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Remainders of locally �ech-complete spaces and
homogeneity
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Abstract

We study remainders of locally �ech-complete spaces. In particular, it
is established that if X is a locally �ech-complete non-�ech-complete
space, then no remainder of X is homogeneous (Theorem 3.1). We also
show that if Y is a remainder of a locally �ech-complete space X, and
every y ∈ Y is a Gδ-point in Y , then the cardinality of Y doesn't exceed
2ω. Several other results are obtained.
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1. Introduction

All spaces considered in this article are assumed to be Tychono�. Symbols
X,Y, Z always stand for topological spaces. In terminology and notation we follow
[7]. We say that a space X has a topological property P locally, if for each x ∈ X
there exists an open neighbourhood V of x such that the closure of V in X has
the property P.

A compacti�cation of a space X is any compact space bX such that X is a dense
subspace of bX. A remainder Y of a space X is the subspace Y = bX \ X of a
compacti�cation bX of X.

A space X is of countable type if every compact subspace P of X is contained in
a compact subspace F ⊂ X with a countable base of open neighbourhoods in X
[1]. Metrizable spaces, locally compact spaces, �ech-complete spaces, and Moore
spaces are of countable type [1]. A remarkable classical result in the theory of
compacti�cations is the following theorem of M. Henriksen and J. Isbell [8]:
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1.1. Theorem. A space X is of countable type if and only if the remainder of X
in any (in some) compacti�cation of X is Lindelöf.

A Lindelöf p-space is a preimage of a separable metrizable space under a perfect
mapping [1]. K. Nagami has de�ned the class of Σ-spaces [9]. They can be
characterized as continuous images of Lindelöf p-spaces.

It is proved below that ifX is a locally �ech-complete space with a homogeneous
remainder Y , then X is �ech-complete (Theorem 3.1). We show that a remainder
of a locally �ech-complete space needn't have a dense σ-compact subspace and
needn't be a Lindelöf Σ-space (Example 2.4). We also give a characterization
of remainders of locally �ech-complete spaces (Theorem 4.1) and obtain some
corollaries from it.

2. Two examples

A space X is �ech-complete if it is a Gδ-subspace of some (of any) of its com-
pacti�cations. One of the simplest duality theorems involving remainders is the
next statement: a space X is �ech-complete if and only if some (every) remainder
of X is σ-compact. Locally compact spaces constitute an important subclass of
the class of �ech-complete spaces. In this case, we have the classical theorem of
P.S. Alexandro�: a space X is locally compact non-compact if and only if some
remainder of X consists of exactly one point.

However, the next natural question remained unanswered: how to characterize
in intrinsic terms the remainders of locally �ech-complete spaces? We answer this
question in this article.

2.1. Theorem. Every remainder of any locally �ech-complete spaceX is Lindelöf.

Proof. By Henriksen-Isbell Theorem, it is enough to show that X is a space of
countable type. Since every �ech-complete space is a space of countable type,
we see that X is locally of countable type. It remains to use the next easy to
verify assertion: if a space X is locally of countable type, then X is of countable
type. �

How close are remainders of locally �ech-complete spaces to remainders of �ech-
complete spaces? This question, Theorem 2.1, - and the obvious fact that every
remainder of a �ech-complete space is σ-compact, - motivate the next question:
is every remainder of any locally �ech-complete space a Lindelöf Σ-space? The
answer is in the negative.

2.2. Example. Let B be the usual space of ordinal numbers not exceeding the
�rst uncountable ordinal ω1, and Z be the subspace of B consisting of all non-
isolated points of B. Furthermore, let Y0 be the subspace of Z consisting of all
isolated points of Z. Finally, put p = ω1, Y = Y0 ∪ {p}, and X = B \ Y .

Clearly, B is a compacti�cation bX of X, and Y is the remainder bX \ X of
X in bX. It is also easy to see that all points of Y0 are isolated in Y and p is a
non-isolated P -point in Y . Observe that every open neighbourhood of p contains
all but countably many points of the set Y . Hence, Y is a Lindelöf P -space, and
the space X is locally �ech-complete. It follows that every compact subspace of
Y is �nite, and that Y is not a Lindelöf Σ-space. Therefore, Y does not have a
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dense σ-compact subspace and hence, X is not �ech-complete. In particular, it is
not true that every remainder of any locally �ech-complete space has a dense σ-
compact subspace. It is also easy to see that the space Y is not locally σ-compact.
In this connection, see the last section.

