**ISSN: 2149-1402** 

Journal of

#### http://www.newtheory.org



New T Year: 2018, Number: 24, Pages: 73-87

# Published: 22.09.2018

**Original Article** 

## Some Types of Regularity and Normality Axioms in Čech Fuzzy Soft Closure Spaces

Lina Hussein Maibed linah8324@gmail.com> **Rasha Naser Majeed**<sup>\*</sup> <rashanm6@gmail.com>

Department of Mathematics, Faculty of Education for Pure Sciences Abn Al-Haitham, University of Baghdad, Baghdad, Iraq.

Abstract – In the present paper, some types of regularity and normality axioms in Cech fuzzy soft closure spaces and their associative fuzzy soft topological spaces are defined and studied. Basic properties of these axioms, hereditary and topological properties are discussed.

Keywords – Fuzzy soft set, fuzzy soft point, Čech fuzzy soft closure space, quasi regular, semi-regular, regular, semi-normal, normal, completely normal.

## **1** Introduction

Many problems in medical science, engineering, environments, economics etc. have several uncertainties. To skip these uncertainties, some types of theories were given like theory of fuzzy sets [19], rough sets [15], intuitionistic fuzzy sets [1], i.e., which we can use as mathematical tools for dealing with uncertainties. Most of these present for computing and formal modeling are crisp. In 1999, Molodsov [14] introduced the concept of soft set theory, which is a completely new approach for modeling vagueness and uncertainty. The concept of fuzzy soft sets was defined by Maji et al. [12] as a fuzzy generalizations of soft sets. Then in 2011, Tanay and Kandemir [17] were gave the concept of topological structure based on fuzzy soft sets.

In 1966, Cech [3], was introduced the concept closure spaces and then various notions in general topology have been extended to closure spaces. After Zadeh introduced the concept of fuzzy sets, in 1985 Mashhour and Ghanim [13] present the concept of  $\vec{C}$  ech fuzzy closure spaces. They exchanged sets by fuzzy sets in the definition of  $\vec{C}$  ech closure space. In 2014, Gowri and Jegadeesan [4] and Krishnaveni and Sekar [7], used the concept of soft sets to introduced and investigate the notion of soft  $\vec{C}$  ech closure spaces. Recently, motivated by the concept of fuzzy soft set and fuzzy soft topology Majeed [9] was defined the concept of Čech fuzzy soft closure spaces. After that, Majeed and Maibed [10]

introduced some structures of Čech fuzzy soft closure spaces, they show that every Čech fuzzy soft closure space gives a parameterized family of Čech fuzzy closure spaces.

The separation axioms in closure spaces were introduced by  $\tilde{C}$ ech [3]. Gowri and Jegadeesan [4, 5] studied separation axioms in soft  $\tilde{C}$ ech closure spaces. In our previous paper [11] we have introduced and discussed some properties of lower separation axioms in  $\tilde{C}$ ech fuzzy soft closure spaces. In the current work, we introduced and studied a new types of higher separation axioms like quasi regular, semi-regular, pseudo regular, regular, semi-normal, pseudo normal, normal and completely normal in  $\tilde{C}$ ech fuzzy soft closure spaces.

#### 2 Preliminaries

In this section, we review some basic definitions and their results of fuzzy soft theory and  $\check{C}$  ech fuzzy soft closure spaces that are helpful for subsequent discussions, and we expect the reader be familiar with the basic notions of fuzzy set theory. Throughout paper, X refers to the initial universe, I = [0,1],  $I_0 = (0,1]$ ,  $I^X$  be the family of all fuzzy sets of X, and K the set of parameters for X.

**Definition 2.1** [16, 18] A fuzzy soft set (fss, for short)  $\lambda_A$  on X is a mapping from K to  $I^X$ , i.e.,  $\lambda_A: K \to I^X$ , where  $\lambda_A(h) \neq \overline{0}$  if  $h \in A \subseteq K$  and  $\lambda_A(h) = \overline{0}$  if  $h \in K - A$ , where  $\overline{0}$  is the empty fuzzy set on X. The family of all fuzzy soft sets over X denoted by  $\mathcal{F}_{ss}(X, K)$ .

**Definition 2.2** [18] Let  $\lambda_{A'}\mu_B \in \mathcal{F}_{ss}(X, K)$ . Then,

- 1.  $\lambda_A$  is called a fuzzy soft subset of  $\mu_B$ , denoted by  $\lambda_A \subseteq \mu_B$ , if  $\lambda_A(h) \leq \mu_B(h)$ , for all  $h \in K$ .
- 2.  $\lambda_A$  and  $\mu_B$  are said to be equal, denoted by  $\lambda_A = \mu_B$  if  $\lambda_A \subseteq \mu_B$  and  $\mu_B \subseteq \lambda_A$ .
- 3. the union of  $\lambda_A$  and  $\mu_B$ , denoted by  $\lambda_A \cup \mu_B$  is the fss  $\sigma_{(A \cup B)}$  defined by  $\sigma_{(A \cup B)}(h) = \lambda_A(h) \vee \mu_B(h)$ , for all  $h \in K$ .
- 4. the intersection of  $\lambda_A$  and  $\mu_B$ , denoted by  $\lambda_A \cap \mu_B$  is the fss  $\sigma_{(A \cap B)}$  defined by  $\sigma_{(A \cap B)}(h) = \lambda_A(h) \wedge \mu_B(h)$ , for all  $h \in K$ .
- 5. the complement of a fss  $\lambda_A \in \mathcal{F}_{ss}(X, K)$ , denoted  $\overline{1}_K \lambda_A$ , is the fss defined by  $(\overline{1}_K \lambda_A)(h) = \overline{1} \lambda_A(h)$ , for each  $h \in K$ . It is clear that  $\overline{1}_K (\overline{1}_K \lambda_A) = \lambda_A$ .

**Definition 2.3** [18] The null fss, denoted by  $\overline{0}_K$ , is a fss defined by  $\overline{0}_K(h) = \overline{0}$ , for all  $h \in K$ , where  $\overline{0}$  is the empty fuzzy set of X.

**Definition 2.4** [18] The universal fss, denoted by  $\overline{1}_{K}$ , is a fss defined by  $\overline{1}_{K}(h) = \overline{1}$ , for all  $h \in K$ , where  $\overline{1}$  is the universal fuzzy set of X.

**Definition 2.5** [8] Two fss's  $\lambda_A$ ,  $\mu_B \in \mathcal{F}_{ss}(X, K)$  are said to be disjoint, denoted by  $\lambda_A \cap \mu_B = \overline{0}_K$ , if  $\lambda_A(h) \cap \mu_B(h) = \overline{0}$  for all  $h \in K$ .

**Definition 2.6** [2] A fss  $\lambda_A \in \mathcal{F}_{ss}(X, K)$  is called fuzzy soft point, denoted by  $x_t^{h}$ , if there exist  $x \in X$  and  $h \in K$  such that  $\lambda_A(h)(x) = t \ (0 < t \le 1)$  and 0 otherwise for all  $y \in X - \{x\}$ .

**Definition 2.7** [2] The fuzzy soft point  $x_t^h$  is said to be belongs to the fss  $\lambda_A$ , denoted by  $x_t^h \in \lambda_A$  if for the element  $h \in K$ ,  $t \leq \lambda_A(h)(x)$ .

**Definition 2.8** [17, 18] A fuzzy soft topological space (fsts, for short)  $(X, \tau, K)$  where X is a non-empty set with a fixed set of parameter and  $\tau$  is a family of fuzzy soft sets over X satisfying the following properties:

- 1.  $\overline{\mathbf{0}}_{K'}, \overline{\mathbf{1}}_{K} \in \tau$ ,
- 2. If  $\lambda_A, \mu_B \in \tau$ , then  $\lambda_A \cap \mu_B \in \tau$ ,
- 3. If  $(\lambda_A)_i \in \tau$ , then  $\bigcup_{i \in J \in I} (\lambda_A)_i \in \tau$ .

 $\tau$  is called a topology of fuzzy soft sets on X. Every member of  $\tau$  is called an open fuzzy soft set (open-fss, for short). The complement of an open-fss is called a closed fuzzy soft set (closed-fss, for short).

**Definition 2.9** [9] An operator  $\theta: \mathcal{F}_{ss}(X, K) \to \mathcal{F}_{ss}(X, K)$  is called  $\check{C}$  ech fuzzy soft closure operator ( $\check{C}$ -fsco, for short) on X, if the following axioms are satisfied.

(C1)  $\theta(\overline{0}_K) = \overline{0}_K$ , (C2)  $\lambda_A \subseteq \theta(\lambda_A)$ , for all  $\lambda_A \in \mathcal{F}_{ss}(X, K)$ , (C3)  $\theta(\lambda_A \cup \mu_B) = \theta(\lambda_A) \cup \theta(\mu_A)$ , for all  $\lambda_A, \mu_B \in \mathcal{F}_{ss}(X, K)$ .

The triple  $(X, \theta, K)$  is called a Čech fuzzy soft closure space ( $\check{CF}$ -fscs, for short). A fss  $\lambda_A$  is said to be closed-fss in  $(X, \theta, K)$  if  $\lambda_A = \theta(\lambda_A)$ . And a fss  $\lambda_A$  is said to be an open-fss if  $\overline{1}_K - \lambda_A$  is a closed-fss.

