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ABSTRACT. Applying the martingale transform and K-method of interpolation spaces, we investigate the inter-
changing relations between Hardy-Lorentz-Karamata spaces of predictable martingales. More precisely, let 0 <
p1 < p2 < coand 0 < ¢1 < g2 < oo and b be a slowly varying function, it is shown that the elements in
Hardy-Lorentz-Karamata spaces Hy,, 4, » are none others than the martingale transforms of those in H,,,, 4,5, where
Hp, q:.6 € {Ppisas,br Lpyqi,b) for i = 1,2. And it is also proved that a martingale is in H, 4.4 € {Pp.q,5, Qp,q,} for
0 < p, g < oo, if and only if it is the transform of a martingale from BMO € { BMO1, BMO>}.
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1. INTRODUCTION

As is well known, Lorentz spaces play an important role in classical Harmonic analysis
[2, 3, 10, 11, 31, 20, 13] and references therein. Lorentz-Karamata spaces, as a generalization
of Lorentz spaces and Lorentz-Zygmund spaces, were firstly introduced by Edmunds, Ker-
man and Pick in [16]. The feature of these spaces is that their construction encapsules both
the Lorentz-type structure of function spaces and the concept of so-called slowly varying func-
tions that had been studied by Karamata. We refer the reader to [15, 17, 18, 39, 40] for more
information on Lorentz-Karamata spaces.

The definition of martingale was first introduced to probability by Ville in the 1930s, Levy
researched the properties of the martingale sequence. Doob systematically studied and sum-
marized the previous results from the perspective of analytics in his famous monograph [14].
Thereafter, some outstanding researchers such as Burkholder, Davis, Gundy [6, 7, 8, 9], Gar-
sia [19] gave a further study in this field. The theory of martingale Hardy spaces, which was
regarded as an interdisciplinary field of probability and analysis, flourished over the past few
decades. In particular, the analytical properties of these martingale spaces become one of the
hot topics. With the development of various function spaces, such as Lebesgue space, Orlicz
space, Lorentz space and Lorentz-Karamata space et al., the research of the combinations of
these function spaces with the martingale theory has attracted more and more attentions, and
some meaningful works were established in [12, 30, 32, 34, 33, 38, 41, 42, 43] and so on.

In 2014, Ho [29] firstly introduced the Karamata theory to martingale spaces and inves-
tigated the atomic decompositions, duality and interpolations of martingale Hardy-Lorentz-
Karamata spaces. Subsequently, Jiao et al. [35] further studied the duality of the martingale
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Hardy-Lorentz-Karamata spaces via a generalized BM O martingale space, which improved
the results in [29]. Wu et al. [44] investigated the modular inequalities in martingale Orlicz-
Karamata spaces via the modular atomic decompositions, and Li et al. [36] reconsidered the
results in [44] without the constraint that the slowly varying functions b is non-decreasing. We
refer to [24, 25, 37] for more information on Lorentz-Karamata martingale spaces.

The main purpose of this paper aims to discuss the interchange between Hardy-Lorentz-
Karamata spaces of predictable martingales. Its motivation comes from the classical results of
Garsia [19], Chao and Long [12] and Weisz [42]. It is worth mentioning that the main technique
we rely on in this paper is martingale transform, which was first introduced by Burkholder [6].
Martingale transform is an analogue of a singular integral in classical harmonic analysis, which
is an important tool in stochastic analysis. In addition, we also need the so-called K-method of
interpolation space to construct the desired martingale transforms. The results obtained here
are regarded as a generalization of the corresponding Hardy-Lorentz predictable martingale
spaces by Yu and He [45]. It is shown that the martingale transforms are very useful to research
the relations between the "predictable” martingale Hardy-Lorentz spaces, such as P, , and 9, 4
(see the definitions in the next section). In [45], the author proved that for 0 < p; < p2 < o0
and 0 < ¢1 < ¢2 < 09, the elements in Hardy-Lorentz spaces H,, 4, are none others than the
martingale transforms of those in Hardy-Lorentz spaces H), ,,, where H,,, . € {Pp, ¢: @p;a: }
for i = 1,2. We refer to [45] for more information. If p = ¢, then the martingale Hardy-
Lorentz spaces P, , and Q, 4 return to the martingale Hardy space P, and Q,. The analogue
of the interchange between these predictable martingale spaces was obtained by Garsia [19],
Weisz [42] and Chao and Long [12], respectively. All of those results can also be found in the
monographs of Long [38] and Weisz [43].

The paper is organized as follows. Some preliminaries used in the whole paper will be
stated in Section 2. In Section 3, we establish some boundedness of the martingale transform
operator on Hardy-Lorentz-Karamata spaces and BM O spaces, which will be used in the next
sections. The remaining Sections 4, 5 and 6 are respectively devoted to the characterization by
means of martingale transforms about the interchanging relationships between Hardy-Lorentz-
Karamata martingale spaces H,, 45, and H,, 5, Hy,, 4,5 and H,, 4, », and that between H), ;
and BMO, where H,, 45 € {Pp,q.5» @p,q,o}- Throughout the paper, we use C to denote a positive
constant which may vary from line to line. The symbol f < g stands for f < Cg, we write f ~ g
if f < Cgand g < Cf hold at the same time.

2. PRELIMINARIES

In this section, we present some necessary preliminaries used in the whole paper. Let
(Q, F,P) be a complete probability space and f be an F-measurable function defined on (2.
The distribution function of f is defined by

As(f) =P({w e Q:|f(w)] > 5}), (s>0).
Denote by f* the decreasing rearrangement of f defined by

fr(#) =inf{s > 0: A\ (f) < t}, (£=0),
with the convention that inf () = oc.

Lemma 2.1 ([22, Proposition 1.4.5]). Let f, g be F-measurable and 0 < t, ¢, to < oco. Then the
following properties hold:

(1) (fg)"(tr +1t2) < f*(t1)g"(t2);
(@) ([f[7)* () = (f*(t))P when 0 < p < oc.



