

Integrating Geotourism and Community Perspectives for Geoconservation: Evidence from Gökböl Valley

Çağla Aslı Gulduran* / Asst. Prof. Dr.

Alanya University, Faculty of Economics, Administrative and Social Sciences, Department of Tourism Management

caglaasli.gulduran@alanyauniversity.edu.tr

Arzu Akdeniz / Assoc. Prof. Dr.

Muğla Sıtkı Koçman University, Ortaca Vocational School

arzuakdeniz@mu.edu.tr

*Corresponding Author

Abstract

This study explores tourism role in safeguarding threatened geological heritage through local residents' perceptions and governance trust, grounded in Social Exchange Theory and Stakeholder Theory. The focus area, the Gökböl Valley in Yatağan, Muğla, one of Turkey's oldest geological formations, faces escalating risks from intensive mining activities. These environmental pressures heighten the urgency of adopting alternative, conservation-oriented development approaches. Within the study, a 24-item geotourism measurement scale was developed, structured around three core dimensions: geotourism awareness, perceived geotourism impacts, and geotourism satisfaction. The construct validity of the scale was rigorously tested using exploratory and confirmatory factor analyses. Advanced statistical analyses confirmed the scale's validity and reliability, supported by integrated quantitative and qualitative evidence.

The findings indicate that geotourism awareness positively and significantly influences local residents' perceived personal benefits and their sense of influence over tourism-related decisions, but does

not support trust in local governance. In contrast, geotourism satisfaction emerges as a strong determinant, enhancing tourism-related knowledge, perceived personal benefits, and governance trust. Qualitative findings further confirm strong community support for geotourism despite low levels of geotourism awareness. These results generate field-applicable recommendations for local authorities and tourism policymakers, contributing to the design of sustainable tourism policies, community engagement programs, and governance models that strengthen local participation and conservation-oriented approaches. The study positions geotourism as a transformative tool for destination promotion, community development, and conservation, with clear theoretical and managerial implications for sustainable tourism policy.

Keywords: Geotourism, Geological heritage, Mixed-methods.

JEL Codes: Q26, Z32, Q56

Citation: Gulduran, Ç.A. & Akdeniz, A. (2026). Tourism as a tool for geoconservation: The case of Gökböl Valley. *Researches on Multidisciplinary Approaches (ROMAYA Journal)*, 2026(1).

1. Introduction

In the 1990s, the concept of geotourism emerged within communities of earth scientists as a means of enhancing public awareness, appreciation, and conservation of geological sites and landscapes (Gordon, 2018). Over the past three decades, this concept has evolved from a niche conservation initiative into a globally recognized framework that links geoheritage, geoconservation, and sustainable tourism (Newsome & Dowling, 2010). Contemporary geotourism not only seeks to protect geological features but also to interpret them for educational and recreational purposes, contributing to local development while maintaining the integrity of the natural environment (Stace & Larwood, 2006).

Within this framework, the district of Yatağan (Muğla Province, southwestern Turkey) stands out as an underexplored area of significant geoheritage potential. Covering 1,772 km², Yatağan is strategically located on the Aydın–Muğla–Milas highway, approximately 28 km from Muğla and 79 km from Aydın. The district is bounded by the Gökböl and Yatağan Mountains to the north, the Göktepe Mountains to the east, the Marçal and parallel Bencik Mountains to the south, and the Aldağ and Kurukümes Mountains to the west. Its geomorphological setting reflects a complex interplay between tectonic, metamorphic, and erosional processes that have shaped southwestern Anatolia over geological time (Yatağan Belediyesi, 2024).

Geologically, Yatağan forms part of the Menderes Massif, one of the oldest metamorphic core complexes in Turkey and the eastern Mediterranean. With an estimated age of nearly one billion years, the Menderes Massif represents an extraordinary geoheritage entity that provides insight into the evolution of the continental crust and the tectono-metamorphic history of the region. In geological terminology, it is classified as a core complex, characterized by high-grade metamorphic rocks and extensive tectonic deformation (Provincial Council Yatağan Geopark Project Proposal, 2008). This formation meets multiple geoheritage evaluation criteria as defined by Brilha (2016):

Scientific Value; The Menderes Massif exposes critical evidence of the tectonic evolution of Anatolia and serves as a natural laboratory for structural and metamorphic studies. **Rarity;** comparable formations are extremely limited globally, enhancing its uniqueness within the Eastern Mediterranean context. **Integrity;** despite mining and anthropogenic pressures, large sections of the massif remain well preserved, maintaining stratigraphic and geomorphological coherence. **Educational and Interpretive Potential;** the massif provides outstanding opportunities for geological education, fieldwork, and interpretation of metamorphic processes. **Aesthetic and Cultural Value;** the geological formations blend with traditional rural landscapes, offering both scientific and visual appeal for sustainable geotourism initiatives.