**Proposition 2.10** [9] Let  $(X, \theta, K)$  be a  $\check{C}\mathcal{F}$ -scs, and  $\lambda_A$ ,  $\mu_B \in \mathcal{F}_{ss}(X, K)$ . Then,

1. If  $\lambda_A \subseteq \mu_B$ , then  $\theta(\lambda_A) \subseteq \theta(\mu_B)$ . 2.  $\theta(\lambda_A \cap \mu_B) \subseteq \theta(\lambda_A) \cap \theta(\mu_A)$ .

**Definition 2.11** [9] Let  $(X, \theta, K)$  be a  $\check{CF}$ -scs, and let  $\lambda_A \in \mathcal{F}_{ss}(X, K)$ . The interior of  $\lambda_A$ , denoted by  $Int(\lambda_A)$  is defined as  $Int(\lambda_A) = \bar{1}_K - (\theta(\bar{1}_K - \lambda_A))$ .

**Proposition 2.12** [9] Let  $(X, \theta, K)$  be a  $\check{CF}$ -scs, and let  $\lambda_A$ ,  $\mu_B \in \mathcal{F}_{ss}(X, K)$ . Then,

- 1.  $\operatorname{Int}(\overline{0}_{K}) = \overline{0}_{K}$  and  $\operatorname{Int}(\overline{1}_{K}) = \overline{1}_{K}$ .
- 2. Int( $\lambda_A$ )  $\subseteq \lambda_A$ .
- 3. Int( $\lambda_A \cap \mu_B$ ) = Int( $\lambda_A$ )  $\cap$  Int( $\mu_B$ ).
- 4. If  $\lambda_A \subseteq \mu_B$ , then  $Int(\lambda_A) \subseteq Int(\mu_B)$ .
- 5.  $\lambda_A$  is an open-fss  $\Leftrightarrow$  Int( $\lambda_A$ ) =  $\lambda_A$ .
- 6.  $\operatorname{Int}(\lambda_A) \cup \operatorname{Int}(\mu_B) \subseteq \operatorname{Int}(\lambda_A \cup \mu_B)$ .

**Definition 2.13** [9] Let *V* be a non-empty subset of *X*. Then  $\overline{V}_K$  denotes the fuzzy soft set  $V_K$  over *X* for which  $V(h) = \overline{1}_V$  for all  $h \in K$ , (where  $\overline{1}_V: X \to I$  such that  $\overline{1}_V(x) = 1$  if  $x \in V$  and  $\overline{1}_V(x) = 0$  if  $x \notin V$ ).

**Theorem 2.14** [9] Let  $(X, \theta, K)$  be a  $\check{CF}$ -scs,  $V \subseteq X$  and let  $\theta_V : \mathcal{F}_{ss}(V, K) \to \mathcal{F}_{ss}(V, K)$ defined as  $\theta_V(\lambda_A) = \bar{V}_K \cap \theta(\lambda_A)$ . Then  $\theta_V$  is a  $\check{CF}$ -sco. The triple  $(V, \theta_V, K)$  is called  $\check{C}$ ech fuzzy soft closure subspace ( $\check{CF}$ -sc subspace, for short) of  $(X, \theta, K)$ .

**Proposition 2.15** [9] Let  $(V, \theta_V, K)$  be a closed  $\check{CF}$ -sc subspace of  $\check{CF}$ -scs  $(X, \theta, K)$  and  $\lambda_A$  be a closed-fss in  $(V, \theta_V, K)$ . Then  $\lambda_A$  is a closed-fss in  $(X, \theta, K)$ .

**Proposition 2.16** [11] Let  $(X, \theta, K)$  be a  $\check{CF}$ -scs and let  $(V, \theta_V, K)$  be a closed  $\check{CF}$ -sc subspace of  $(X, \theta, K)$ . If  $\lambda_A$  is an open-fss of  $(X, \theta, K)$ . Then  $\lambda_A \cap V_K$  is also open-fss in  $(V, \theta_V, K)$ .

**Theorem 2.17** [9] Let  $(X, \theta, K)$  be a Č $\mathcal{F}$ -scs and let  $\tau_{\theta} \subseteq \mathcal{F}_{ss}(X, K)$ , defined as follows  $\tau_{\theta} = \{\overline{1}_{K} - \lambda_{A} : \theta(\lambda_{A}) = \lambda_{A}\}.$ Then  $\tau_{\theta}$  is a fuzzy soft topology on X and  $(X, \tau_{\theta}, K)$  is called an associative fsts of  $(X, \theta, K)$ .

Next the definition of fuzzy soft closure (respectively, interior) of a fss in the associative fsts of  $(X, \tau_{\theta}, K)$  is given.

**Definition 2.18** [11] Let  $(X, \tau_{\theta}, K)$  be an associative fuzzy soft topological space of  $(X, \theta, K)$  and let  $\lambda_A \in \mathcal{F}_{ss}(X, K)$ . The fuzzy soft topological closure of  $\lambda_A$  with respect to  $\theta$ , denoted by  $\tau_{\theta}$ -cl $(\lambda_A)$ , is the intersection of all closed fuzzy soft supersets of  $\lambda_A$ . i.e.,

$$\tau_{\theta} - cl(\lambda_A) = \cap \{ \rho_c : \lambda_A \subseteq \rho_c \text{ and } \theta(\rho_c) = \rho_c \}.$$

$$(2.1)$$

And, The fuzzy soft topological interior of  $\lambda_A$  with respect to  $\theta$ , denoted by  $\tau_{\theta}$ - int( $\lambda_A$ ) is the union of all open fuzzy soft subset of  $\lambda_A$ . i.e.,

$$\tau_{\theta} \operatorname{-int}(\lambda_{A}) = \bigcup \{ \rho_{C} : \rho_{C} \subseteq \lambda_{A} \text{ and } \theta(\overline{1}_{K} - \rho_{C}) = \overline{1}_{K} - \rho_{C} \}.$$

$$(2.2)$$

From Theorem 2.17, it is clear that  $\tau_{\theta}$ -cl( $\lambda_A$ ) (respectively,  $\tau_{\theta}$ - int( $\lambda_A$ )) is the smallest (respectively, largest) closed- (respectively, open-)fss over X which contains (respectively, contained in)  $\lambda_A$ .

**Proposition 2.19** [11] Let  $(X, \tau_{\theta}, K)$  be an associative fsts of  $(X, \theta, K)$  and let  $\lambda_A, \mu_B \in \mathcal{F}_{ss}(X, K)$ . Then,

- 1.  $\tau_{\theta}$   $cl(\overline{0}_{K}) = \overline{0}_{K}$  and  $\tau_{\theta}$ - $cl(\overline{1}_{K}) = \overline{1}_{K}$ .
- 2.  $\lambda_A \subseteq \tau_{\theta} cl(\lambda_A)$ .
- 3. if  $\lambda_A \subseteq \mu_B$ , then  $\tau_{\theta} cl(\lambda_A) \subseteq \tau_{\theta} cl(\mu_B)$ .
- 4.  $\tau_{\theta} cl(\lambda_A \cup \mu_B) = \tau_{\theta} cl(\lambda_A) \cup \tau_{\theta} cl(\mu_B).$
- 5.  $\tau_{\theta}$ -cl $(\tau_{\theta}$ -cl $(\lambda_A)) = \tau_{\theta}$ -cl $(\lambda_A)$ .
- 6.  $\lambda_A$  is a closed-fss if and only if  $\lambda_A = \tau_{\theta} cl(\lambda_A)$ .

**Proposition 2.20** [11] Let  $(X, \tau_{\theta}, K)$  be an associative fsts of  $(X, \theta, K)$  and let  $\lambda_A, \mu_B \in \mathcal{F}_{ss}(X, K)$ . Then,

1. 
$$\tau_{\theta} - int(\overline{0}_{K}) = \overline{0}_{K}$$
 and  $\tau_{\theta} - int(\overline{1}_{K}) = \overline{1}_{K}$ .

- 2.  $\tau_{\theta}$ -int $(\lambda_A) \subseteq \lambda_A$ .
- 3. if  $\lambda_A \subseteq \mu_B$ , then  $\tau_{\theta}$   $int(\lambda_A) \subseteq \tau_{\theta}$   $int(\mu_B)$ .
- 4.  $\tau_{\theta}$ -int $(\lambda_A \cap \mu_B) = \tau_{\theta}$ -int $(\lambda_A) \cap \tau_{\theta}$ -int $(\mu_B)$ .
- 5.  $\tau_{\theta}$ -int $(\tau_{\theta}$ -int $(\lambda_A)) = \tau_{\theta}$ -int $(\lambda_A)$ .
- 6.  $\lambda_A$  is an open fuzzy soft set if and only if  $\lambda_A = \tau_{\theta} int(\lambda_A)$ .

The next theorem gives the relationships between the  $\check{C}$ ech fuzzy soft closure operator  $\theta$  (respectively, interior operator Int) and the fuzzy soft topological closure  $\tau_{\theta}$ -cl (respectively, interior  $\tau_{\theta}$ -int).