20 Zhiwei Hao, Mei Li, Yao Wang and Ferenc Weisz

2.1. Slowly varying functions. We recall the definition of slowly varying functions in order to
define the Lorentz-Karamata spaces.

Definition 2.1. A Lebesgue measurable function b : [1,00) — (0, 00) is said to be a slowly varying
function if for any given € > 0, the function t°b(t) is equivalent to a non-decreasing function and the
function t=<b(t) is equivalent to a non-increasing function on [1, co).

The detailed study of Karamata theory, properties and examples of slowly varying functions
can be found in [5, 16].
Let b be a slowly varying function on [1, c0). We denote by ~, the positive function defined
by
Y (t) = b(max {t,1/t}), t € (0,00).

Lemma 2.2 ([15]). Let b be a slowly varying function. Then the following conclusions hold.

(¢) For any given € > 0, the function t*yy(t) is equivalent to a non-decreasing function and the
function t~ v, (t) is equivalent to a non-increasing function on (0, co).
(#) Ifa > 0O, then for any t > 0,

¢
/ 57 Ly (s)ds =~ t%y(t)
0
and
[ s s = o),
t

(#43) For anyr € R, b" is a slowly varying function and ~pr = ;.
(iv) If e and r are positive numbers, then there exists positive constants c. and C, such that

ce min{r®, r=°}b(t) < b(rt) < Comax{r®,r~°}b(t), t>0.
(v) Forany a > 0, denote by (t) = b(t*) on [1, 00), then by is also a slowly varying function.
2.2. Lorentz-Karamata spaces. We now recall the definition of the Lorentz-Karamata spaces.

Definition 2.2. Let 0 < p < 00,0 < ¢ < oo and b be a slowly varying function. The Lorentz-Karamata
space, denoted by L,, , p, consists of those measurable functions f with | f||p,q.6 < 00, where

(/om (t”p%u)f*(t))"‘f)l/q, if0 < q < 00,

suptl/pfyb(t)f*(t), if ¢ = .
t>0

£ llp.ao =

Remark 2.1.

(1) It will be convenient for us to use an equivalent quasi-norm definition for || f||,.q.5, namely

([ (s> ormuten > t)))‘“f)l/q, 0 << oo,

If
iglgtP(\fl > )Py (B( f| > 1)), if g = oo.

p,gb

(2) The Lorentz-Karamata space is a rearrangement-invariant (v.-i.) quasi-Banach function space
(see [28]). When 1 < p,q < 00, Ly 4. is a Banach space (see [15]). Note that if b = 1, the space
Ly, 4. 15 the classical Lorentz space Ly, 4. Also, if p = q and b = 1, then the space Ly, 4 is the
usual Lebesgue space L.
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Lemma 2.3 ([40, Proposition 3.16]). Let by, by be two slowly varying functions such that by < by, let
0 < p < oo and suppose 0 < g < 1 < oo. Then

- llprs S 1+ Mlpg,0-

Lemma 2.4 ([15, Theorem 3.4.48]). Set p1, p2 € (0,00), q1, g2 € (0, 00| with py < py and let by, by
be slowly varying functions. Then

Lpl 1,01 © Lpzafh,bz'

Lemma 2.5. Let 0 < p < 00,0 < q¢ < 00, s > 0and b be a slowly varying function. For any
f € Lo agunre, we have || f1*llp.ap = 1£112, ogu0/-

Proof. For any s > 0 and 0 < ¢ < oo, it follows from Lemma 2.2 (i7i) and Lemma 2.1 (i7) that
dt) 1/q
q

17 = ([ /701177 0)"

= ([ @rwourrors)”

= ([ wemroror )"y
(F ey

= 1F 113 sq0/+-

For ¢ = 0o, we have

If1°

pood = SUD /Py () (|f1°)* (1) = sup t!/Pyy (1) (f*)°(¢)
t>0 t>0

= (suptl/s”mf/s(t)f*(t)) = (fggtl/‘*p%us(of"(t))

>0
= 115,001/
The proof is complete. O
Holder’s inequality for Hardy-Lorentz-Karamata space is given below.
Lemma 2.6. Let 0 < p, g, p1, q1, P2, go < 00, b, b1, by be slowly functions and let 0- = L+ -, - =
2+ Loand by (t) = b(t)ba(t). Then
1£9llpsar.00 S 1 Fllp.a.0ll91l 2,026

Proof. By Lemma 2.1 (i), we have

M oo @ gy /q

ol = | [ (#7000 0)) t]

_/ow (t”’”% (t)f*(t/2)g*(t/2))q1(ﬂ B

IN

- [ (enaneorwe o) 7

i o q1 dt‘| 1/q1
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Next, from Lemma 2.2 (iv), we get

r 1/q1
[e’e} l11d
ol S | | <t1/’“%1(t)f*(t)g*(t)> f]

dt

[ poo /¢
| [ )™ ()™ ()™ " 0)" tl

0o 1/q1
— /0 t(h/p(’yb(t))ql (f*(t»(ht(h/;nz (’sz(t»ql (g*(t»(h dt‘| )

t

Since & 4+ I =1, by Holder’s inequality, we have

0o dt /¢
1 S [ | e euo)" (£ 0)" 7 (o 0) (g*(t»‘“]

0 t

UL (o))

X {/OOO (tql/pz (%Q(t))'“ (g*(t))%)qz/ql?rl/qz] 1/a

17 (rmora) €] [ (ermewo)8]

||fg||p1,ql,b1 S Hf”p,q,ng”pz,quz?
which completes the proof. O

Thus

2.3. Hardy-Lorentz-Karamata martingale spaces. Now, we introduce some standard nota-
tions which can be referred to [19, 41, 43]. Let {F,,},>1 be a non-decreasing sequence of sub-o-
algebras of F such that F = o(U,>1F,). The expectation operator and the conditional expec-
tation operator relative to F,, are denoted by E and E,,, respectively. A sequence of measurable
functions f = (fn)n>1 C L1(Q) is called a martingale with respect to {F,, }n>1 if Ep, frn41 = fn
for every n > 1. Denote by M the set of all martingales f = (f,,),>1 relative to {F,,},>1. For
f € M, we define its martingale difference by d; f = f; — fi—1 (¢ > 1), with convention fo = 0,
Fo ={0,Q}. Let T be the set of all stopping times relative to {F,},>1. For f € Mand T € T,
the stopped martingale f™ = (f;),>1 is defined by