Economically, the Yatağan region hosts substantial quartz and feldspar deposits, which have driven industrial development for decades (Gül & Uslular, 2017). However, mining activities conducted on rock formations of high geomorphological and aesthetic value present critical threats to their long-term preservation. Balancing economic extraction with conservation imperatives thus constitutes a central challenge for local authorities and stakeholders.

It is evident in the international literature that geotourism is embraced as a multidimensional approach integrating geoconservation, sustainable development, and community empowerment (Farsani et al., 2011; Ólafsdóttir & Dowling, 2014; Farsani et al., 2013). Dowling and Newsome (2022) conceptualize geotourism as a holistic framework that links the interpretation of geological heritage with responsible tourism practices and local community participation. Similarly, UNESCO Global Geopark reports reinforce the view that geoparks represent a convergence of conservation, education, and sustainable economy. Complementing these perspectives, research on community-based geotourism governance (Gupta et al., 2024; Ruban, 2015; Ruban, 2021; Henriques & Brilha, 2023; Louis et al., 2025) underscores the importance of participatory decision-making and shared governance in achieving long-term sustainability. Collectively, these international viewpoints situate the Gökböl Valley case not merely as a conservation strategy but as a driving force of inclusive and community-centered sustainable development within the global discourse on geotourism.

The Gökböl Valley (Yatağan Geopark) Project, initially conceptualized around 2008, sought to protect, interpret, and promote the area's geological features within a geopark framework. The proposal reached the application stage but was eventually suspended due to administrative and financial constraints. Reviving this initiative today holds considerable potential for positioning Yatağan as a regional model of geoheritage-based sustainable tourism. Conducting interdisciplinary research in this vulnerable yet geologically rich area is vital for shaping an innovative, conservation-oriented paradigm within the tourism–nature–conservation nexus, and for integrating Yatağan's geological legacy into broader national and international geopark networks. This integrative framework advances the literature by bridging geoheritage conservation with community-based tourism governance. It reframes residents not merely as passive recipients of tourism impacts but as co-managers of geoheritage resources. By combining SET's focus on perceived exchanges with Stakeholder Theory's participatory lens, the study proposes a dual mechanism through which awareness and trust jointly determine sustainable support for geotourism. This approach directly contributes to filling the theoretical and empirical gaps identified in prior studies and strengthens the conceptual foundation for future geotourism research.