**Theorem 2.21** [11] Let  $(X, \theta, K)$  be  $\check{CF}$ -scs and  $(X, \tau_{\theta}, K)$  be an associative fuzzy soft topological space of  $(X, \theta, K)$ . Then for any  $\lambda_A \in \mathcal{F}_{ss}(X, K)$ 

$$\tau_{\theta} \operatorname{-int}(\lambda_{A}) \subseteq \operatorname{Int}(\lambda_{A}) \subseteq \lambda_{A} \subseteq \theta(\lambda_{A}) \subseteq \tau_{\theta} \operatorname{-cl}(\lambda_{A}).$$

$$(2.3)$$

**Definition 2.22** [18] Let  $\mathcal{F}_{ss}(X, K)$  and  $\mathcal{F}_{ss}(Y, R)$  be a families of fuzzy soft sets over X and Y, respectively. Let  $u: X \to Y$  and  $p: K \to R$  be two functions. Then  $f_{up}: \mathcal{F}_{ss}(X, K) \to \mathcal{F}_{ss}(Y, R)$  is called fuzzy soft mapping.

1. If  $\lambda_A \in \mathcal{F}_{ss}(X, K)$ , then the image of  $\lambda_A$  under the fuzzy soft mapping  $f_{up}$  is the fuzzy soft set over Y defined by  $f_{up}(\lambda_A)$ , where  $\forall r \in p(K), \forall y \in Y$ ,

$$f_{up}(\lambda_A)(r)(y) = \begin{cases} \bigvee_{u(x)=y} \left(\bigvee_{p(h)=r} (\lambda_A(h))\right)(x) & \text{if } x \in u^{-1}(y), \\ 0 & \text{otherwise.} \end{cases}$$

2. If  $\mu_B \in \mathcal{F}_{ss}(Y, R)$ , then the pre-image of  $\mu_B$  under the fuzzy soft mapping  $f_{up}$  is the fuzzy soft set over X defined by  $f_{up}^{-1}(\mu_B)$ , where  $\forall h \in p^{-1}(R), \forall x \in X$ ,

$$f_{up}^{-1}(\mu_B)(h)(x) = \begin{cases} \mu_B(p(h))(u(x)) & \text{for } p(h) \in B, \\ 0 & \text{otherwise.} \end{cases}$$

The fuzzy soft mapping  $f_{up}$  is called surjective (respectively, injective) if u and p are surjective (respectively, injective), also it is said to be constant if u and p are constant.

**Theorem 2.23** [6] Let X and Y crisp sets  $\lambda_A$ ,  $(\lambda_A)_i \in \mathcal{F}_{ss}(X, K)$  and  $\mu_B$ ,  $(\mu_B)_i \in \mathcal{F}_{ss}(Y, R)$  for all  $i \in J$ , where J is an index set. Then,

- 1. If  $(\lambda_A)_1 \subseteq (\lambda_A)_2$ , then  $f_{up}((\lambda_A)_1) \subseteq f_{up}((\lambda_A)_2)$ .
- 2. If  $(\mu_B)_1 \subseteq (\mu_B)_2$ , then  $f_{up}^{-1}((\lambda_A)_1) \subseteq f_{up}^{-1}((\lambda_A)_2)$ .
- 3. If  $\lambda_A \subseteq f_{up}^{-1}(f_{up}(\lambda_A))$ , the equality holds if  $f_{up}$  is injective.
- 4. If  $f_{up}(f_{up}^{-1}(\mu_B)) \subseteq \mu_B$ , the equality holds if  $f_{up}$  is surjective.

**Definition 2.24** [9] Let  $(X, \theta, K)$  and  $(Y, \theta^*, R)$  be two  $\check{CF}$ -scs's. A fuzzy soft mapping  $f_{up}: (X, \theta, K) \to (Y, \theta^*, R)$  is said to be Čech fuzzy soft continuous ( $\check{CFs}$ -continuous, for short) mapping, if  $f_{up}(\theta(\lambda_A)) \subseteq \theta^*(f_{up}(\lambda_A))$ , for every fuzzy soft set  $\lambda_A$  of  $\mathcal{F}_{ss}(X, K)$ .

**Theorem 2.25** [9] Let  $(X, \theta, K)$  and  $(Y, \theta^*, R)$  be two  $\check{CF}$ -scs's. If  $f_{up}$ :  $(X, \theta, K) \to (Y, \theta^*, R)$  is a  $\check{CFc}$ -continuous mapping, then  $f_{up}^{-1}(\lambda_A)$  is an open (respectively, closed)-fss of  $(X, \theta, K)$  for every open (respectively, closed)-fss fuzzy soft set  $\lambda_A$  of  $(Y, \theta^*, R)$ .

**Definition 2.26** [9] Let  $(X, \theta, K)$  and  $(Y, \theta^*, R)$  be two  $\check{CF}$ -scs's. A fuzzy soft mapping  $f_{up}$ :  $(X, \theta, K) \to (Y, \theta^*, R)$  is said to be  $\check{C}$ ech fuzzy soft open ( $\check{CFs}$ -open, for short) mapping, if  $f_{up}(\lambda_A)$  is an open fuzzy soft set of  $(Y, \theta^*, R)$  whenever  $\lambda_A$  is an open fuzzy soft set of  $(X, \theta, K)$ .

## **3 Regularity in Čech Fuzzy Soft Closure Spaces**

This section is devoted to introduce and study some new types of regularity axioms, namely quasi regular, semi-regular, pseudo regular, regular in both  $\check{CF}$ -scs's and their associative fsts and study the relationships between them. We show that in all these types of axioms hereditary property satisfies under closed  $\check{CF}$ -sc subspace of  $(X, \theta, K)$ .

**Definition 3.1** A  $\check{C}\mathcal{F}$ -scs  $(X, \theta, K)$  is said to be a quasi regular- $\check{C}\mathcal{F}$ -scs, if for every fuzzy soft point  $x_t^h$  disjoint from a closed-fss  $\rho_c$  there exists an open-fss  $\lambda_A$  such that  $x_t^h \in \lambda_A$  and  $\theta(\lambda_A) \cap \rho_c = \overline{0}_K$ .

**Example 3.2** Let  $X = \{a, b\}, K = \{h_1, h_2\}$ . Define  $\theta: \mathcal{F}_{ss}(X, K) \to \mathcal{F}_{ss}(X, K)$  as follows:

 $\theta(\lambda_{A}) = \begin{cases} \bar{0}_{K} & \text{if } \lambda_{A} = \bar{0}_{K}, \\ \{(h_{1}, a_{1}), (h_{2}, a_{1} \vee b_{1})\} & \text{if } \lambda_{A} \subseteq \{(h_{1}, a_{1}), (h_{2}, a_{1} \vee b_{1})\}, \\ \{(h_{1}, b_{1})\} & \text{if } \lambda_{A} \subseteq \{(h_{1}, b_{1})\}, \\ \bar{1}_{K} & \text{otherwise.} \end{cases}$ 

To show that  $(X, \theta, K)$  is a quasi regular- $\tilde{CF}$ -scs, we must find all closed-fss's in  $(X, \theta, K)$  and all fuzzy soft points which are disjoint from these closed-fss's. Thus, we have the following cases:

- 1-  $\lambda_A = \{(h_1, a_1), (h_2, a_1 \lor b_1)\}$  is a closed-fss and  $\{b_s^{h_1}, s > 0\}$  be the set of all fuzzy soft points which is disjoint from  $\lambda_A$ . For any s > 0, there exists an open-fss  $\rho_C = \{(h_1, b_1)\}$  such that  $b_s^{h_1} \in \rho_C$  and  $\theta(\rho_C) \cap \lambda_A = \overline{0}_K$ .
- 2-  $\lambda_A = \{(h_1, b_1)\}$  is a closed-fss and the fuzzy soft points which is disjoint from  $\lambda_A$  are:  $\{a_{t_1}^{h_1}, t_1 > 0\}, \{a_{t_2}^{h_2}, t_2 > 0\}$  and  $\{b_{s_2}^{h_2}, s_2 > 0\}$ . For all these fuzzy soft points there exists an open-fss  $\rho_C = \{(h_1, a_1), (h_2, a_1 \lor b_1)\}$  such that  $a_{t_1}^{h_1} \in \rho_C$  and  $\theta(\rho_C) \cap \lambda_A = \overline{0}_K, a_{t_2}^{h_2} \in \rho_C$  and  $\theta(\rho_C) \cap \lambda_A = \overline{0}_K$  and  $b_{s_2}^{h_2} \in \rho_C$  and  $\theta(\rho_C) \cap \lambda_A = \overline{0}_K$ . Hence,  $(X, \theta, K)$  is quasi regular- $\check{CF}$ -scs.

**Theorem 3.3** Every closed  $\check{CF}$ -sc subspace  $(V, \theta_V, K)$  of a quasi regular- $\check{CF}$ -scs  $(X, \theta, K)$  is a quasi regular- $\check{CF}$ -sc subspace.