In= ZX{Tzi}dif'
=1

Moreover, if f,, € L, for n > 1, then f = (f,)n>1 is called an L,-martingale with respect to
{Fn}n>1. In this case, we set

[f1lp = sup [ fnllp-
n>1

If || f]l, < oo, then f is called a bounded L,-martingale and it is denoted by f € L,,.
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Define the maximal function, the square function and the conditional square function of a
martingale f, respectively, as follows:

Mn(f) = sup |fil, M(f)=sup|fil;

1<i<n

/2 1/2

/)= (;|dif|2> L S() = (imiﬂ?) ;
= (iEi1|dz‘f|2>l/Qa s(f) = (§E¢1Idif|2>l/2.

Let 0 < p < 00,0 < ¢ < oo and b be a slowly varying function. We usually define the Hardy-
Lorentz-Karamata martingale spaces as below:

p,qb {f € M ”fHHM
p={f M| fllus
;,q,b ={feM:|fllu;

P,q,b

= IM (D)l < 0}
= IS()lly,q < o0}
= lIs(F) g < 00}

Denote by A, 45 the collection of all sequences p = (pn)n>0 of non-decreasing, non-negative
and adapted functions with po, = lim, 0 pr € Lp . A martingale f = (f,)n>1 is said to
have predictable control in L,, ,  if there exists a sequence p = (p,)n>0 such that

,b

q,b

[ful <pn-1 and pe€Nygp, n>1

The other two types of Hardy-Lorentz-Karamata spaces for predictable martingales, denoted
by Qp.q.b and P, 4 5, are defined respectively as follows:

Qpap ={fEM:3p=1(pn)n>0 € Apgp s:t. Su(f) < pu—1}

with [[fll0, . = inf oo a0

Pp,gp = {f EM:3p=(pn)n>0 € Apgp st [ful < p"—l}
With [/, ., = i g g

For the above definitions, it is clear that Q, , b C Hj ,and P, C H) . Furthermore,

p,q,b°
if b = 1, we obtain the definitions of HM , HY , HS ., Q, . and P, 4, respectively; see [34]. In
addition, if p = ¢ and b = 1, we obtain the martingale Hardy spaces Hé‘/f , Hg , Hy, Qp and Py,

respectively; see Weisz [41, 43].

Remark 2.2. It is obvious that the “inf” taken in the Qp 41 and P, 4 quasi-norms are attainable.
Indeed, let \* = (\F),,>¢ be a predictable majorant sequence of (f)n>1 for every k € N such that
INEN = I fllp,.,. as k — co. Setting A, = infy AE for all n > 0, it is clear that X = (\,,)n>0 is a
predictable majorant sequence of (fn)n>1 and || f|p, ., = [Aocllp,q.b- Stch a sequence X = (An)n>0
will be called the predictable least majorant of (fn)n>1 for f € Ppq.p. The proof of Q, 4 s is similar.

We introduce the following definition which will be frequently used in the sequel.

Definition 2.3. Let 0 < p < 00, 0 < ¢ < oo and b be a slowly varying function. Define the following
class of processes v = (vy,)n>0 adapted to {Fy}n>1 (for each n > 1, v, is measurable with respect to
Fn; for convention, vy = v1) such that

Voar = {v = (Wn)nz0 : llv, o = M), 40 < o0},
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where M(v) = sup,,>q |vn|. The martingale transform operator T, for given martingale f and v €
Vb.ab is deﬁned by Tw(f) = (T’u(fn))nzy where

Ty(fn) =D vk-1drf, n>1.

k=1
The following results are useful in this paper.

Lemma 2.7 ([1, Abel’s lemmal]). For two arbitrary sequences ( fx)r>1 and (gx)r>1, we have

n—1 n—1

Z (frot1 — fr)ar = Z Jrr1(gx — gra1) + fagn — fngm.

k=m k=m

Lemma 2.8 ([43, Corollary 2.64]). The spaces P, and Q,, are equivalent for all 0 < p < oo, more
exactly,

G A, < iflle, < Col fllp,,
where Cy, is a positive constant only depend on p.

Lemma 2.9 ([26, Theorem 3.2]). Let 1 < p < o0, 0 < ¢ < oo and b be a slowly varying function.
Then we have

1 llp.ap < NM(Pllp.go S I fllpaos V= (Fn)nz1 € Lpgp-

Lemma 2.10. Let 0 < 0 < 1,0 < po < p1 < 00,0 < ¢ < oo and b be a slowly varying function. Then
we have

(Ppov Ppl)&q,b = Pp,q,ba
and
(onv Qpl)&qyb = Qp’q,bm

1_1-6, 6 1 _ 1 _ 1 = 1/
where - = =5 4 -~ &= o= — - and ba(t) = b(t/7).

Proof. The case p; < oo was proved in [29, Theorem 7.12]. The case p; = co was given in [27,
Theorem 6.6]. O

The following lemma was proved by Gustavsson in [23].

Lemma 2.11. Let (Xo, X1) be a compatible couple of (quasi)-normed spaces, 0 < 0y < 6, < 1,
0 < qo,q1 < ooand by, by, b be slowly varying functions. If 0 < n < 1, we have

((X()7X1)907q0,b07 (X07X1)917Q1,b1)n7q7b = (XOle)é,q,Bv

where § = (1 — )8 + 06y and b(t) = by~ " ()b} (1)b(t~%by(t) /b1 (t)), Yt > 0.
By applying Lemma 2.10 and Lemma 2.11, we have the following lemma.