2.3. Corollary. There exists a locally �ech-complete space X with a remainder
Y such that no dense subspace of Y is a Lindelöf Σ-space.

Proof. Let us take X and Y constructed in the preceding example. We also use
the notation introduced there. We have seen in Example 2.4 that X is locally
�ech-complete. Assume that Y1 is an arbitrary dense subspace of Y . Then Y1
contains all isolated points of Y , and hence, either Y1 = Y \ {p}, or Y1 = Y . In
the �rst case, Y1 is discrete and uncountable, and therefore, is not Lindelöf. In
the second case, Y1 is not a Lindelöf Σ-space, since it has been shown above that
Y is not a Lindelöf Σ-space. �

Alexandro�'s Theorem on remainders of locally compact spaces leads to the
next question: is it true that every �ech-complete space X has a remainder Y
such that |Y | ≤ 2ω? The answer is "no".

2.4. Example. a) Let X be any nowhere locally compact space metrizable by a
complete metric and satisfying the condition: the weight of X is greater than 2ω.
To construct such a space, we can �x any cardinal number τ such that τ > 2ω

and take X to be the countable power of a discrete space of the cardinality τ . Let
bX be any compacti�cation of X. Then the remainder Y of X in bX is dense in
bX, since the spacee X is nowhere locally compact. Since the Souslin number of
X is greater than 2ω, it follows that |Y | > 2ω. Notice that the space X is, clearly,
�ech-complete. Its additional nice feature is that it is metrizable. On the other
hand, the Souslin number of X is quite large, and we have made a good use of
this fact in our argument above. The next example serves the same purpose but
the Souslin number of the space constructed in it is countable.

b) Let G be the countable power of the usual space R of real numbers, and B
be a compact topological group such that w(B) > 2c, where c = 2ω. Now de�ne X
as the topological product G×B. Clearly, X is a �ech-complete nowhere locally
compact topological group, and the Soulin number of X is countable. However,
X is not metrizable. Let bX be any compacti�cation of X. Then the remainder
Y of X in bX is dense in bX, since the spacee X is nowhere locally compact.
Assume that |Y | ≤ c = 2ω. Then w(bX) ≤ 2c, since Y is dense in bX. Therefore,
w(bX) ≤ 2c, a contradiction. It follows that |Y | > 2ω.

3. Homogeneous remainders

Recall that a space X is said to be homogeneous if for any x, y ∈ X there exists
a homeomorphism h of X onto X such that h(x) = y. In fact, we will use below a
much weaker form of homogeneity. A space X will be called meekly homogeneous
if for any x, y ∈ X and any open neighbourhood Ox of x there exists an open
neighbourhood Oy of y such that Oy is homeomorphic to some open subspace of
Ox.

The remainder Y of the locally �ech-complete space X constructed in Example
2.4 is easily seen to be non-homogeneous. A natural question arises: can we
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construct a similar example, in which Y is, in addition, homogeneous, or at least,
meekly homogeneous? Somewhat unexpectedly, the answer turns out to be in the
negative.

3.1. Theorem. Suppose that X is a locally �ech-complete space with a meekly
homogeneous remainder Y . Then X is �ech-complete, and Y is σ-compact.

This statement will be derived from the next slightly more general statement:

3.2. Proposition. Suppose that X is a space with an open �ech-complete non-
locally compact subspace U . Then any remainder Y of X has a closed σ-compact
subspace P such that the interior of P in Y is non-empty.

Proof. Fix x ∈ U such that U is not locally compact at x. Clearly, we may assume
that the closure of U in X is �ech-complete, - otherwise we can replace U with
a non-empty open subset W of U such that x ∈ W and the closure of W in X is
contained in U . Let Y = bX \X. We denote by F the closure of U in bX. Clearly,
x is in the interior of F in bX, and x is in the closure of Y . Therefore, the interior
of the set P = F ∩ Y in Y is non-empty as well.