**Proof.** Let  $x_t^h$  be a fuzzy soft point in  $(V, \theta_V, K)$  and  $\rho_C$  be a closed-fss in  $(V, \theta_V, K)$  such that  $x_t^h \cap \rho_C = \overline{0}_K$ , this implies  $x_t^h \notin \rho_C$ . By Proposition 2.15, we have  $\rho_C$  be a closed-fss in  $(X, \theta, K)$  not contains  $x_t^h$ . But  $(X, \theta, K)$  is a quasi regular- $\check{C}\mathcal{F}$ -scs. This yield, there exists an open-fss  $\lambda_A$  such that  $x_t^h \notin \lambda_A$  and  $\theta(\lambda_A) \cap \rho_C = \overline{0}_K$ . From Proposition 2.16,  $\lambda_A \cap \overline{V}_K$  is an open-fss in  $(V, \theta_V, K)$  and  $x_t^h \notin \lambda_A \cap \overline{V}_K$ . That is mean we found an open-fss  $\lambda_A \cap \overline{V}_K$  in V contains  $x_t^h$ . Now, it remain only to show  $\theta_V(\lambda_A \cap \overline{V}_K) \cap \rho_C = \overline{0}_K$ .

$$\begin{aligned} \theta_{V}(\lambda_{A} \cap \bar{V}_{K}) \cap \rho_{C} &= \bar{V}_{K} \cap \theta(\lambda_{A} \cap \bar{V}_{K}) \cap \rho_{C} & \text{(By Theorem 2.16)} \\ &\subseteq \bar{V}_{K} \cap \theta(\lambda_{A}) \cap \theta(\bar{V}_{K}) \cap \rho_{C} & \text{(By Proposition 2.11(2))} \\ &= \bar{V}_{K} \cap \theta(\lambda_{A}) \cap \rho_{C} \\ &= \bar{0}_{K}. \end{aligned}$$

Hence,  $(V, \theta_V, K)$  is a quasi regular-  $\check{CF}$ -sc subspace.

**Definition 3.4** An associative fsts  $(X, \tau_{\theta}, K)$  of  $(X, \theta, K)$  is said to be quasi regular-fsts, if for every fuzzy soft points  $x_t^h$  disjoint from a closed-fss  $\rho_c$  in  $(X, \tau_{\theta}, K)$ , there exists an open-fss  $\lambda_A$  in  $(X, \tau_{\theta}, K)$  such that  $x_t^h \in \lambda_A$  and  $\tau_{\theta}$ - $cl(\lambda_A) \cap \rho_c = \bar{0}_K$ .

**Theorem 3.5** If  $(X, \tau_{\theta}, K)$  is a quasi regular-fsts, then  $(X, \theta, K)$  is also a quasi regular- $\check{CF}$ -scs.

**Proof.** Let  $x_t^h$  be a fuzzy soft point disjoint from a closed-fss  $\rho_c$  in  $(X, \theta, K)$ . That means  $x_t^h \notin \rho_c$ . Since  $\rho_c$  is a closed-fss in  $(X, \theta, K)$ . Then  $\rho_c$  is a closed-fss in  $(X, \tau_{\theta}, K)$ . But  $(X, \tau_{\theta}, K)$  is a quasi regular-fsts. Therefore, there exists  $\tau_{\theta}$ -open-fss  $\lambda_A$  such that  $x_t^h \notin \lambda_A$  and  $\tau_{\theta}$ -cl $(\lambda_A) \cap \rho_c = \overline{0}_K$ . From Theorem 2.21, we get  $\theta(\lambda_A) \cap \rho_c = \overline{0}_K$ . Hence,  $(X, \theta, K)$  is a quasi regular- $\check{C}\mathcal{F}$ -scs.

**Definition 3.6** A  $\check{CF}$ -scs  $(X, \theta, K)$  is said to be semi-regular- $\check{CF}$ -scs, if for every fuzzy soft points  $x_t^h$  disjoint from a closed-fss  $\rho_c$ , there exists an open-fss  $\lambda_A$  such that  $\rho_c \subseteq \lambda_A$  and  $x_t^h \notin \theta(\lambda_A)$ .

**Example 3.7** Let  $X = \{a, b\}, K = \{h_1, h_2\}$ , and let  $(\lambda_A)_i \in \mathcal{F}_{ss}(X, K)$ , i = 1, 2, 3, 4, such that

$$\begin{aligned} &(\lambda_A)_1 = \{(h_1, a_{0.5}), (h_2, a_1 \lor b_1)\}, \quad &(\lambda_A)_2 = \{(h_1, a_1), (h_2, a_1 \lor b_1)\}, \\ &(\lambda_A)_3 = \{(h_1, b_1)\} \text{ and } \quad &(\lambda_A)_4 = \{(h_1, a_{0.5} \lor b_1), (h_2, a_1 \lor b_1)\}. \end{aligned}$$

Define  $\theta: \mathcal{F}_{ss}(X, K) \to \mathcal{F}_{ss}(X, K)$  as follows:

$$\theta(\lambda_{A}) = \begin{cases} \bar{0}_{K} & \text{if } \lambda_{A} = \bar{0}_{K}, \\ (\lambda_{A})_{1} & \text{if } \lambda_{A} \subseteq (\lambda_{A})_{1}, \\ (\lambda_{A})_{2} & \text{if} (\lambda_{A})_{1} \subset \lambda_{A} \subseteq (\lambda_{A})_{2}, \\ (\lambda_{A})_{3} & \text{if } \lambda_{A} \subseteq (\lambda_{A})_{3}, \\ (\lambda_{A})_{4} & \text{if} (\lambda_{A})_{1} \neq \lambda_{A} \subseteq (\lambda_{A})_{4}, \\ \bar{1}_{K} & \text{otherwise.} \end{cases}$$

To show that  $(X, \theta, K)$  is semi-regular- $\check{CF}$ -scs, we must find all fuzzy soft points which is disjoint from a closed-fss's in  $(X, \theta, K)$ . Thus we have the following cases:

- 1-  $(\lambda_A)_1 = \{(h_1, a_{0.5}), (h_2, a_1 \lor b_1)\}$  is a closed-fss and  $\{b_{s_1}^{h_1}, s_1 > 0\}$  be the set of all fuzzy soft points which is disjoint from  $(\lambda_A)_1$ . For any  $s_1 > 0$ , there exists an open-fss  $(\lambda_A)_2 = \{(h_1, a_1), (h_2, a_1 \lor b_1)\}$  such that  $(\lambda_A)_1 \subseteq (\lambda_A)_2$  and  $b_s^{h_1} \notin \theta((\lambda_A)_2)$ .
- 2-  $(\lambda_A)_2 = \{(h_1, a_1), (h_2, a_1 \lor b_1)\}$  is a closed-fss and  $\{b_{s_1}^{h_1}, s_1 > 0\}$  be the set of all fuzzy soft points which is disjoint from  $(\lambda_A)_2$ . For any  $s_1 > 0$ , there exists an open-fss  $(\lambda_A)_2 = \{(h_1, a_1), (h_2, a_1 \lor b_1)\}$  such that  $(\lambda_A)_2 \subseteq (\lambda_A)_2$  and  $b_s^{h_1} \notin \theta((\lambda_A)_2)$ .
- 3-  $(\lambda_A)_3 = \{(h_1, b_1)\}$  is a closed-fss and the fuzzy soft points which is disjoint from  $(\lambda_A)_3$  are:  $\{a_{t_1}^{h_1}, t_1 > 0\}, \{a_{t_2}^{h_2}, t_2 > 0\}$  and  $\{b_{s_2}^{h_2}, s_2 > 0\}$ . For all these fuzzy soft points there exists an open-fss  $(\lambda_A)_3$  satisfied the required conditions of semi-regular-  $\check{C}\mathcal{F}$ -scs. Then  $(X, \theta, K)$  is semi-regular-  $\check{C}\mathcal{F}$ -scs.

**Theorem 3.8** Every closed  $\check{CF}$ -sc subspace  $(V, \theta_V, K)$  of a semi-regular- $\check{CF}$ -scs  $(X, \theta, K)$  is a semi-regular- $\check{CF}$ -sc subspace.

**Proof.** Let  $x_t^h$  be a fuzzy soft point in  $(V, \theta_V, K)$  and  $\rho_C$  be a closed-fss in  $(V, \theta_V, K)$  such that  $x_t^h \cap \rho_C = \overline{0}_K$ , then  $x_t^h \notin \rho_C$ . By Proposition 2.15,  $\rho_C$  is a closed-fss  $(X, \theta, K)$  not contains  $x_t^h$ . But  $(X, \theta, K)$  is a semi-regular- $\check{C}\mathcal{F}$ -scs. Then there exists an open-fss  $\lambda_A$  such that  $\rho_C \subseteq \lambda_A$  and  $x_t^h \notin \theta(\lambda_A)$ . Now,  $\rho_C \subseteq \lambda_A$  and  $\rho_C \subseteq \overline{V}_K$ , this implies  $\rho_c \subseteq \lambda_A \cap \overline{V}_K$  which is an open-fss from Proposition 2.16. Next, we must show  $x_t^h \notin \theta_V(\lambda_A \cap \overline{V}_K)$ . Suppose,  $x_t^h \in \theta_V(\lambda_A \cap \overline{V}_K) = \overline{V}_K \cap \theta(\lambda_A \cap \overline{V}_K) \subseteq \overline{V}_K \cap \theta(\lambda_A) \cap \theta(\overline{V}_K)$ , it follows  $x_t^h \notin \theta(\lambda_A)$  which is a contradiction. Hence  $(V, \theta_V, K)$  is a semi-regular- $\check{C}\mathcal{F}$ -sc subspace.

**Definition 3.9** An associative fuzzy soft topological space  $(X, \tau_{\theta}, K)$  of  $(X, \theta, K)$  is said to be a semi-regular-fsts, if for every fuzzy soft points  $x_t^h$  disjoint from a closed-fss  $\rho_c$  in  $(X, \tau_{\theta}, K)$ , there exists an open-fss  $\lambda_A$  in $(X, \tau_{\theta}, K)$  such that  $\rho_c \subseteq \lambda_A$  and  $x_t^h \notin \tau_{\theta}$ -  $cl(\lambda_A)$ .