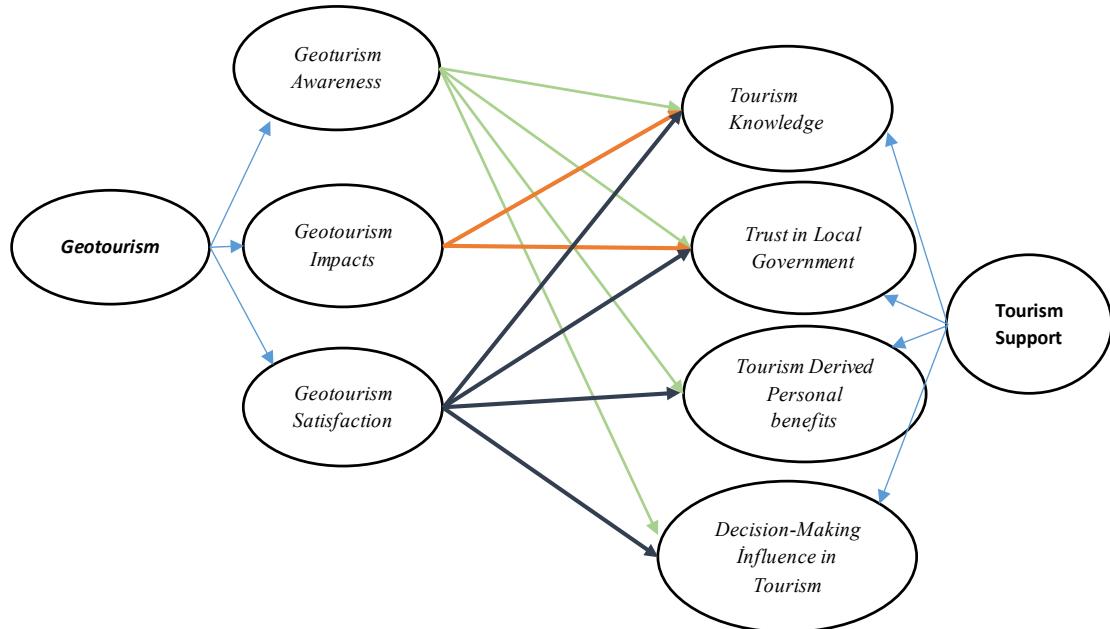


Figure 1. Research Model

In the research model, the causal relationships between geotourism sub-dimensions (awareness, impacts and satisfaction) and tourism support sub-dimensions (tourism knowledge, tourism-derived personal, decision-making influence in tourism, and trust in local government) were examined (Figure 1).

This design not only validated the newly developed scale but also contributed methodologically to tourism research by demonstrating the utility of a convergent parallel mixed-methods approach in geotourism contexts. By combining Social Exchange Theory and Stakeholder Theory, the study highlights both individual-level perceptions and collective governance dynamics, offering a comprehensive framework for understanding and promoting sustainable geotourism.

2. Theoretical Framework: Integrating Social Exchange and Stakeholder Perspectives

2.1 Social Exchange Theory (SET)

Social Exchange Theory explains human relationships through the exchange of tangible or intangible resources such as benefits, trust, and reciprocity. In tourism studies, it has been widely adopted to analyze the relationship between residents and visitors, focusing on how perceived rewards and costs influence residents' support for tourism (Albayrak & Kirova, 2020; Jurowski et al., 1997). When residents perceive tourism as beneficial—economically, socially, or environmentally—they tend to support tourism development. However, if perceived costs outweigh benefits, opposition and conflict may arise (Gonzales et al., 2018).

The theory assumes that support for tourism development reflects a willingness to engage in change and that local hospitality, as a fundamental component of the tourism product, is linked to the fair dist-

ribution of costs and benefits within the community. Previous studies have emphasized that neglecting residents' and local businesses' opinions in tourism planning undermines participation and sustainability (Doxey, 1975; Long & Richardson, 1989; Akova, 2006; Türkmen & Saatçi, 2020; Çalışkan & Özer, 2014, 2022; Güney, 2019; Çalışkan, Özer & Tütüncü, 2018; Ayazlar & Ayazlar, 2016; Çiçek, 2017).

2.2 Stakeholder Theory in the Context of Geotourism

While SET provides a strong individual-level explanation, Stakeholder Theory (Freeman, 1984) offers a broader governance-based perspective that situates tourism within a network of interdependent actors. Geotourism, by its nature, involves multiple stakeholders—local residents, municipal authorities, conservation bodies, educational institutions, and extractive industries—whose goals and responsibilities may conflict or converge. Sustainable outcomes depend on how well these stakeholder relationships are balanced (Byrd, 2007; Waligo et al., 2013).

Integrating Stakeholder Theory allows geotourism research to transcend individual exchanges and address participatory governance. It emphasizes dialogue, representation, and collaborative decision-making rather than transactional reciprocity. When residents perceive transparent communication and equitable involvement in decision processes, they are more likely to trust local authorities and support geotourism initiatives (Bramwell & Lane, 2011).

Thus, the fusion of SET and Stakeholder Theory creates a comprehensive explanatory framework: while SET captures why individuals support or resist tourism based on perceived outcomes, Stakeholder Theory explains how collective trust, inclusion, and governance mechanisms influence sustainable support for geotourism.

3. Hypothesis Development

Drawing on these theoretical foundations, this study investigates the relationships among geotourism awareness, perceived impacts, satisfaction, decision-making influence, trust in local government, and residents' support for tourism.

H1–H4: Geotourism awareness influences (a) tourism knowledge, (b) decision-making influence in tourism, (c) tourism derived personal and (d) trust in local government.

H5–H8: Perceived geotourism impacts influence (a) tourism knowledge, (b) decision-making influence in tourism, (c) tourism derived personal and (d) trust in local government.

H9–H12: Geotourism satisfaction influences (a) tourism knowledge, (b) decision-making influence in tourism, (c) tourism derived personal and (d) trust in local government.

H13: Decision-making influence mediates the relationship between geotourism awareness and residents' support for tourism.

H14: Trust in local government moderates the relationship between perceived impacts and residents' behavioral support for tourism.

the scale was refined to 65 items. Tourism support was measured in line with the framework of Çiçek and Sarı (2018). Data analysis was conducted using SmartPLS 4.0 for Structural Equation Modelling (SEM), examining the relationship between geotourism perceptions and tourism support.