Obviously, P is the remainder of Z in F , where Z is the closure of U in X. It
follows that the subspace P of Y is σ-compact, since Z is �ech-complete. �

3.1. Lemma. Suppose that Y is a meekly homogeneous space with a closed σ-
compact subspace P such that the interior of P in Y is non-empty. Then Y is
locally σ-compact.

Proof. Fix x in the interior of P , and consider the interior of P as a neighbourhood
Ox of x. Now take an arbitrary y ∈ Y . Since Y is meekly homogeneous, we can
�nd an open neighbourhood Oy of y and an open subset V of Ox such that Oy
is homeomorphic to V . Since P is σ-compact, and V is an open subspace of P ,
the space V is locally σ-compact. Hence, the space Oy is also locally σ-compact.
Since Y is regular and Oy is open in Y , it follows that Y is locally σ-compact at
y. �

Proof. (of Theorem 3.1). If X is locally compact, then we have nothing to prove.
If X is not locally compact, then there exists an open �ech-complete non-locally
compact subspace U of X. By Proposition 3.2, there exists a closed σ-compact
subspace P of Y such that the interior V of P in Y is non-empty. Since Y is meekly
homogeneous, it follows from Lemma 3.1 that Y is locally σ-compact. Therefore,
there exists an open covering γ of the space Y such that the closure of any member
of γ in Y is σ-compact.

Notice that by Theorem 3.1 the space Y is Lindelöf. Therefore, γ has a count-
able subcovering η of Y . Since the closure in Y of each member of η is σ-compact,
we conclude that Y is σ-compact. It follows that X is �ech-complete. �

4. A characterization of remainders of locally �ech-complete spaces

It is not true that a space is locally �ech-complete if and only if its remainders
are locally σ-compact. We have seen this in Example 2.4. In this section, we will
characterize locally �ech-complete spaces by a somewhat unusual, but still natural
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and easy to use property of its remainders. Some corollaries are derived from this
characterization.

First, let us introduce a piece of terminology. Suppose that Y is a space and F
is a subspace of Y . We will say that Y has a topological property P outside of F
if every closed subspace Z of Y such that Z ∩ F = ∅ has P.

4.1. Theorem. A space X is locally �ech-complete if and only if every (some)
remainder Y of X is σ-compact outside of some compact subspace F of Y .

Proof. Necessity. Suppose that X is locally �ech-complete. Take any compacti�-
cation bX of X, and let Y = bX \X. Fix also an open covering γ of X such that
the closure X(V ) of every V ∈ γ in X is �ech-complete. For V ∈ γ, we denote by
U(V ) an open subset of bX such that U(V ) ∩X = V . Put E = ∪{U(V ) : V ∈ γ}
and F = bX \ E. Clearly, E is open in bX, F is compact, X ⊂ E, and F ⊂ Y .

Let A be a closed subset of Y such that A ∩ F = ∅, and B be the closure of A
in bX. Clearly, F ∩ B = ∅. Therefore, B ⊂ E = ∪{U(V ) : V ∈ γ}. Since B is
compact, and each U(V ) is open in bX, there exists a �nite collection V1, ..., Vk of
members of γ such that B ⊂ ∪{U(Vi) : i = 1, ..., k}.

Put Xi = X(Vi) and let Bi be the closure of Vi in bX. By the de�nitions above,
the space Xi is �ech-complete. Hence, the subspace Pi = Bi \ Xi is σ-compact.
Therefore, the subpace P = ∪{Pi : i = 1, ..., k} is also σ-compact. Clearly,
A ∩Xi = ∅ for i = 1, ..., k, since A ⊂ Y . Since A ⊂ B ⊂ ∪{Xi : i = 1, ..., k}, it
follows that A ⊂ P .

The set Xi is closed in X, and bX = X ∪Y . Therefore, Pi ⊂ Y , so that P ⊂ Y .
Now we can conclude that A is a closed subspace of P . Finally, it follows that A
is σ-compact, since P is σ-compact.