Lemma 2.12. Suppose that 0 <n < 1,0 < p; <p2 < 00,0 <p < 00,0 < qy,q2,9g < ooandb, by,
i 1 1 _1=m 4 n
by are slowly varying functions. If - = == + -, then
(Pp1741751 ) PP27(12752)7]7475 = ,va%bn’

(Qm,ql,bu Qm,qzylu)nyqyb = prqybn’

where b, (t) = by~ ()T (£)b(tY/P1=1/P2b (1) /ba(t)).
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Proof. Take 0 < s < pjand putny =1—s/p1,m =1—5/p2, Xo = Ps, X1 = Poo, B1(t) = b1(t*),
By (t) = by(t°) for all t > 0. Then, by applying Lemma 2.10 and Lemma 2.11, we have

(Pplv(Ihbl ) PPzﬂmbz )nqub = ((P87 POO)HO,QhBl ) (,PS7 PDO)TI17112732)
= (’Ps’Poo)n’,q,b,,,m

7,q,b

where ' = (1 — n)no + nm1 and
(2.1) by (t) = By "(t)BI(t)b(t" "™ By (t)/Ba(t)), ¥Vt > 0.
Firstly, one can verify that p satisfies the following equality

n =1 =n)(l—s/p1)+n(l—s/p2)

1—
P1 p2 p

Moreover, since 1, — 19 = s/p1 — $/p2, we see from (2.1) that
by (£1/°) = by " ()b (£)b (/P12 (1) /ba(t)) = by(t)

for all t > 0. Therefore, form Lemma 2.10, we have (Ps, Pc)r,q,b,, = Pp,q, and the result
follows. The proof of Q, 45 is similar. O

Lemma 2.13 ([29, Theorem 7.14]). Let 0 < p < 00, 0 < ¢ < oo and b be a slowly varying function.
Then

Pp.ab = Lpab
with equivalent (quasi)-norms, namely, || f|lp, ., = | fllo,...,-

Therefore, the results obtained in the following sections for the type of spaces Py, 4 are also
effective for the type of spaces Q,, 4.5. Thus, for the sake of simplicity, in the following sections,
we will only state and prove our results with respect to the space Pp 4.5

3. BOUNDEDNESS OF MARTINGALES TRANSFORM OPERATORS

Let 0 < p,q < o0, b be a slowly varying function and v € V), ;. The boundedness of the
martingale transform operator 7', on Hardy-Lorentz-Karamata spaces and BMO spaces will
be investigated in this section.

The spaces of martingales with bounded mean oscillation are defined for 1 < p < co by

1/p
50, ={ 1 = (oo s I, =51 [Eacals = foal?| < oo},

It is well known that BM O,, spaces are all equivalent for 1 < p < oo by the John-Nirenberg
theorem.

The subsequent Lemma ensures that distributional inequality (the so called good A-inequality)
can be switched to the norm inequality for L, 4 ; (see proof in [29]).

Lemma 3.14 ([29, Proposition 4.3]). Leta > 1,5 > 0,0 < p < 00,0 < ¢ < 00, b be a slowly varying
function and F, G be locally integrable functions. If there exist €., g, ka,p > 0satisfyinglimg_,g €q 3 = 0
and
(3.2) P(F > a)) < eq gP(F > A) + ko gP(G > BA), VA>0,
then

HFH:mq,b <G
for some C' > 0 independent of F and G.

|p7q7b
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Remark 3.3. As usual, we say that the pair (F, G) satisfies the “good A-inequality” if F and G satisfy
the inequality (3.2).

The generalization of the famous Burkholder-Gundy inequalities for martingale Hardy-
Lorentz-Karamata spaces is given below.

Lemma 3.15 ([30, Theorem 3.2]). Let 1 < p < 00, 0 < ¢ < oo and b be a slowly varying function.
Then for every martingale f = (fn)n>1,

CLIM (f)llp,ap < IS (H)llp,a < C2lIM(f)llpgb
for some constant Cy > Cy > 0.

Theorem 3.1. Let 0 < p,q < 00, b, by, by be slowly varying functions and v € Vp, qp. If 0 < p1,q1 <
oo, =214 L L — 1 Landp ()= b(t)l?g(t), then T, is of types (HS .,  HS . ) and
(’Pp2aq27b277)p17q17b1) (7’35P-(Qp2,q2,b27 Qp17q1-,b1)) with ”TUH S HU”Vp,q,b'

Proof. For every v € V, 45 and f € H)

2,92,b2
S(Tu(f) < M(v) - 5(f),  ae

Combining this with Lemma 2.6, we have

, using the pointwise estimation, we obtain

(53) 1Tl o = ST horain < 1) - Sl
Il SOl s = 107, g0 1l
This implies that 7, is of type (Hg7q27b2, Hl‘ithbl) with || T, ]| < Cljv|lv,., ,-

For every v € V, g5 and f € Pp, 4,.0,- Let A = ()\,)n>0 be the non-decreasing, predictable
least majorant of f = (f,,)n>1. Then, for all n > 1, we have

(3.4) dnf| = fo = fa1l S |fal + | fac1l £ Aot + An2 <2001
and

(3.5) |du(To ()| = Jvn—1dnf| < 2My—1(0)An—1 £ 1.
Therefore,

(3.6) T (fr)l = [T (fn-1) + dn(To ()] < M1 (To(f)) + pn—1, V=1

Since the sequence (M, (T,(f)) + pn),~, is adapted to {F,} _, it follows from (3.6) that
(M (T (f))+pn),~, is anon-decreasing, predictable least majorant of martingale (7,(f»))
By Lemma 2.6, (3.5) and the definition of p,,, we get
(3.7) ||p00||l)17q17b1 ~ HM(U)/\OOH;Dhth,bl

S IM(0)l1p.g.6l1 Ao llps.gz,be

S 1011v 0,01

n>1"

F1Prs 035
As in [7], the pairs (S(f), M(f) + Aso) and (M (T,(f)), S(Tu(f)) + peo) satisfy the good A-
inequality. Hence, by Lemma 3.14, we obtain
(3.8) HS(f)sz’qz,bz SIMS) +)‘00sz,qz,bz
SAIM ) Ip.gz.b2 |+ 1 Aoollpz,g2.b
S APy a0
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and