The qualitative phase aimed to capture the interpretive dimension of local perceptions, values, and meanings attributed to geotourism. Semi-structured interviews were conducted with local residents and tourism stakeholders. The interview protocol was adapted from previous studies (Tunçay, 2011; Yazıcı, 2017; Gürsay & Güneş, 2014) and revised in line with the findings of the quantitative pretest. Data were analyzed through thematic analysis, following Creswell's (2013) six-step coding framework. Researcher reflections and field notes were used to strengthen validity through triangulation.

The philosophical stance of the study was pragmatic, combining ontological pluralism (accepting multiple realities) and axiological transparency, where the researcher acknowledges personal values as integral to interpretation. This alignment enabled the researcher to interpret patterns beyond statistical significance and to identify emerging qualitative meanings.

Integration of qualitative and quantitative findings provided a holistic view of geotourism perceptions and support. The qualitative phase enriched the interpretation of quantitative results, revealing underlying motivations, cultural meanings, and governance expectations that could not be captured by survey instruments alone. Conversely, the quantitative phase offered generalizability and statistical validation of emergent patterns.

Qualitative research uses interpretive frameworks to explain how individuals or groups assign meaning to social phenomena (Creswell, 2013). In this study, ontological, epistemological, axiological, and methodological assumptions were combined to collect data from local residents and tourism stakeholders, identify patterns, and generate themes. The researcher's field observations and subjective reflections were integrated with participant data, supported by descriptive analysis and open-ended questions. The qualitative research questions (RQ) are presented below:

RQ1: What are the awareness levels of tourism stakeholders regarding geotourism/geoparks?

RQ2: How do tourism stakeholders perceive geotourism and sustainability?

RQ3: What are tourism stakeholders' attitudes toward supporting geotourism?

RQ4: How do tourism stakeholders perceive local government in terms of geotourism and conservation?

Following expert validation by six specialists in tourism management and sustainable development,

5. Findings

5.1. Study 1. Quantitative Research Findings

Table 1. Distribution of Participants According to Demographic Characteristics

Variables	n	%
Gender	Female	258
	Male	144
Marital Status	Married	216
	Single	186
Age ($\bar{X} \pm SS$, 32.76 ± 12.23)	Under 33 years old	206
	Over 33 years old	196
Education	Primary education	71
	High School	154
	University	140
	Master's degree	24
	Others	13
Duration of Residence in Yatağan	1-5 years	70
	6-10 years	39
	11-15 years	37
	16 years and above	256
	Yes	120
Previous Visit to the Geopark Area	No	282
	Yes	45
Perceived Attention Given to the Geopark in the Local Area	No	357
	402	100.0

According to Table 1, the overall Cronbach's Alpha for the scale was 0.917, with an explained variance of 51.817%. The Kaiser-Meyer-Olkin (KMO) test was conducted to assess sample adequacy for factor analysis, yielding a value of 0.889, indicating the sample was sufficient (acceptable KMO: 0.5–1.0; values below 0.5 indicate inadequacy) (Altunışık et al., 2010). Bartlett's Test of Sphericity was significant

($\chi^2(276) = 4994.080$, $p < 0.05$), confirming factorability. Skewness and kurtosis values for the geotourism scale were -0.680 and 1.319, and for the tourism support scale 0.21 and 0.394, respectively, indicating normal distribution (acceptable range: -1.5 to +1.5; Shao, 2002; Demirci & Kement, 2017). Factor loadings below 0.30 were considered insufficient (Aksu, Eser & Güzeller, 2017).

Table 2. Exploratory Factor Analysis of the Geotourism Scale Used in the Study

Items	Factors		
	F1:Geotourism Awareness	F2:Geotourism Satisfaction	F3:Geotourism Impacts
J14	0.755		
J16	0.719		
J15	0.717		
J13	0.693		
J18	0.678		
J17	0.626		
J21	0.562		

J23	0.548		
J22	0.534		
J38	0.404		
J37		0.832	
J6		0.798	
J7		0.796	
J2		0.709	
J1		0.662	
J5		0.659	
J3		0.569	
J11		0.543	
J10		0.543	
J8		0.488	
J9		0.449	
J34			0.879
J35			0.874
J31			0.479
Cronbach's Alpha	0.901	0.869	0.689
Explained Variance (%)	22.332	19.575	9.911

KMO =0.889; $\chi^2(276) =4994.080$; Bartlett's Test of Sphericity (p) = 0.000

According to Table 2, items with factor loadings below 0.30 (J4, J12, J19, J20, J24, J25, J26, J27, J28, J29, J30, J32, J33, J36, J39) were removed from the scale, and the final version was established (Altunışık

et al., 2010). The factors explained 51.817% of the total variance, which is considered sufficient for multi-factor designs (Büyüköztürk, 2007).