**Theorem 3.10** If  $(X, \tau_{\theta}, K)$  is a semi-regular-fsts, then  $(X, \theta, K)$  is also a semi-regular- $\check{CF}$ -scs.

**Proof.** Let  $x_t^h$  be a fuzzy soft point disjoint from a closed-fss  $\rho_c$  in  $(X, \theta, K)$ . That means  $x_t^h \notin \rho_c$ . Since  $\rho_c$  is a closed-fss in  $(X, \theta, K)$ . It follows that  $\rho_c$  is a closed-fss in  $(X, \tau_{\theta}, K)$ . But  $(X, \tau_{\theta}, K)$  is a semi-regular-fsts. It follows, there exists  $\tau_{\theta}$ -open-fss  $\lambda_A$  such that  $\rho_c \subseteq \lambda_A$  and  $x_t^h \notin \tau_{\theta}$ -  $cl(\lambda_A)$ . From Theorem 2.21, we get  $x_t^h \notin \theta(\lambda_A)$ . Hence,  $(X, \theta, K)$  is a semi-regular- $\check{C}\mathcal{F}$ -scs.

**Definition 3.11** A  $\check{CF}$ -scs  $(X, \theta, K)$  is said to be pseudo regular- $\check{CF}$ -scs, if it is both quasi regular- $\check{CF}$ -scs and semi-regular- $\check{CF}$ -scs.

**Example 3.12** In Example 3.2,  $(X, \theta, K)$  is pseudo regular- $\check{CF}$ -scs.

The next theorem follows directly from Theorem 3.3 and Theorem 3.8.

**Theorem 3.13** Every closed  $\check{CF}$ -sc subspace  $(V, \theta_V, K)$  of pseudo regular- $\check{CF}$ -scs  $(X, \theta, K)$  is pseudo regular- $\check{CF}$ -sc subspace.

**Definition 3.14** An associative fsts  $(X, \tau_{\theta}, K)$  of  $(X, \theta, K)$  is said to be pseudo regular-fsts, if it is both quasi regular-fsts and semi-regular-fsts.

**Theorem 3.15** If  $(X, \tau_{\theta}, K)$  is a pseudo regular-fsts, then  $(X, \theta, K)$  is also a pseudo-regular-Č $\mathcal{F}$ -scs.

**Proof.** The proof follows directly from Theorem 3.5 and Theorem 3.10. ■

**Definition 3.16** A  $\check{CF}$ -scs  $(X, \theta, K)$  is said to be regular- $\check{CF}$ -scs, if for every fuzzy soft points  $x_t^h$  disjoint from a closed-fss  $\rho_c$ , there exist open-fss's  $\lambda_A$  and  $\mu_B$  such that  $x_t^h \in \lambda_A$ ,  $\rho_c \subseteq \mu_B$  and  $\lambda_A \cap \mu_B = \bar{0}_K$ .

**Example 3.17** Let  $X = \{a, b\}, K = \{h_1, h_2\}$  and  $(\lambda_A)_1, (\lambda_A)_2 \in \mathcal{F}_{ss}(X, K)$  such that  $(\lambda_A)_1 = \{(h_1, b_1), (h_2, a_1 \lor b_1)\}$  and  $(\lambda_A)_2 = \{(h_1, a_1)\}.$ 

Define  $\theta: \mathcal{F}_{ss}(X, K) \to \mathcal{F}_{ss}(X, K)$  as follows:

$$\theta(\lambda_{A}) = \begin{cases} \bar{0}_{K} & \text{if } \lambda_{A} = \bar{0}_{K}, \\ (\lambda_{A})_{1} & \text{if } \lambda_{A} \subseteq (\lambda_{A})_{1}, \\ (\lambda_{A})_{2} & \text{if } \lambda_{A} \subseteq (\lambda_{A})_{2}, \\ \bar{1}_{K} & \text{other wise.} \end{cases}$$

Then  $(X, \theta, K)$  is regular  $C\mathcal{F}$ -scs.

**Theorem 3.18** Every closed  $\check{CF}$ -sc subspace  $(V, \theta_V, K)$  of a regular- $\check{CF}$ -scs  $(X, \theta, K)$  is a regular- $\check{CF}$ -sc subspace.

**Proof.** Let  $x_t^h$  be a fuzzy soft point in  $(V, \theta_V, K)$  and  $\rho_C$  be a closed-fss in  $(V, \theta_V, K)$  such that  $x_t^h \cap \rho_C = \bar{0}_K$ , then  $x_t^h \notin \rho_C$ . By Proposition 2.15,  $\rho_C$  is a closed-fss in  $(X, \theta, K)$  not contains  $x_t^h$ . But  $(X, \theta, K)$  is regular- $\check{CF}$ -scs. Then there exist open-fss's  $\lambda_A$  and  $\mu_B$  such that  $x_t^h \notin \lambda_A$ ,  $\rho_C \subseteq \mu_B$  and  $\lambda_A \cap \mu_B = \bar{0}_K$ . Thus, we have  $x_t^h \notin \lambda_A \cap V_K$  and  $\rho_C \subseteq \mu_B \cap V_K$  and from Proposition 2.16,  $\lambda_A \cap V_K$  and  $\mu_B \cap V_K$  are open-fss's in  $(V, \theta_V, K)$ . Moreover, it is clear that  $(\lambda_A \cap V_K) \cap (\mu_B \cap V_K) = \bar{0}_K$ . Hence,  $(V, \theta_V, K)$  is a regular- $\check{CF}$ -scs.

**Definition 3.19** An associative fsts  $(X, \tau_{\theta}, K)$  of  $(X, \theta, K)$  is said to be regular-fsts, if for every fuzzy soft point  $x_t^h$  disjoint from a closed-fss  $\rho_c$ , there exist open-fss's  $\lambda_A$ ,  $\mu_B$  such that  $x_t^h \in \lambda_A$ ,  $\rho_c \subseteq \mu_B$ , and  $\lambda_A \cap \mu_B = \overline{0}_K$ .

**Theorem 3.20** An associative fuzzy soft topological  $(X, \tau_{\theta}, K)$  is regular-fsts if and only if  $(X, \theta, K)$  is regular- $\check{C}\mathcal{F}$ -scs.

**Proof.** Let  $x_t^h$  be fuzzy soft point disjoint from a closed-fss  $\rho_c$  in  $(X, \theta, K)$ , Since  $(X, \tau_{\theta}, K)$  is regular-fsts, there exist  $\lambda_A$  and  $\mu_B$  open-fss's in  $(X, \tau_{\theta}, K)$  such that  $x_t^h \in \lambda_A$ ,  $\rho_c \subseteq \mu_B$ , and  $\lambda_A \cap \mu_B = \overline{0}_K$ . From Theorem 2.21, we get  $\lambda_A$  and  $\mu_B$  are open-fss's in  $(X, \theta, K)$  such that  $x_t^h \in \lambda_A$ ,  $\rho_c \subseteq \mu_B$ , and  $\lambda_A \cap \mu_B = \overline{0}_K$ . Thus,  $(X, \theta, K)$  is regular- $\check{CF}$ -scs.

Conversely, similar to the first direction.

**Definition 3.21** Let  $(X, \theta, K)$  and  $(Y, \theta^*, R)$  be two  $\check{CF}$ -scs's. A fuzzy soft mapping  $f_{up}$ :  $(X, \theta, K) \rightarrow (Y, \theta^*, R)$  is said to be  $\check{C}$ ech fuzzy soft homeomorphism ( $\check{CFs}$ -homeomorphism, for short) mapping, if  $f_{up}$  is injective, surjective,  $\check{CFs}$ -continuous and  $f_{up}^{-1}$  is  $\check{CFs}$ -continuous mapping.

**Proposition 3.22** A fuzzy soft mapping  $f_{up}$ :  $(X, \theta, K) \to (Y, \theta^*, R)$   $\check{CFs}$ -homeomorphism mapping if and only if  $f_{up}$  is injective, surjective,  $\check{CFs}$ -continuous and  $\check{CFs}$ -open mapping.

**Proof.** The proof follows directly from the definition of *CFs*-homeomorphism mapping.

**Proposition 3.23** Let  $f_{up}: \mathcal{F}_{ss}(X, K) \to \mathcal{F}_{ss}(Y, R)$  be a fuzzy soft mapping and let  $x_t^h$  be a fuzzy soft point in X. Then the image of  $x_t^h$  under the fuzzy soft mapping  $f_{up}$  is a fuzzy soft point in Y, which is defined as  $f_{up}(x_t^h) = u(x)_t^{p(h)}$ .