(39) ||M(Tv(f))||l717<h7b1 5 HS(Tv(f)) + p00||P1,Q17b1
S HS(ﬂ/(f))Hp17ql7bl + ||Poo||p1,q1,b1-
Combining (3.3), (3.7), (3.8) and (3.9), we get

(3.10) IM (T (PDllpranor S 1S (Lo () llp2,a2,02 + |00 llpra1,61
SN0l 00 (IS p2.g2.60 + 1F 112y 0.0,)
S0V a0 (1P a0 + 1 1P 0000,
S0, 0 125 00,

Moreover, it follows from (3.6), (3.7) and (3.10) that

(3.11) 1T (NP ay.0y S IMT(f)) + Poollpr,ar b,
S HM(f)||P17Q17b1 + ||pOOHp1’q17b1
S HU”Vp,q,bHf”PpQ,qz‘bQ’

which implies T, is of type (Pp, 42,621 Ppr,arb1) With [ To [ S [[v]lv,, 4,0 O

Corollary 3.1. Let 0 < p,q < 00, b be a slowly varying function, v € Vj, 45, 0 < p1 < pa < oo with
= % + p%' Then T, is of type (Pp,.q,6, Ppi,q.b) (r5P. (Qpa.g.b: Lpig.6)) With [|To]] S [[vllv, 4.0

p1

Proof. Since ; = 5. + 5, it follows from Lemma 2.3 and Theorem 3.1 that

||Tv(f)||7>p1,q,h S HU”VP,Qq,bHf”PPQ:Q’Lb
5 HU||Vp,q,be||PP2aQ7b-

The proof is complete. U

Lemma 3.16 ([38, Fefferman’s inequality]). Let f = (fn)n>1 € HY and ¢ = (¢n)n>1 € BMOs.
Then

2
BCnen] <25 g el snso

Lemma 3.17. Let 1 < p,q < oo, b be a slowly varying function and v € V,, 4. Then T, is of types
(BMOy, HS ) and (BM Oy, H). ) with |T,|| < [lvllv,., ,-

p,q,b

Proof. Note that T), is selfadjoint in the sense that for nice martingales f and g (for example,
both f and g are in L;), we have E(gT,(f)) = E(fT,(g)) (see [12] as well as [42]). We know
that BM O, C Ly, HS , C Ly when 2 < p < oo, and L, is dense in Hg’q’b for 1 < p < 2. Then

P40
for any martingale f € BMOsand g € H 5’ 4.0+ it follows from Lemma 3.16 that
(3.12) |E(To ()| = [E(fTo(9))] < V2IIf | 5rr0, I To(9) s

Set % + 1% =1land % + % = 1. Forany v € V}, 4.4, by Theorem 3.1, we have

(3.13) 1T (s S M0llv, 001190l

Both (3.12) and (3.13) give that

a’1/b

(3.14) [EGT (IS Wlv, 0l fllmrroz gl

"a’1/b
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Now, from Lemma 3.15, we have Hps,, g R HM ~ Ly 4 .1/- Then (3.14) implies that

o p’,q al/b
T»U(f) (Hp . 1/b) ~ (Lp’,q/,l/b)/ ~ Lp q,b ~ H a,b and
ITo(Mms, < ||Uva wollfllBro.,
which means that T, is of type (BM Oz, H, p o) With [T < lolly, , - Since Hiq Hp .0 for
1 < p,q < o0, T, is also of type (BMO,, qu) U

In fact, the above lemma still holds for the exponents p and ¢ in a larger range.

Theorem 3.2. Let 0 < p,q < 00 and b be a slowly vuryingfunction. Ifv € V, g4, then T, is of types
(BMOy, HS ) and (BM Oy, H). ) with | T,|| < |lvllv,.,

Proof. Take some p; > max{1,p, %} and set ql = plq Then q1 > max{l q}. Since p; > p and
q1 > q,set 0 < pa,qa < oo such that l =t and 1 = qT + q—2 In addition, let b, by be
slowly varying functions satisfying b(¢ ) ( )b ( ) w1th b(t) = bi/"(t) = bi/ ().

For every v € V,, 4.4, we suppose v(!) = ( (1)) o with o5 = v and 0@ = ('U')(’?)) . with

U7(L2) =wv: " foralln > 0, where 0 < r = p% < 1. Thus, v = v . 9@, With the help of Lemma
2.5, we conclude that

(315) ||’U(1)||V Plaar.br ”M(U(l))llphthﬁ = ||M( r)”pl q1,b1
= L@ Tprin = MO,

= 1M (©)5,40 = llll¥,,,, < oo
and

(3.16) 10PNV, a5 = I W) 1y 0,00 = (M (017l .02

- H(M(v»l*wm,%,m — M) 11 o rron st/
= M),

pas = Il

This implies that v*) € V,, 4, 4 and v € sz,q%bz.
Since 1 < p1,q1 < 0, it follows from Lemma 3.17 that

(3.17) 1T (Dls . SN0y, Il 8000, < 00, f € BMO:,

1-91-b1

which means that || T, (f )|| €HS . 4

It is easy to observe that b( ) = b1(t)ba(t) and v? € V}, 4,5, Applying Theorem 3.1, we
obtain T2 (f) is of type (H. p1 dbye ng p) With | Ty || S [lv 2)va2 4.0, - Therefore, combining
(3.15), (3.16) and (3.17), we get

1o (Alas,, = 1T (Toe (F)llas

S0PV, a0 1T ()]s

P1:91,b1

q,b

S0P, a0 1001,y Il B02O,

S llly,n v ”Vp M lBaro, = Cliollv, . fll Baro.,

qu

which implies that T, is of type (BM Oz, H p o) With [ T[]l S [[vllvp,q,6- The type (BM Oz, H ', MY
of T, can be proved similarly. O

Theorem 3.3. Set 0 < p,q < oo, b be a slowly varying function and v € V,, 4. Then T, is of type
(BMO1, Pyqp) (resp- (BMOs3, Qp,q,p)) with [| T, || S [[vllv, ;-
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Proof. Givenany f € BMO,. Foralln > 1, |d, f| = |fn — fn=1] < ||fllBMmo,- Thus, we obtain