Table 3. Exploratory Factor Analysis of the Tourism Support Scale Used in the Study

	Tourism Knowledge	Tourism-Derived Personal	Decision-Making Influence in Tourism	Trust in Local Government
TS41	.852			
TS43	.840			
TS42	.830			
TS44	.767			
TS40	.757			
TS45	.746			
TS48		.952		
TS47		.844		
TS49		.820		
TS46		.470		
TS54			.737	
TS53			.727	
TS52				.444
TS50				.937
TS51				.670

Cronbach's Alpha	.913	.888	.780	.846
Explained Variance (%)	18.988	24.515	20.284	6.277
KMO =0.889; $\chi^2(262) =4278.701$; Bartlett's Test of Sphericity (p) = 0.000				

According to Table 3-4, the Cronbach's Alpha value for the total scale is 0.882, and the total explained variance is 70.064%. To assess whether the sample size was suitable for factor analysis, the Kaiser-Meyer-Olkin (KMO) test was conducted, yielding a KMO value of 0.889. This indicates that the sample is "adequate" for factor analysis. KMO values between 0.5 and

1.0 are considered acceptable, while values below 0.5 suggest that factor analysis is not suitable for the dataset (Altunışık et al., 2010: 266). Additionally, the Bartlett's Test of Sphericity results showed that the chi-square value was acceptable ($\chi^2(262) = 4278.701$, $p < 0.05$). In SmartPLS, confirmatory factor analysis (CFA) starts with testing the measurement model.

Table 4. Factor Loadings of the Geotourism Scale After Confirmatory Factor Analysis

	Geotourism Awareness	Geotourism Satisfaction	Geotourism Impacts
J1	0.674		
J2	0.700		
J3	0.664		
J5	0.726		
J6	0.757		
J7	0.688		
J8	0.652		
J9	0.532		
J10	0.674		
J11	0.706		
J13		0.748	
J14		0.804	
J15		0.753	
J16		0.799	
J17		0.700	
J18		0.706	
J21		0.695	
J22		0.680	
J23		0.656	
J37		0.640	
J38		0.625	
J31			0.695
J34			0.835
J35			0.837

Factor loadings, also called outer loadings, are generally interpreted as factor loadings, and should

range between 0.70 and 0.90 in PLS-SEM analyses (Chin, 2010).

Table 5. Factor Loadings of the Tourism Support Scale After Confirmatory Factor Analysis

	Tourism Knowledge	Decision-Making Influence in Tourism	Tourism-Derived Personal	Trust in Local Government
TS40	0.802			
TS41	0.879			
TS42	0.876			
TS43	0.869			
TS44	0.826			
TS45	0.820			
TS53		0.942		
TS54		0.861		
TS50			0.922	
TS51			0.919	
TS52			0.777	
TS46				0.818
TS47				0.888
TS48				0.876
TS49				0.838

According to Table 5, for newly developed scales, a rho_A value above 0.60 is considered acceptable (Hair et al., 2014). In this analysis, the factor loadings of both the newly developed Geotourism Scale and the Tourism Support Scale exceed 0.60. Indicators

with loadings between 0.60 and 0.70 can be retained in the model if their theoretical importance and the reliability and validity values of the associated constructs are considered (Doğan, 2019).

Table 6. Composite Reliability (CR), Cronbach's Alpha, Rho_A, Construct Reliability, and Average Variance Extracted (AVE) for the Study Variables

Variables	Cronbach Alpha	Rho_a	Rho_c	VIF	Average Variance Extracted (AVE)
Geotourism Awareness	0.702	0.690	0.833	1.47	0.627
Geotourism Satisfactions	0.902	0.905	0.918	1.62	0.507
Geotourism Impacts	0.870	0.873	0.895	1.58	0.462

Table 6 presents the Composite Reliability (CR) and Average Variance Extracted (AVE) values for the factors. CR values should exceed 0.70 (Hair et al., 2011: 145), and AVE values should be 0.40 or higher (Hair

et al., 2019: 9). Reporting CR alongside AVE, with CR greater than AVE, indicates that convergent validity has been achieved (Gürbüz, 2021; Ekinci, 2024).