Su�ciency. Suppose that some remainder Y of X is σ-compact outside of some
compact subspace F of Y . Fix a compacti�cation bX of X such that Y = bX \X.
Take any x ∈ X. The set F is closed in bX, since F is compact. We also have:
x /∈ F . Hence, we can �nd an open neighbourhood U of x in bX such that the
closure of U in bX doesn't intersect F . Since Y is σ-compact outside of F , it follows
that the closed subspace P = Y ∩ U of Y is σ-compact. Since U is compact, it
follows that the subspace X ∩ U is �ech-complete. Note that U ∩ X is an open
subspace of X ∩ U . Therefore, the set Ox = U ∩ X is an open �ech-complete
neighbourhood of x in X. Thus, the space X is locally �ech-complete. �

We present now a few applications of the last theorem. The concept of a
charming space has been introduced in [2]. A space Y is charming if there exists a
subspace Z of Y such that Z is a Lindelöf Σ-space and Y \U is a Lindelöf Σ-space,
for every open neighbourhood U of Z in Y .

The next statement immediately follows from Theorem 4.1.

4.2. Corollary. Every remainder of a locally �ech-complete space is a charming
space.

According to Theorem 2.1, every remainder of a locally �ech-complete space
is Lindelöf. It is still unknown whether there exists in ZFC a Lindelöf space Y
such that every y ∈ Y is a Gδ-point in Y and |Y | > 2ω. Let us show that it is
impossible to �nd a space of this kind among remainders of locally �ech-complete
spaces.
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4.3. Theorem. Suppose that Y is a remainder of a locally �ech-complete space
X such that every y ∈ Y is a Gδ-point in Y . Then |Y | ≤ 2ω.

Proof. By Corollary 4.2, Y is a charming space. Since the cardinality of every
charming space of countable pseudocharacter does not exceed 2ω [Theorem 3.7 in
[2] ], it follows that |Y | ≤ 2ω. �

The following easy to prove statement tells us that non-trivial locally �ech-
complete spaces are never remainder-wise dual to locally σ-compact spaces.

4.4. Theorem. A space X is �ech-complete if and only if X is locally �ech-
complete and every (some) remainder Y of X is locally σ-compact.

Proof. The necessity is clear.
Su�ciency. The space Y is Lindelöf, since X is locally �ech-complete. Since

Y is also locally σ-compact, it follows that Y is σ-compact. Hence, X is �ech-
complete. �

4.5. Theorem. Suppose thatX is a locally �ech-complete space with a remainder
Y in a compacti�cation bX. Furthermore, suppose that Y has a point-countable
base. Then Y is separable, metrizable, and σ-compact, and X is �ech-complete.

Proof. By Theorem 2.1, Y is Lindelöf. Theorem 4.1 implies that Y is σ-compact
outside of some compact subspace F of Y which we now �x. Clearly, F is separable
metrizable, by the well-known Theorem of A.S. Mischenko [7]. Let us also �x a
point-countable base B for Y . Since F is separable, the family η of members V of
B such that V ∩ F 6= ∅ is countable. Therefore, F has a countable base for open
neighbourhoods in Y . Hence F is a Gδ-set in Y . Since Y is Lindelöf, it follows
that Y \F is Lindelöf. Since Y \F is, obviously, locally σ-compact, it follows that
Y \F and Y are σ-compact. Hence, X is �ech-complete. Using again Mischenko's
Theorem, we conclude that Y \F is separable. Therefore, the family ξ of members
V of B such that V ∩ (Y \ F ) 6= ∅ is countable. Since, clearly, B = ξ ∪ η, we
conclude that the base B is countable. Hence, Y is separable metrizable. �

In connection with the last theorem, recall that, under the Continuum Hypoth-
esis CH, there exists a non-metrizable Lindelöf space with a point-countable base
[6].

4.6. Theorem. Suppose thatX is a locally �ech-complete space with a remainder
Y in a compacti�cation bX. Furthermore, suppose that Y is symmetrizable. Then
Y is σ-compact, has a countable network, and is submetrizable, and X is �ech-
complete.

Proof. By Theorem 2.1, Y is Lindelöf. Now it follows from a theorem of S.J.
Nedev in [10] that Y is hereditarily Lindelöf.