T (fr)| = |To(fr-1) + dn(To(f))]
< M1 (To(f)) + ldn (T ()]
= My—1(To(f)) + [vn—1dn f|
< M1 (To(f) + M1 (0) || f | Baz0, -

Thus (M, (T, (f))+Mn(0)|| fllBrr0,),, 5, is @ predictable and non-decreasing majorant of (7, (fy))
By Theorem 3.2, we get that -

1T (fo)llPy o < IM(To(F)) + M ()| £l B30, lp.g.b
S ML (F)pab + 1M (0)llp,g.0ll fll Brr0,

S vl .l fllBa0, s

n>1"

which proves that T,(f) = (To(fn)), -, € Pp.qb and T, is of type (BM Oy, P, 4.) with || T, || <
|v]lv,,,,- Since BMO,, spaces are equivalent for 1 < p < oo by John-Nirenberg’s theorem, we
obtain that T}, is also of type (BMO1,Pp q.b)- O

4. RELATIONS BETWEEN P, o4 AND P, o4 (RESP. Q) 45 AND Qp, 41)

Set 0 < p1 < p2 < ooand 0 < ¢ < co. From Lemma 2.4, we know that L, 4+ C Ly, 4., then
it is obvious that Pp, 5 C Pp,.q.6 (T€Sp. Qp,.0.6 C Dpy,q,6)- In this section, we will prove that
any martingale f € Pp, 4.5 (resp. Qp, 4,») can be represented as a martingale transform of some
element in f € Py, 4 (resp. Qp,.q.0)-

Firstly, let (Ao, A1) be a compatible couple of quasi-normed spaces Ay and A;, that is, we as-
sume that both Ay and A; are continuously, embedded in some common quasi-normed spaces.
Then the spaces A + A; are defined as the set of all f, which can be written as f = f0 + f1
with % € Ap and f! € A;. The interpolation spaces between Ay and A; are defined by means
of the so-called K-functional K (¢, f; Ay, A1), which can be found in [4].

Definition 4.4. Let (Ag, A1) be a compatible couple of quasi-normed spaces Ay and A;. For any
f € Ag + Ay, the K-functional is defined as

K(t, f; Ao, A1) = inf{|| folla, + tllf1lla, : f = fo+ f1},
where the infimum is taken over all f = fo + f1 with f; € A;,i =0, 1.

Definition 4.5 ([21]). Let 0 < § < 1,0 < g < oo and let b be a slowly varying function. Suppose that
Ao and A, are two quasi-normed spaces. The space (Ao, A1)g,q.5 consist of all f € Ay + Ay such that
||‘f\|(,407,41)(mb < oo, where

oit

(/OOO (= w®K(f,0)" >l/q7 if0 < g < oo,

1/ llcA0,41)0,00 = , ,
supt— ’Yb(t)K(fat)a lfq: 0.
>0
Theorem 4.4. Let 0 < p,g < 00,0 < p; < p2 < oowithpi1 = %—&—1%2,0 < a,o/ <ooandb, by
be slowly varying functions. Then for each martingale f = (fn)n>1 € Ppi.qb. (7€5P. Qpy q.b. ), there
exist a martingale g = (gn)n>1 € Ppy,q,., (1€5p. Qpy .., ) and multiplier sequence v = (vyp)n>0 €
V, _»aa_, such that f is the martingale transform of g by T,, that is, f = T,(g).

Prpyapr
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Proof. First of all, we construct an appropriate martingale 9 = (9n)n>1 € Ppy.qpb,,, Which is
associated with the martingale f = (f,)n>1 € Pp, q,b.

P10¢

Taking a suitable number p} such that 0 < p} < mm{ BLopiyandsetd =1-"21 1 = i with
ba(t) = b(t'/®), by applying Lemma 2.10, we obtain

(4.18) (Pp» Poo)o.ab = Poy g ba-
Then, for any f = (fn)n>1 € Ppi,q,b.» We have the following decomposition
(4.19) f=f+f" with f°cP, and ['e€Pu.
Denote by A = (\,,)n>0 the non-decreasing and predictable least majorant of the martingale
fO = (f2)n>1. We pick § such that § = 2221 = 1 — B and v,, = max{)}}, 1} for all n > 0, then

the sequence v = (vy,)n>0 is adapted to {F, }.>1. Now, we define the martingale g = (g5, )n>1
by

(4.20) gn =3 vtydif, n>1

By (4.19) and (4.20), it is easy to know that the martingale g has also the corresponding decom-
position g = ¢° + g' with ¢° = (¢%),,>1 and g' = (g;.)n>1 such that

(4.21) g =90 +gp, g5 = Zv 1def0, gh = Zv,;lldk.fl, n>1.
Taking py = £2p}, then we conclude that 0 < py < p < 1and p% = according
to Lemma 2.10 again, we also get
(4.22) (Ppys Poc)o,ap = Ppagbars
where o = ph,.
For any n > 1, from Lemma 2.7, g% can be written in the form of
(4.23) g = Z(fk fiovity
k=1
n
= oot = gt Y R e
k=1
n—1
= fa ot + D0 Rt — v
k=1
On the one hand, since f =1 -2 > 0and 0 < v, ' = m = min{\;? 1} < \;? for all

n > 0, the sequence (v;;!),,>1 is non-increasing. Then v; ', — v;' > 0 for all £ > 1. From (4.23)
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and the definition of (\,,),>1, for any n > 1, we have

(4.24) gn < |fol vyt 1+Z‘fk Vet — v )
n—1
R W D D TR )
k=1

_A”2 +Z)\k (ot — o).

Since (A\;?)n>0 is decreasing, without loss of generality, we can suppose that there exists a
number m > 1 such that A,” | > 1and \,,# < 1. Then we get

Zxk,l(v,;_ll —oh) = ZA,H(l ~1)=0, n<m+l1,

and

n—1 n—1
Z)‘k—l Vel — v ) = Z)‘k 1 /\1; 1A )
k=1

P1

-1 11
Z)% 1( — A\ ) n>m+ 1.