Table 7 presents the Composite Reliability (CR) and

Table 7. Composite Reliability (CR), Cronbach's Alpha, Rho_A, Construct Reliability, and Average Variance Extracted (AVE) for the Study Variables

Variables	Cronbach Alpha	Rho_a	Rho_c	VIF	Average Variance Extracted (AVE)
Tourism Knowledge	0.920	0.922	0.938	1.72	0.716
Decision-Making Influence in Tourism	0.781	0.879	0.898	1.58	0.815
Tourism-Derived Personal	0.850	0.913	0.907	1.63	0.766
Trust in Local Government	0.885	0.951	0.916	1.69	0.732

Average Variance Extracted (AVE) values for the factors. CR values are expected to exceed 0.70 (Hair et al., 2011: 145), and AVE values should be 0.40 or higher (Hair et al., 2019: 9). Additionally, CR values greater than AVE indicate that convergent validity has been achieved (Gürbüz, 2021; Ekinci, 2024). According to the results in Table 8, all CR values are above 0.70 and all AVE values exceed 0.40, indicating that the scales are both reliable and valid. Mo-

reover, Cronbach's Alpha and rho_A values above 0.60 demonstrate sufficient internal consistency of the constructs. Linearity is first checked using Variance Inflation Factor (VIF = 1/Tolerance), with values below 0.20 or above 5 indicating potential issues. All VIF values are below the recommended threshold of 5.0, indicating that multicollinearity is not a concern in the structural model (Hair et al., 2021).

Table 5. Factor Loadings of the Tourism Support Scale After Confirmatory Factor Analysis

	Geotourism Awareness	Geotourism Impacts	Geotourism Satisfaction	Tourism Knowledge	Decision-Making Influence in Tourism	Tourism-Derived Personal	Trust in Local Government
Geotourism Awareness							
Geotourism Impacts	0.339						
Geotourism Satisfaction	0.453	0.738					
Tourism Knowledge	0.289	0.602	0.703				
Decision-Making Influence in Tourism	0.304	0.218	0.212	0.204			
Tourism-Derived Personal	0.318	0.284	0.322	0.293	0.755		
Trust in Local Government	0.184	0.320	0.352	0.411	0.548	0.324	

Table 8 presents that another value used to assess discriminant validity is the Heterotrait-Monotrait Ratio (HTMT). HTMT represents the ratio of the average correlations between indicators across constructs to the geometric mean of correlations within the same construct (Doğan, 2019: 46–47). HTMT values should be 0.90 or below (Hair et al., 2019: 9). Table 9 presents the HTMT ratios, showing that all values

are below 0.90.

Table 9 presents the Fornell-Larcker criterion values for the variables. Bold values on the diagonal represent the square root of each construct's AVE and should exceed the correlations in the same column. As shown, all correlation coefficients are below the square roots of AVE, indicating that the Fornell-Larcker criterion is satisfied (Hair et al., 2019: 9).

Table 9. Discriminant Validity Results for the Study Variables (Fornell-Larcker Criterion)

	Geotourism Awareness	Geotourism Impacts	Geotourism Satisfaction	Tourism Knowledge	Decision-Making Influence in Tourism	Tourism-Derived Personal	Trust in Local Government
Geotourism Awareness	0.792						
Geotourism Impacts	0.261	0.680					
Geotourism Satisfaction	0.355	0.658	0.712				
Tourism Knowledge	0.231	0.552	0.644	0.846			
Decision-Making Influence in Tourism	0.246	0.186	0.186	0.177	0.903		
Tourism-Derived Personal	0.255	0.254	0.298	0.274	0.581	0.875	
Trust in Local Government	0.170	0.313	0.351	0.412	0.451	0.289	0.856

The mean score for the Geotourism Scale is 4.1420. Participants rated Geotourism Impacts higher than

Geotourism Awareness, indicating overall satisfaction with geotourism development and effects (Table 10).

Table 10. Means for the Geotourism Scale

	n	Mean	Standard Deviation
Geotourism Scale	402	4.1420	.53587
Geotourism Awareness	402	3.7330	.86175
Geotourism Satisfaction	402	4.1628	.64950
Geotourism Impacts	402	4.2418	.57962

Table 11. Means for the Tourism Support Scale

	n	Mean	Standard Deviation
Tourism Support Scale	402	3.8580	.68567
Tourism Knowledge	402	4.2886	.76476
Tourism-Derived Personal	402	3.4768	1.05993
Decision-Making Influence in Tourism	402	3.1766	1.17323
Trust in Local Government	402	3.8389	1.15682

The mean score for the Tourism Support Scale is 3.8580, indicating participants' support for tourism. The Tourism Knowledge subdimension has the highest mean, suggesting strong local knowledge. Ot-

her means follow in the order of trust in local government, tourism derived personal, and influence over tourism decision (Table 11).