**Proof.** Let  $x_t^h$  be a fuzzy soft point in X. Then from Definition 2.22(1), we have

$$\begin{split} f_{up}(x_t^h)(r)(y) &= \begin{cases} \bigvee_{u(z)=y} \left( \bigvee_{p(h')=r} \left( x_t^h(h') \right) \right)(z) & \text{if } z \in u^{-1}(y), \\ 0 & \text{otherwise.} \end{cases} \\ &= \begin{cases} \bigvee_{u(z)=y} \left( \begin{cases} x_t & \text{if } h = h' \\ \overline{0}_X & \text{if } h \neq h' \end{pmatrix}(z) & \text{if } z \in u^{-1}(y), \\ 0 & \text{otherwise.} \end{cases} \\ &= \begin{cases} \bigvee_{u(z)=y} (x_t)(z) & \text{if } z \in u^{-1}(y), \\ 0 & \text{otherwise.} \end{cases} \\ &= \begin{cases} t & \text{if } x = z, \\ 0 & \text{if } x \neq z. \end{cases} \\ &= u(x)_t^{p(h)}. \end{split}$$

**Proposition 3.24** Let  $f_{up}: \mathcal{F}_{ss}(X, K) \to \mathcal{F}_{ss}(Y, R)$  be a bijective fuzzy soft mapping and let  $y_s^r$  be a fuzzy soft point in Y. Then the inverse image of  $y_s^r$  under the fuzzy soft mapping  $f_{up}$  is a fuzzy soft point in X, which is defined as  $f_{up}^{-1}(y_s^r) = x_s^h, p(h) = r$  and u(x) = y.

**Proof.** Let  $y_s^r$  be a fuzzy soft point in Y. Then from Definition 2.22(2), we have

$$f_{up}^{-1}(y_s^r)(h)(x) = \begin{cases} y_s^r(p(h))(u(x)) & \text{for } h \in K, \\ 0 & \text{otherwise.} \end{cases}$$
$$= \begin{cases} y_s(u(x)) & \text{if } p(h) = r, \\ \overline{0}_K & \text{if } p(h) \neq r, \\ 0 & \text{otherwise.} \end{cases}$$
$$= \begin{cases} s & \text{if } u(x) = y, \\ 0 & \text{otherwise.} \end{cases}$$
$$= x_s^h. \blacksquare$$

**Theorem 3.25** The property of being regular- $\check{CF}$ -scs is topological property.

**Proof.** Let  $(X, \theta, K)$  and  $(Y, \theta^*, R)$  be any two  $\check{CF}$ -scs and let  $f_{up}: (X, \theta, K) \to (Y, \theta^*, R)$  be a  $\check{CFs}$ -homeomorphism mapping and  $(X, \theta, K)$  is regular- $\check{CF}$ -scs. We want to show  $(Y, \theta^*, R)$  is also regular- $\check{CF}$ -scs. Let  $y_s^r$  be a fuzzy soft point in  $(Y, \theta^*, R)$  and  $\rho_c$  be a closed-fss in  $(Y, \theta^*, R)$  such that  $y_s^r \cap \rho_c = \bar{0}_R$ . Since  $f_{up}$  is  $\check{CFs}$ -homeomorphism mapping, then  $f_{up}^{-1}(y_s^r)$  is a fuzzy soft point and  $f_{up}^{-1}(\rho_c)$  is a closed-fss in  $(X, \theta, K)$  such that  $f_{up}^{-1}(y_s^r) \cap f_{up}^{-1}(\rho_c) = \bar{0}_R$ . But  $(X, \theta, K)$  is regular- $\check{CF}$ -scs this implies there exist disjoint open-fss's  $\lambda_A$  and  $\mu_B$  such that  $f_{up}^{-1}(y_s^r) \subseteq \lambda_A$  and  $f_{up}^{-1}(\rho_c) \subseteq \mu_B$ . It follows,  $f_{up}(f_{up}^{-1}(y_s^r)) \subseteq f_{up}(\lambda_A)$  and  $f_{up}(f_{up}^{-1}(\rho_c)) \subseteq f_{up}(\mu_B)$ . Since  $f_{up}$  is  $\check{CFs}$ -homeomorphism mapping, then  $f_{up}$  is  $\check{CFs}$ -open mapping, this yields there exist open-fss's  $f_{up}(\lambda_A)$  and  $f_{up}(\mu_B)$  in  $(Y, \theta^*, R)$  such that  $y_s^r \subseteq f_{up}(\lambda_A)$  and  $\rho_c \subseteq f_{up}(\mu_B)$ . Moreover,  $f_{up}(\lambda_A) \cap f_{up}(\mu_B) = \bar{0}_R$ . Hence,  $(Y, \theta^*, R)$  is also regular- $\check{CF}$ -scs.

## 4 Normality in Čech Fuzzy Soft Closure Spaces

In this section, some normality axioms, namely semi-normal, pseudo normal, normal and completely normal in both  $\check{CF}$ -scs's and their associative fsts's and study the relationships between them, and study their basic properties as in the previous section.

**Definition 4.1** A  $\tilde{C}\mathcal{F}$ -scs  $(X, \theta, K)$  is said to be semi-normal- $\tilde{C}\mathcal{F}$ -scs, if for each pair of disjoint closed-fss's  $\rho_c$  and  $\eta_D$ , either there exists an open-fss  $\lambda_A$  such that  $\rho_c \subseteq \lambda_A$  and  $\theta(\lambda_A) \cap \eta_D = \bar{\mathbf{0}}_K$  or there exists an open-fss  $\mu_B$  such that  $\eta_D \subseteq \mu_B$  and  $\theta(\mu_B) \cap \rho_C = \bar{\mathbf{0}}_K$ .

If the both conditions hold, then  $(X, \theta, K)$  is said to be pseudo normal- $\tilde{CF}$ -scs.

**Example 4.2** Let  $X = \{a, b\}, K = \{h_1, h_2\}$ , and  $(\lambda_A)_1, (\lambda_A)_2 \in \mathcal{F}_{ss}(X, K)$  such that

$$(\lambda_A)_1 = \{(h_1, a_1 \lor b_1)\}$$
 and  $(\lambda_A)_2 = \{(h_2, a_1 \lor b_1)\}.$ 

Define  $\theta: \mathcal{F}_{ss}(X, K) \to \mathcal{F}_{ss}(X, K)$  as follows:

$$\theta(\lambda_{A}) = \begin{cases} \bar{0}_{K} & \text{if } \lambda_{A} = \bar{0}_{K}, \\ (\lambda_{A})_{1} & \text{if } \lambda_{A} \subseteq (\lambda_{A})_{1}, \\ (\lambda_{A})_{2} & \text{if } \lambda_{A} \subseteq (\lambda_{A})_{2}, \\ \bar{1}_{K} & \text{otherwise.} \end{cases}$$

Then  $(X, \theta, K)$  is semi-normal- $\check{C}\mathcal{F}$ -scs. Since the only disjoint closed-fss's are  $(\lambda_A)_1, (\lambda_A)_2$ and there exists an open-fss  $(\lambda_A)_1$  such that  $(\lambda_A)_1 \subseteq (\lambda_A)_1$  and  $\theta((\lambda_A)_1) \cap (\lambda_A)_2 = (\lambda_A)_1 \cap (\lambda_A)_2 = \overline{0}_K$ .

**Theorem 4.3** Every closed  $\check{CF}$ -sc subspace  $(V, \theta_V, K)$  of semi-normal- $\check{CF}$ -scs  $(X, \theta, K)$  is a semi-normal- $\check{CF}$ -sc subspace.

**Proof.** Let  $\rho_c$  and  $\eta_D$  be closed-fss's in  $(V, \theta_V, K)$  such that  $\rho_c \cap \eta_D = \overline{0}_K$ . Since  $\overline{V}_K$  is closed-fss in  $(X, \theta, K)$ . Then by Proposition 2.15,  $\rho_c$  and  $\eta_D$  are disjoint closed-fss's in  $(X, \theta, K)$ . But  $(X, \theta, K)$  is semi-normal- $\check{C}\mathcal{F}$ -scs, it follows there exist an open-fss  $\lambda_A$  such that  $\rho_C \subseteq \lambda_A$  and  $\theta(\lambda_A) \cap \eta_D = \overline{\mathbf{0}}_K$ . Since  $\rho_C \subseteq \lambda_A$ , then  $\rho_C \subseteq \lambda_A \cap \overline{V}_K$  which is open-fss in  $(V, \theta_V, K)$ . And

$$\begin{aligned} \theta_{V}(\lambda_{A} \cap \bar{V}_{K}) \cap \eta_{D} = & \bar{V}_{K} \cap \theta(\lambda_{A} \cap \bar{V}_{K}) \cap \eta_{D} \\ & \subseteq \bar{V}_{K} \cap \theta(\lambda_{A}) \cap \theta(\bar{V}_{K}) \cap \eta_{D} \\ = & \bar{V}_{K} \cap \theta(\lambda_{A}) \cap \eta_{D} \\ & = & \bar{0}_{K}. \end{aligned}$$

Similarly, if there exists an open-fss  $\mu_B$  such that  $\eta_D \subseteq \mu_B$  and  $\theta(\mu_B) \cap \rho_C = \overline{0}_K$ . We have an open-fss  $\mu_B \cap \overline{V}_K$  in  $(V, \theta_V, K)$  such that  $\eta_D \subseteq \mu_B \cap \overline{V}_K$  and  $\theta_V(\mu_B \cap \overline{V}_K) \cap \rho_C = \overline{0}_K$ . Hence  $(V, \theta_V, K)$  is a semi-normal-  $\check{C}\mathcal{F}$ -sc subspace.