IN

As a result, we have

n—1 n—1 1 @_1
(425) Z)\k_l(v,:l _Uk < Z/\k 1( —)\,:2 ), n > 1.
k=1
From (4.24) and (4.25), we have
Pl n—1 pl 1 ﬁfl
(4.26) FAES ST Py 1< e A >
k=1

—Z/\k 1 )\k 1— A\k—2)

An—1 L g dt -
g/ e S
0 t pm
2

which means that the sequence (i%)ﬁé ) is a non-decreasing and predictable majorant of
the martingale ¢° = (¢2),,>1. Moreover, b; (241).26) we obtain that
2 LN i *:1
@27) I, < 2 (5(:2)")" = 21,
2 pl
< €y max{1, ||f°|\7>p,1}-

On the other hand, denote by A = (), ),>0 the non-decreasing and predictable least majorant
of the martingale f* = (f!),>1. Then |3 }_, dif'| = |f}] < A1 < A foralln > 1 and
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£ 1P = [ Aoclso- Since 0 < vt = min{/\,:ﬂ, 1} < 1 and the sequence (v;,!),,>0 is decreasing,
according to Lemma 2.7, we have

n

n—1
frovn Y ot = oY

90| = ka__lldkfl =
k=1 k=1
m
<3 sup |U1:E1| - sup defl <3, Vn>1.
1<k<n 0<m<n

=1
This implies that || ¢! ||p.. < 3||f!p..-
According to (4.27), it is easy to know that ||¢"||p , < Cy when || f°||p, < 1.Set f =1+ f1,
ph P}

since f! € P, we have
112y, ane = 114 2y, nn < Ca(+ (£ P, 40 )

Co(1+ £ Ip..) < oo,
which implies that the martingale f € P,, 4. . Then we have

a

16°0p,, + tllg e < Cilltllp,, +3t1 7 per 0.

IN

Therefore, we get
K(t,g; Py, Poo) < C3K (t, fi Pyt Poc), £ >0,
then we obtain
16171, 00, = lgll By, 2y < Oy, 2 = ClF Py g < 00
which yields g € Py, 45, when || f°[|p,, < 1.
Next, if ||f0|\7>p,1 > 1, it follows from (4.27) that Hgo||7>pé <Ci Hf0||7>p,1. Then we have
9"l +tlg" Il <max{Cy,3}(I/ I, +tIfIpL),  t>0.
Hence
K(t,9; Py, Poo) < C2K (t, 3Py, Poo), t>0.
Consequently,

= 9017,y P

(/OOO (t‘e’}’b(t)K(t,g;'pp/ypoo))q%)l/q

191174, .0

ol

IN

02(/000 (t_‘g’yb(t)K(t,f;Pp/l,Poo))q%)l/q

= C2||f||(73p/1 Psc)o,qb CQHfHPpl,q,ba < 0.

As aresult, g € Pp, 4., When ||f0pr, > 1. In conclusion, we get g € P, 5., Whether
1

1£0ll,, <1or|flp, > 1.
Secondly, we verify that the multiplier sequence v = (vp)n>0 € V,,

b2 - Applying

p2—

Minkowski’s inequality, we obtain
lelv, ey, = M)

P2—P1

psate = I max{AL 11, 1000

< LMLl 3 00 + 1)
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Let b(l)/ g (t) = ba(t), from Lemma 2.5 and (4.19), we easily conlude that

1N llp, 2.0 = 12 ool\ﬂ s = | Acclly, .0,
= IIfOprl,q,ba = =05, ...
< Calf1Ppy g + 1 1Py 0)”

IN

Collfllpy, 0 + 1 1pn)? < 00

Hence

NSy, 3 g0 < CLCo(lfllpr.g.b0 + [1Fllp)” +1) < 00

This implies that v = (v, )n>0 € V,, _r2a_ .
- Yp2—P1’

Finally, according to (4.20), we get

f=T,(g9) with f,= Zv,:_lldkg, n > 1.
k=1

It is clearly shown that f is the martingale transform of g by T),. The proof is complete. O

5. RELATIONS BETWEEN Py, 4,5 AND Pp, 4o b (RESP. Q) 416 AND Qp 0 1)

We will extend our discussion to the relationship between P, ., » and Pp, 4,5 (resp. Op, 41,6
and Q,, 4,.5) in this section, where 0 < p; < p < coand 0 < g1 < g2 < 0.

Theorem 5.5. Let 0 < p1 < p2 < 00,0 < q1 < @o <oo,0<p,q<oo,pi %—F— q% =%+q12
0 < a < coand b,V be slowly varying functions. Then for each martingale f = (fn)n>1 € Pp1,q1.be
(resp. Qpy.q1.ba ) there exist a martingale § = (n)n>1 € Ppygopr, (resp. Qp, gopr,) and multzplzer

sequence v = (Un)n>0 € Vp q,p Such that f is the martingale transform of § by T, that is, f = T,,(§).

Proof. Let0 < p; < p2 < 00,0< ¢ < g2 < 00, qil = % + q% and b be a slowly varying function
with b, () = b(t'/*). For any 0 < 5 < 1, select positive numbers p’ (# p1), p’l’ and p} such that
L —L-a pli’ and 0 < p§ < min{Z o ,pl} It is easy to check that p} # p{. Set ¢ = % and

p1 Py
"

q¢ = %, then 0 < ¢/, ¢” < co. By Lemma 2.12, we get
(P h,q' b Pp’l’ " b”) ,q1,0 — ,Ppl’th’bcw

where by, (t) = b/17(£)b!7 (£)b(t" /P2 =1/ b] (¢) /b (t)). Therefore, for any martingale f = (f,,)n>1 €
Pp1.a1,b., We have a suitable decomposition as below

0 1 0 1
=1 +f, where [ e€Py p and [Py gy

i 1 1 _ l 1 _1=n 4 n o ’ ’
Since - — -~ =+ >0and .- = o T pp, We can also take two positive numbers p; > p)

and pfj > p/ such that

1 1 1 1 1 1 1 Pl
——— =g =—-—=- and pj="7p].