By Theorem 4.1, Y is σ-compact outside of some compact subspace F of Y .
Clearly, Y \ F is Lindelöf. Since Y \ F is, obviously, locally σ-compact, it follows
that Y \ F is σ-compact. Hence, Y is σ-compact as well. Therefore, X is �ech-
complete.

Clearly, every compact subspace of a symmetrizable space is symmetrizable. It
is well-known that each symmetrizable compact space is metrizable and hence, has
a countable base. Now we can conclude that Y has a countable network. �
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It is not di�cult to see that the remainder Y , under the assumptions in the
last statement, needn't have a countable base, and that the space X needn't be
metrizable or paracompact.

4.7. Problem. Suppose that X is a locally �ech-complete space with a remainder
Y in a compacti�cation bX such that every y ∈ Y is a Gδ-point in Y . Does it
follow that X is �ech-complete?

5. Remainders of locally σ-compact spaces

5.1. Theorem. If a space X is locally σ-compact, then for every remainder Y of
X there exists a compact subspace F of Y such that Y is �ech-complete outside
of F .

Proof. Take any compacti�cation bX of X, and put Y = bX \X. Fix also an open
covering γ of X such that the closure X(V ) in X of any V ∈ γ is σ-compact. For
V ∈ γ, we denote by U(V ) an open subset of bX such that U(V ) ∩X = V . Put
E = ∪{U(V ) : V ∈ γ} and F = bX \ E. Clearly, E is open in bX, F is compact,
X ⊂ E, and F ⊂ Y .

Let A be a closed subset of Y such that A ∩ F = ∅, and B be the closure of A
in bX. Clearly, F ∩ B = ∅. Therefore, B ⊂ E = ∪{U(V ) : V ∈ γ}. Since B is
compact, and each U(V ) is open in bX, there exists a �nite collection V1, ..., Vk of
members of γ such that B ⊂ ∪{U(Vi) : i = 1, ..., k}.

Put Xi = X(Vi), and let Hi be the closure of Vi in bX. Clearly, Xi is σ-compact
and closed in X. Hence, the subspace P = ∪{Xi : i = 1, ..., k} is also closed in X
and σ-compact. The set P is dense in the closure H of P in bX, and H ∩Y is the
remainder of P in H. It follows that H ∩ Y is �ech-complete. Clearly, B ⊂ H,
so that A = B ∩ Y ⊂ H ∩ Y . Since A is closed in H ∩ Y , it follows that A is
�ech-complete. �

5.2. Theorem. Suppose that X is a locally σ-compact space with a homogeneous
remainder Y . Then Y is �ech-complete.

Proof. By Theorem 5.1, there exists a compact subspace F of Y such that Y is
�ech-complete outside of F . If Y = F , then we are done.

Assume now that Y \F 6= ∅. Fix y ∈ Y \F . Clearly, Y is locally �ech-complete
at y. Since Y is homogeneous, it follows that Y is locally �ech-complete at every
point. Therefore, we can �nd a �nite collection U1, ..., Un of open subsets of Y
such that F ⊂ U1∪ ...∪Un and the closure Hi of Ui in Y is �ech-complete, for each
i = 1, ..., n. The subspace P = Y \(U1∪...∪Un) is a closed �ech-complete subspace
of Y , since Y is �ech-complete outside of F . Clearly, Y = (H1 ∪ ... ∪ Hn) ∪ P ,
that is, Y is the union of a �nite collection of closed �ech-complete subspace of
Y . Hence, Y is also �ech-complete. �

5.3. Corollary. Suppose that X is a locally σ-compact space with a homogeneous
remainder Y . Then X = S∪L, where S is a closed σ-compact subspace of X, and
L is an open locally compact subspace of X.

Proof. Fix a compacti�cation bX of X such that Y = bX \X, and let bY be the
closure of Y in bX. Put S = X ∩ bY . Then S is a closed subspace of X, and Y is
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�ech-complete, by Theorem 5.2. Since S = bY \Y , it follows that S is σ-compact.
The subspace L = (bX) \ bY is, clearly, locally compact and open in bX and in
X. We also have S ∪ L = X. �

5.4. Corollary. Suppose that X is a locally σ-compact nowhere locally compact
space with a homogeneous remainder Y . Then X is σ-compact, and Y is �ech-
complete.
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