Table 12. R² Values for the Study Variables

	R²	Düzeltilmiş R²
Tourism Knowledge	0.444	0.440
Decision-Making Influence in Tourism	0.078	0.071
Tourism-Derived Personal	0.119	0.113
Trust in Local Government	0.137	0.131

The R² value indicates the proportion of variance in an endogenous variable explained by exogenous variables. Values of 0.25, 0.50, and 0.75 are considered weak, moderate, and strong, respectively (Sastedt et al., 2017), although in some cases 0.10 may be acceptable (Doğan, 2019). The R² values for the

study variables are presented in Table 12. As shown, 44% of Tourism Knowledge, 7.1% Decision-Making Influence in Tourism, 11.3% of Tourism-Derived Personal, and 13.1% of Trust in Local Government are explained.

Table 13. f² Effect Sizes for the Study Variables

Relationships Among Variables	f²
Geotourism Awareness → Tourism Knowledge	0.000
Geotourism Awareness → Decision-Making Influence in Tourism	0.039
Geotourism Awareness → Tourism-Derived Personal	0.028
Geotourism Awareness → Trust in Local Government	0.002
Geotourism Satisfaction → Tourism Knowledge	0.235
Geotourism Satisfaction → Decision-Making Influence in Tourism	0.001
Geotourism Satisfaction → Tourism-Derived Personal	0.019
Geotourism Satisfaction → Trust in Local Government	0.036
Geotourism Impacts → Tourism Knowledge	0.053
Geotourism Impacts → Decision-Making Influence in Tourism	0.007

Geotourism Impacts → Tourism-Derived Personal	0.006
Geotourism Impacts → Trust in Local Government	0.013

The f^2 effect size is calculated for each exogenous variable, indicating its contribution to the explained variance of the endogenous variable (Doğan, 2019). f^2 values for the study variables are presented in Table 13. Values of 0.02–0.15 indicate small effects, 0.16–0.35 medium effects, and above 0.35

large effects (Cohen, 1988). If no linearity problem exists, path coefficients are examined along with t and p values. Bootstrapping was applied for hypothesis testing, and path coefficients (O), means (M), standard deviations, t, and p values are presented in the table.

Table 14. Path Coefficients for the Research Variables

Variables	Path Coefficient (O)	Mean Values (M)	Standard Deviation	t Values	p Values
Geotourism Awareness → Tourism Knowledge	-0.005	-0.005	0.045	0.112	0.910
Geotourism Awareness → Decision-Making Influence in Tourism	0.203	0.207	0.058	3.507	0.000*
Geotourism Awareness → Tourism-Derived Personal	0.168	0.171	0.059	2.869	0.004*
Geotourism Awareness → Trust in Local Government	0.047	0.049	0.052	0.908	0.364
Geotourism Impacts → Tourism Knowledge	0.227	0.231	0.060	3.762	0.000*
Geotourism Impacts → Decision-Making Influence in Tourism	0.103	0.103	0.067	1.526	0.127
Geotourism Impacts → Tourism-Derived Personal	0.093	0.092	0.076	1.231	0.218
Geotourism Impacts → Trust in Local Government	0.143	0.140	0.083	1.713	0.087
Geotourism Satisfaction → Tourism Knowledge	0.497	0.497	0.056	8.845	0.000*
Geotourism Satisfaction → Decision-Making Influence in Tourism	0.046	0.049	0.071	0.650	0.516
Geotourism Satisfaction → Tourism-Derived Personal	0.176	0.181	0.078	2.268	0.023*
Geotourism Satisfaction → Trust in Local Government	0.241	0.247	0.079	3.033	0.002*

*p<0.05

Geotourism awareness was found to be positively associated with tourism decisions ($\beta = 0.203$, $p < 0.05$) and tourism derived personal ($\beta = 0.168$, $p < 0.05$). Geotourism impacts were positively linked to tourism knowledge ($\beta = 0.227$, $p < 0.05$). Additionally, geotourism satisfaction was positively associated with tourism knowledge ($\beta = 0.497$, $p < 0.05$), tourism derived personal ($\beta = 0.176$, $p < 0.05$), and trust in local governance ($\beta = 0.241$, $p < 0.05$) (Table 14).