pr p2 Py Py Py Py p 2
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’ ’ 11 11 1 1
p1p2 qu _ P P P1Py qu P2 Pig
Then we obtam =P and e Ty =G =P and T = -7 — ¢

1 1 a )(1 1)+ <1 1)
S —a-p(=-= Y (e
p1 D2 R 2 Y
1—n 1—n
:( ’ +//)_( ’ +7
P1 P1 P2 Py

1 1-—
()
Y41 b2 Py

which implies p% = 1;—,2’7 + pl’z" Applying Theorem 4.4 to f© € Py o and f!' € Py g,

We can also get

respectively, it is easy to find that there exist two sequences v = (v],)n>0 and v/ = (v}))n>0
such that

/ 1
Ve V”lpz pya’ bo ‘/])7q7b0 and v" € VP’I'P’Z’ pha’ b ‘/]!),q,b67
75T 7,00 775 77 7%
ph—p) ' ph—p] Y —pY ' —pf

where § =1 — p—l bo( ) = b2(t) and b)) (t) = bg, (t). Furthermore, there exist two martingales
9° € Poa v, and g' € Ppy g v, respectively, such that

Zv Ldpf® and g} = qu” tdift, n> 1

Let v, = max{v},v}}, or equivalently v, ' = min{v; ', v;'} for all k > 0 and let b be a slowly
varying function with b = max{bo, b }. Then it is obv1ous that v = (vi)k>0 € Vp,g.0-
We define that

n n
~0 -1 0 -1 1 1
Gy, = ka_ldkf and g, = ka_ldkf , n>1.
k=1 h—1
Since 0 < v, ' <oy 'and 0 < v, ' <wv)/~', we have

Py ,q’

P

||§}7’HP{1/,,Q",I)” < ||g}LH7)pl2/,q”,bZ,.
This means that §0 = (30),>1 € Ppy.q, b, and g, = (4}, )n>1 € Py q b7, -

>1
Foralln > 1, weset g = (Gn)n>1 with

Gn =0+ 0 =Y v lydifO+ Y vt dif!

k=1 k=1
= ot (dfO + def) =D vilidif
k=1 k=1
Then we obtain g = T,,-:(f) or equivalently f = T,(g).
Using Lemma 2.12, we get
(’Pplgﬂlvb;/ ) Pp;ﬁq”yb’;, Insaz.b = Pra,ga b,

then § = (Gn)n>1 € Ppa,go b,
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Hence, similarly to the proof of Theorem 4.4, we can show that f = T,,(§) with

fn = Z ’kaldkrg
k=1

for all & > 1. This completes the proof. O

6. RELATIONS BETWEEN P, 4 AND BMO; (RESP. @, 4 AND BMO>)

Theorem 6.6. Let 0 < p,q < oo, b be a slowly varying function and f = (fo)n>1 € Ppgsb
(resp. Qp q.b). Then there exist a martingale g = (g )n>1 € BMO; (resp. BMOs) with ||g||amo, <
4 (resp. || gH BMO, < V/2), and a non- decreasing and non-negative sequernce v = (Vn)n>1 € Vi qp with
lvllv, ... <Clfllp,.,., (resp. |vllv,,., < Cllfllo,.,.,) such that f is the martingale transform of g by
T,, thatis, f = T,(g).

Conversely, for any v € V,qp and g € BMO; (resp. g € BMO>), the martingale transform
f = T(g) belongs to Py g (resp. pqp) and [|flp,,,, < Cllvllv, . ll9llrro, (resp- [[fll,,0 <
Cllollv, o, ll9llBaros).

Proof. By using Theorem 3.3, we can prove the converse assertion immediately.

For any martingale f = (fn)n>1 € Pp,q,b, denote by A = (\,)n>0 the non-decreasing and
predictable least majorant of the sequence (f,),>1. Taking a suitable position number p, <
min{p, ¢, 1}, define the sequence v = (vi)x>0 and martingale g = (g, )n>1 by

n

1
UL = sup (E()\gg\]:m)) PO g, = g v;ﬁldkf, kE>1, n>1.
m<k =1

Then we have f = T,(g) with f,, = Y_;_, vk_1dgg for all n > 1. What we need to prove is that
veEVyqpand g € BMO;.
It is easy to check that the sequence (E(A£ |]:”))n> o s a martingale. In what follows, for the

that

sake of convenience in writing, we will still denote by A2 the martingale (E(M2|F,,)) >0

is, we write as usual A8 = (E(ABS |]-'n))n20. Then we obtain

M (v) = sup |vg| = sup sup ( (A2 Fo ))1/;70

k<oo k<oom<k

< (sup BRI F)) 7 = (M(an0)) 7.
k<oo
Since 2 > 1 and ;L > 1, applying Lemma 2.9 and Lemma 2.5, we have

ollv, 0 = M @) pas < 1) 00
= [MOZIE"s 4y < CINRILP

- ‘1 ,bPo
= ClXLllp.qab = CllflIp, . < oo
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This proves v € V, 4. Forany N > n > 1, by Abel’s rearrangement, we get

N N
1 digl = lgn — gnal =) vilydif]
k=n k=n

N-1
= |U]T[1—1 (fN = fa1) + Z (fe = fr=1) - (vg 11 — v 8l
k=n
N-1
<205t Avor 2> M- (0 — oY)
k=n

)\n 1+2Z’Uk /\k,)\k 1)
In addition, using Cauchy-Schwarz s 1r1equa11ty, for any k£ > 0, we obtain
2
1= [EQENTIA)] < BORIF)EOZF) < o - BOZIF).
With the help of Jensen’s inequality, we write

vt < B\ F) VP < B0 F).

Therefore, we have
N-1

N
E(| ]-"n> < 2B 1 EOF)] +2E {Z Ak = Me—1) - EQL|F) | Fn
k=n k=n
N—-1
_2+2E[Z A (= Ae—1) IF}
k=n

From the above inequality, we conclude

i 1/p
oo, =suw || (1 3 dual”|7)| | <
n>1 p— o
This proves that g € BMO;. Then the proof is completed. O
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