**Definition 4.4** An associative fsts  $(X, \tau_{\theta}, K)$  of  $(X, \theta, K)$  is said to be a semi-normal-fsts, if for each pair of disjoint closed-fss's  $\rho_c$  and  $\eta_D$ , either there exists an open-fss  $\lambda_A$  such that  $\rho_c \subseteq \lambda_A$  and  $\tau_{\theta} - cl(\lambda_A) \cap \eta_D = \overline{0}_K$ , or there exists an open-fss  $\mu_B$  such that  $\eta_D \subseteq \mu_B$  and  $\tau_{\theta} - cl(\mu_B) \cap \rho_c = \overline{0}_K$ .

**Theorem 4.5** If  $(X, \tau_{\theta}, K)$  is a semi-normal-fsts, then  $(X, \theta, K)$  is also semi-normal- $\check{CF}$ -scs.

**Proof.** Let  $\rho_c$  and  $\eta_D$  be disjoint closed-fss's in  $(X, \theta, K)$ . Then  $\rho_c$  and  $\eta_D$  be disjoint closed-fss's in  $(X, \tau_{\theta}, K)$ . By hypothesis, there exists an open-fss  $\lambda_A$  such that  $\rho_c \subseteq \lambda_A$  and  $\tau_{\theta}$ - $cl(\lambda_A) \cap \eta_D = \overline{0}_K$ , or there exists an open-fss  $\mu_B$  such that  $\eta_D \subseteq \mu_B$  and  $\tau_{\theta}$ - $cl(\mu_B) \cap \rho_c = \overline{0}_K$ . From Theorem 2.21, we get either there exists an open-fss  $\lambda_A$  in  $(X, \theta, K)$  such that  $\rho_c \subseteq \lambda_A$  and  $\theta(\lambda_A) \cap \eta_D = \overline{0}_K$ , or there exists an open-fss  $\mu_B$  in  $(X, \theta, K)$  such that  $\eta_D \subseteq \mu_B$  and  $\theta(\mu_B) \cap \rho_c = \overline{0}_K$ . Hence,  $(X, \theta, K)$  is semi-normal- $\check{CF}$ -scs.

**Definition 4.6** A  $\check{CF}$ -scs  $(X, \theta, K)$  is said to be normal- $\check{CF}$ -scs, if for each pair of disjoint closed-fss's  $\rho_c$  and  $\eta_D$ , there exist disjoint open-fss's  $\lambda_A$  and  $\mu_B$  such that  $\rho_c \subseteq \lambda_A$  and  $\eta_D \subseteq \mu_B$ .

**Example 4.7** Let  $X = \{a, b\}, K = \{h_1, h_2\}$  and let  $(\lambda_A)_i \in \mathcal{F}_{ss}(X, K), i = 1, 2, 3, 4$ , such that

$$(\lambda_A)_1 = \{(h_1, a_{0.5})\}, (\lambda_A)_2 = \{(h_2, a_{0.5})\},\$$

 $(\lambda_A)_3 = \{(h_1, a_{0.5} \lor b_{0.5}), (h_2, a_1 \lor b_1)\} and \ (\lambda_A)_4 = \{(h_1, a_1 \lor b_1), (h_2, a_{0.5} \lor b_{0.5})\}.$ 

Define  $\theta: \mathcal{F}_{ss}(X, K) \to \mathcal{F}_{ss}(X, K)$  as follows:

$$\theta(\lambda_{A}) = \begin{cases} \bar{0}_{K} & \text{if } \lambda_{A} = \bar{0}_{K}, \\ (\lambda_{A})_{1} & \text{if } \lambda_{A} \subseteq (\lambda_{A})_{1}, \\ (\lambda_{A})_{2} & \text{if } \lambda_{A} \subseteq (\lambda_{A})_{2}, \\ (\lambda_{A})_{1} \cup (\lambda_{A})_{2} & \text{if } \lambda_{A} \subseteq (\lambda_{A})_{1} \cup (\lambda_{A})_{2} \\ \\ (\lambda_{A})_{3} & \text{if } \lambda_{A} \in \left\{ \begin{pmatrix} h_{1}, a_{t_{1}} \vee b_{s_{1}} \end{pmatrix}, \begin{pmatrix} h_{2}, a_{t_{2}} \vee b_{s_{2}} \end{pmatrix}; \\ t_{1}, s_{1} \leq 0.5, 0.5 < t_{2}, s_{2} \leq 1 \\ \\ (\lambda_{A})_{4} & \text{if } \lambda_{A} \in \left\{ \begin{pmatrix} h_{1}, a_{t_{1}} \vee b_{s_{1}} \end{pmatrix}, \begin{pmatrix} h_{2}, a_{t_{2}} \vee b_{s_{2}} \end{pmatrix}; \\ t_{2}, s_{2} \leq 0.5, 0.5 < t_{1}, s_{1} \leq 1 \\ \\ 1_{K} & \text{otherwise.} \end{cases} \right\},$$

Then  $(X, \theta, K)$  normal- $\check{C}\mathcal{F}$ -scs. Since the only disjoint closed-fss's are  $(\lambda_A)_1$ ,  $(\lambda_A)_2$  and there exist disjoint open-fss's  $\lambda_A = \{(h_1, a_{0.5} \lor b_{0.5})\}$  and  $\mu_B = \{(h_2, a_{0.5} \lor b_{0.5})\}$  such that  $(\lambda_A)_1 \subseteq \lambda_A$  and  $(\lambda_A)_2 \subseteq \mu_B$ .

**Theorem 4.8** Every closed  $\check{CF}$ -sc subspace  $(V, \theta_V, K)$  of normal- $\check{CF}$ -scs  $(X, \theta, K)$  is normal- $\check{CF}$ -sc subspace.

**Proof.** Similar of Theorem 4.3.

**Definition 4.9** An associative fsts  $(X, \tau_{\theta}, K)$  of  $(X, \theta, K)$  is said to be normal-fsts, if for each pair of disjoint closed-fss's  $\rho_c$  and  $\eta_D$  in  $(X, \tau_{\theta}, K)$  there exist disjoint  $\tau_{\theta}$ -open-fss's  $\lambda_A$ ,  $\mu_B$  in  $(X, \tau_{\theta}, K)$  such that  $\rho_C \subseteq \lambda_A$  and  $\eta_D \subseteq \mu_B$ .

**Theorem 4.10**  $(X, \tau_{\theta}, K)$  is normal-fsts if and only if  $(X, \theta, K)$  is normal- $\check{C}\mathcal{F}$ -scs.

**Proof.** The proof follows from the hypothesis and Theorem 2.21. ■

**Theorem 4.11** The property of being normal- $\tilde{CF}$ -scs is topological property.

**Proof.** Let  $(X, \theta, K)$  and  $(Y, \theta^*, R)$  be any two  $\check{CF}$ -scs and let  $f_{up}: (X, \theta, K) \to (Y, \theta^*, R)$  be a  $\check{CFs}$ -homeomorphism mapping and  $(X, \theta, K)$  is normal- $\check{CF}$ -scs. We want to show  $(Y, \theta^*, R)$  is also normal  $\check{CF}$ -scs. Let  $\rho_C$  and  $\eta_D$  be disjoint closed-fss's in  $(Y, \theta^*, R)$ . From hypothesis,  $f_{up}$  is is  $\check{CFs}$ -continuous mapping and from Theorem 2.25, we get  $f_{up}^{-1}(\rho_C)$  and  $f_{up}^{-1}(\eta_D)$  are closed-fss's in  $(X, \theta, K)$  such that  $f_{up}^{-1}(\rho_C) \cap f_{up}^{-1}(\eta_D) = \bar{0}_K$ . But  $(X, \theta, K)$  is normal- $\check{CF}$ -scs. This implies, there exist disjoint open-fss's  $\lambda_A$  and  $\mu_B$  such that  $f_{up}^{-1}(\rho_C) \subseteq \lambda_A$  and  $f_{up}^{-1}(\eta_D) \subseteq \mu_B$ . It follows,  $f_{up}(f_{up}^{-1}(\rho_C)) \subseteq f_{up}(\lambda_A)$  and  $f_{up}(f_{up}^{-1}(\eta_D)$  $)) \subseteq f_{up}(\mu_B)$ . Since  $f_{up}$  is  $\check{CFs}$ -homeomorphism mapping, then  $f_{up}$  is  $\check{CFs}$ -open mapping, this yields there exist open-fss's  $f_{up}(\lambda_A)$  and  $f_{up}(\mu_B)$  in  $(Y, \theta^*, R)$  such that  $\rho_C \subseteq f_{up}(\lambda_A)$ and  $\eta_D \subseteq f_{up}(\mu_B)$ . Moreover,  $f_{up}(\lambda_A) \cap f_{up}(\mu_B) = \bar{0}_R$ . Hence,  $(Y, \theta^*, R)$  is also normal- $\check{CF}$ -scs.

**Definition 4.12** A  $\check{CF}$ -scs  $(X, \theta, K)$  is said to be completely normal- $\check{CF}$ -scs, if for each pair of disjoint closed-fss's  $\rho_c$  and  $\eta_D$  there exist disjoint open-fss's  $\lambda_A$  and  $\mu_B$  such that  $\rho_c \subseteq \lambda_A$  and  $\eta_D \subseteq \mu_B$  and  $\theta(\lambda_A) \cap \theta(\mu_B) = \bar{0}_K$ .

