingale
(
E(λp0

∞|Fn)
)
n≥0

, that
is, we write as usual λp0

∞ =
(
E(λp0

∞|Fn)
)
n≥0

. Then we obtain

M(v) = sup
k<∞

|vk| = sup
k<∞

sup
m≤k

(
E(λp0

∞|Fm)
)1/p0

≤
(
sup
k<∞

E(λp0
∞|Fm)

)1/p0
=
(
M(λp0

∞)
)1/p0

.

Since p
p0

> 1 and q
p0

> 1, applying Lemma 2.9 and Lemma 2.5, we have

∥v∥Vp,q,b
= ∥M(v)∥p,q,b ≤ ∥(M(λp0

∞))1/p0∥p,q,b
= ∥M(λp0

∞)∥1/p0
p
p0

, q
p0

,bp0
≤ C∥λp0

∞∥1/p0
p
p0

, q
p0

,bp0

= C∥λp0
∞∥p,q,b = C∥f∥Pp,q,b

< ∞.
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This proves v ∈ Vp,q,b. For any N > n ≥ 1, by Abel’s rearrangement, we get

|
N∑

k=n

dkg| = |gN − gn−1| = |
N∑

k=n

v−1
k−1dkf |

= |v−1
N−1 · (fN − fn−1) +

N−1∑
k=n

(fk − fn−1) · (v−1
k−1 − v−1

k )|

≤ 2v−1
N−1λN−1 + 2

N−1∑
k=n

λk−1 · (v−1
k−1 − v−1

k )

= 2v−1
n−1λn−1 + 2

N−1∑
k=m

v−1
k · (λk − λk−1).

In addition, using Cauchy-Schwarz’s inequality, for any k ≥ 0, we obtain

1 =
[
E
(
λ

p0
2∞ λ

− p0
2∞ |Fk

)]2
≤ E(λp0

∞|Fk)E(λ−p0
∞ |Fk) ≤ vp0

k · E(λ−p0
∞ |Fk).

With the help of Jensen’s inequality, we write

v−1
k ≤ E(λ−p0

∞ |Fk)
1/p0 ≤ E(λ−1

∞ |Fk).

Therefore, we have

E

(∣∣ N∑
k=n

dkg
∣∣∣∣∣∣Fn

)
≤ 2E[λn−1E(λ−1

∞ |Fn)] + 2E

[N−1∑
k=n

(λk − λk−1) · E(λ−1
∞ |Fk)

∣∣Fn

]

= 2 + 2E

[N−1∑
k=n

λ−1
∞ · (λk − λk−1)

∣∣Fn

]
≤ 4.

From the above inequality, we conclude

∥g∥BMO1 = sup
n≥1

∥∥∥∥[E(∣∣ ∞∑
k=n

dkg
∣∣p∣∣∣∣Fn

)]1/p∥∥∥∥
∞

≤ 4.

This proves that g ∈ BMO1. Then the proof is completed. □
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