**Example 4.13** Let  $X = \{a, b\}, K = \{h_1, h_2\}$  and let  $(\lambda_A)_i \in \mathcal{F}_{ss}(X, K), i = 1, 2, 3, 4, 5$ , such that

$$\begin{split} &(\lambda_A)_1 = \{(h_1, a_1)\}, \quad &(\lambda_A)_2 = \{(h_1, b_1)\}, \quad &(\lambda_A)_3 = \{(h_1, b_1), (h_2, a_1 \lor b_1)\}, \\ &(\lambda_A)_4 = \{(h_1, a_1), (h_2, a_1 \lor b_1)\} \quad \text{and} \quad &(\lambda_A)_5 = \{(h_1, a_1 \lor b_1)\}. \end{split}$$

Define  $\theta: \mathcal{F}_{ss}(X, K) \to \mathcal{F}_{ss}(X, K)$  as follows:

$$\theta(\lambda_{A}) = \begin{cases} \bar{0}_{K} & \text{if } \lambda_{A} = \bar{0}_{K}, \\ (\lambda_{A})_{1} & \text{if } \lambda_{A} \subseteq (\lambda_{A})_{1}, \\ (\lambda_{A})_{2} & \text{if } \lambda_{A} \subseteq (\lambda_{A})_{2}, \\ (\lambda_{A})_{3} & \text{if } (\lambda_{A})_{2} \neq \lambda_{A} \subseteq (\lambda_{A})_{3}, \\ (\lambda_{A})_{4} & \text{if } (\lambda_{A})_{1} \neq \lambda_{A} \subseteq (\lambda_{A})_{4}, \\ (\lambda_{A})_{5} & \text{if } (\lambda_{A})_{1}, (\lambda_{A})_{2} \neq \lambda_{A} \subseteq (\lambda_{A})_{5}, \\ \bar{1}_{K} & \text{otherwise.} \end{cases}$$

Then  $(X, \theta, K)$  is completely normal  $\check{CF}$ -scs. Since the only disjoint closed-fss's are  $(\lambda_A)_1$ ,  $(\lambda_A)_2$  and there exist  $(\lambda_A)_1$  and  $(\lambda_A)_2$  are disjoint open-fss's such that  $(\lambda_A)_1 \subseteq (\lambda_A)_1$ ,  $(\lambda_A)_2 \subseteq (\lambda_A)_2$  and  $\theta((\lambda_A)_1) \cap \theta((\lambda_A)_2) = \bar{0}_K$ .

**Proposition 4.14** Every completely normal- $\check{CF}$ -scs is normal- $\check{CF}$ -scs.

**Proof.** Suppose  $(X, \theta, K)$  is completely normal- $\mathbb{CF}$ -scs and let  $\rho_C, \eta_D$  be any disjoint closed-fss's in  $(X, \theta, K)$ . From hypothesis, there exist disjoint open-fss's  $\lambda_A$  and  $\mu_B$  such that  $\rho_C \subseteq \lambda_A, \eta_D \subseteq \mu_B$  and  $\theta(\lambda_A) \cap \theta(\mu_B) = \overline{0}_K$ . By using (C2) of Definition 2.9, we have  $\lambda_A \cap \mu_B = \overline{0}_K$ . Thus  $(X, \theta, K)$  is normal- $\mathbb{CF}$ -scs.

**Remark 4.15** The converse of Proposition 4.14 is not true, as Example 4.7.

**Theorem 4.16** Every closed  $\check{CF}$ -sc subspace  $(V, \theta_V, K)$  of completely normal- $\check{CF}$ -scs  $(X, \theta, K)$  is a completely normal- $\check{CF}$ -sc subspace.

**Proof.** Let  $\rho_C$ ,  $\eta_D$  be any two disjoint closed-fss's in  $(V, \theta_V, K)$ . Then by Proposition 2.15,  $\rho_C$ ,  $\eta_D$  are disjoint closed-fss's  $(X, \theta, K)$ . But  $(X, \theta, K)$  is completely normal- $\check{CF}$ -scs, then there exist  $\lambda_A$ ,  $\mu_B$  disjoint open-fss's such that  $\rho_C \subseteq \lambda_A$ ,  $\eta_D \subseteq \mu_B$  and  $\theta(\lambda_A) \cap \theta(\mu_B) = \bar{0}_K$ . By Proposition 2.16,  $\lambda_A \cap \bar{V}_K$  and  $\mu_B \cap \bar{V}_K$  are open-fss's in  $(V, \theta_V, K)$  such that  $\rho_C \subseteq \lambda_A \cap \bar{V}_K$ and  $\eta_D \subseteq \mu_B \cap \bar{V}_K$ . To complete the proof, we must show  $\theta_V(\lambda_A \cap \bar{V}_K) \cap \theta_V(\mu_B \cap \bar{V}_K) = \bar{0}_K$ . Now,

$$\begin{aligned} \theta_{V}(\lambda_{A} \cap \bar{V}_{K}) \cap \theta_{V}(\mu_{B} \cap \bar{V}_{K}) &= \bar{V}_{K} \cap \theta(\lambda_{A} \cap \bar{V}_{K}) \cap \bar{V}_{K} \cap \theta(\mu_{B} \cap \bar{V}_{K}) \\ &\subseteq \bar{V}_{K} \cap \theta(\bar{V}_{K}) \cap \theta(\lambda_{A}) \cap \theta(\bar{V}_{K}) \cap \theta(\mu_{B}) \\ &= \bar{V}_{K} \cap \theta(\lambda_{A}) \cap \theta(\mu_{B}) \\ &= \bar{0}_{K}. \end{aligned}$$

Hence,  $(V, \theta_V, K)$  completely normal- $\check{C}\mathcal{F}$ -sc subspace.

**Definition 4.17** An associative fsts space  $(X, \tau_{\theta}, K)$  of  $(X, \theta, K)$  is said to be completely normal-fsts, if for each pair of disjoint closed-fss's  $\rho_c$  and  $\eta_D$  there exists disjoint open-fss's  $\lambda_A$  and  $\mu_B$  in  $(X, \tau_{\theta}, K)$  such that  $\rho_c \subseteq \lambda_A, \eta_D \subseteq \mu_B$  and  $\tau_{\theta}$ - $cl(\lambda_A) \cap \tau_{\theta}$ - $cl(\mu_B) = \overline{0}_K$ .

**Theorem4.18** If  $(X, \tau_{\theta}, K)$  is a completely normal-fsts. Then  $(X, \theta, K)$  is also completely normal- $\check{CF}$ -scs.

**Proof.** The proof follows from hypothesis and by Theorem 2.21. ■

#### Acknowledgement

We are thankful to the referee for his useful comments which lead up to the improvement of this paper.

### References

- [1] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 64 (2) (1986) 87-96.
- [2] S. Atmaca and I. Zorlutuna, *On fuzzy soft topological spaces*, Annals of Fuzzy Mathematics and Informatics 5 (2) (2013) 377-386.
- [3] E. Čech, *Topological Spaces*, Inter Science Publishers, John Wiley and Sons, New York, 1966.
- [4] R. Gowri and G. Jegadeesan, On soft Cech closure spaces, International Journal of Mathematics Trends and Technology 9 (2) (2014) 122-127.
- [5] R. Gowri and G. Jegadeesan, Some higher separation axioms in soft Čech closure spaces, International Mathematical Forum 10 (11) (2015) 519-525.
- [6] A. Kharal and B. Ahmad, *Mappings on fuzzy soft classes*, Advances in Fuzzy Systems Vol. 2009 (2009) 1-6.
- [7] J. Krishnaveni and C. Sekar, *Čech soft closure spaces*, International Journal of Mathematical Trends and Technology 6 (2014) 123-135.
- [8] J. Mahanta and P.K. Das, *Results on fuzzy soft topological spaces*, arXiv:1203.0634v, 2012.
- [9] R. N. Majeed, *Čech fuzzy soft closure spaces*, International Journal of Fuzzy System Applications 7 (2) (2018) 62-74.
- [10] R. N. Majeed and L.H. Maibed, *Some structures of Cech fuzzy soft closure spaces*, Journal of Engineering and Applied Sciences (2018) Accepted.
- [11] R. N. Majeed and L.H. Maibed, Lower separation axioms in Cech fuzzy soft closure spaces, Submitted.
- [12] P. K. Maji, R. Biswas and A. R. Roy, *Fuzzy soft sets*, Journal of Fuzzy Mathematics 9 (3) (2001) 589-602.
- [13] A. S. Mashhour and M. H. Ghanim, *Fuzzy closure spaces*, Journal of Mathematical Analysis and Applications 106 (1985) 154-170.
- [14] D. A. Molodtsov, *Soft set theory first results*, Computers and Mathematics with Applications 37 (1999) 19-31.
- [15] Z. Pawlak, *Rough sets*, International Journal of Information and Computer Science 11 (1982) 341-356.
- [16] S. Roy and T. K. Samanta, *A note on fuzzy soft topological spaces*, Annals of Fuzzy Mathematics and Informatics 3 (2) (2012) 305-311.
- [17] B. Tanay and M. B. Kandemir, *Topological structures of fuzzy soft sets*, Computers and Mathematics with Applications 61 (2011) 412-418.
- [18] B. P. Varol and H. Aygün, *Fuzzy soft Topology*, Hacettepe Journal of Mathematics and Statistics 41 (2) (2012) 407-419.
- [19] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338-353.