Supported hypotheses indicate that geotourism awareness is positively associated with tourism decision-making power and tourism derived personal, explaining 16% of the variance in decision-making influence. No significant relationship was found

between geotourism awareness and tourism knowledge or trust in local governance. A positive relationship exists between geotourism awareness and both tourism decision-making and tourism derived personal: as awareness increases, so do decision-making power and tourism derived personal. Geotourism impacts are positively linked to tourism knowledge, explaining 22% of its variance, while no significant associations were found with tourism decision-making, tourism derived personal, or trust in local governance. Geotourism satisfaction is strongly associated with tourism knowledge (49% variance explained), tourism derived personal (17%), and trust in local governance (24%). Positive associations were

observed between satisfaction and all three outcomes, confirming the related hypotheses. Overall, higher geotourism satisfaction corresponds to greater tourism knowledge, enhanced tourism derived personal, and increased trust in local governance.

5.2. Study 2. Qualitative Analysis Findings

In the qualitative study, the participant list and the

findings were examined in detail. Themes and sub-themes were developed and visualized for the qualitative analysis. Participants included representatives from JEMİRKO (Geological Heritage Conservation Association), Yatağan Municipality, Muğla Chamber of Commerce, Menteşe Municipality, Muğla Metropolitan Municipality, NGOs, local residents living near the study area, and academics from Muğla Sıtkı Koçman University.

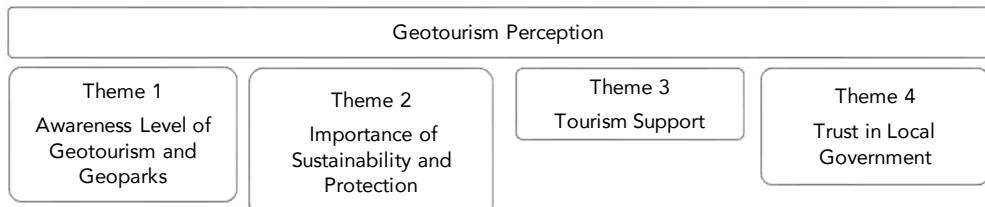


Figure 2. Conceptual Model of the Qualitative Study

Figure 2 shows the themes that emerged after the content analysis. Most participants in the qualitative study demonstrated conceptual knowledge of geo-

parks and geotourism, defining these concepts from nature, tourism, and conservation perspectives.

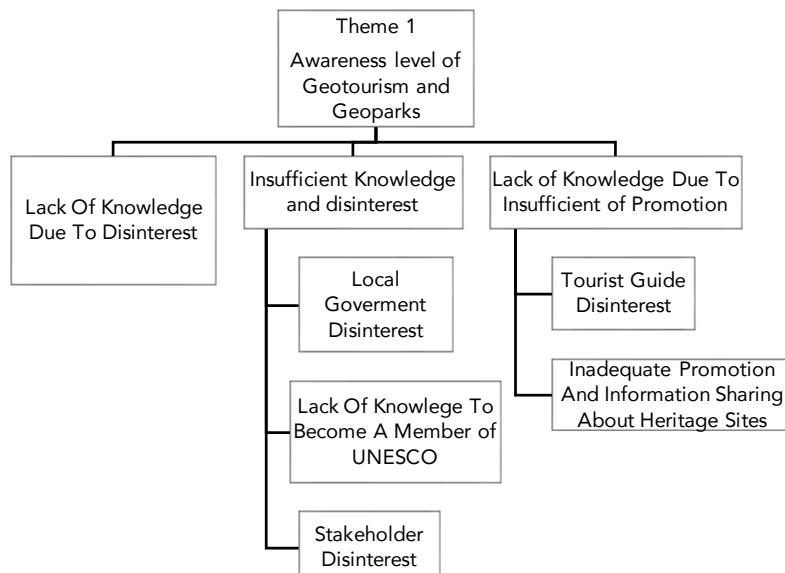


Figure 3. Sub-Themes on the Reasons for the Low Level of Awareness Regarding Geotourism and Geoparks

Responses regarding geotourism activities indicated that the majority were willing to participate, including those who had not yet visited the area but expressed interest. It was noted that local NGOs recognize the need for conservation, and field visits

were conducted. Participants who visited the area, whether for leisure or by chance, expressed interest in returning, while others were more actively engaged in the site (Figure 3).

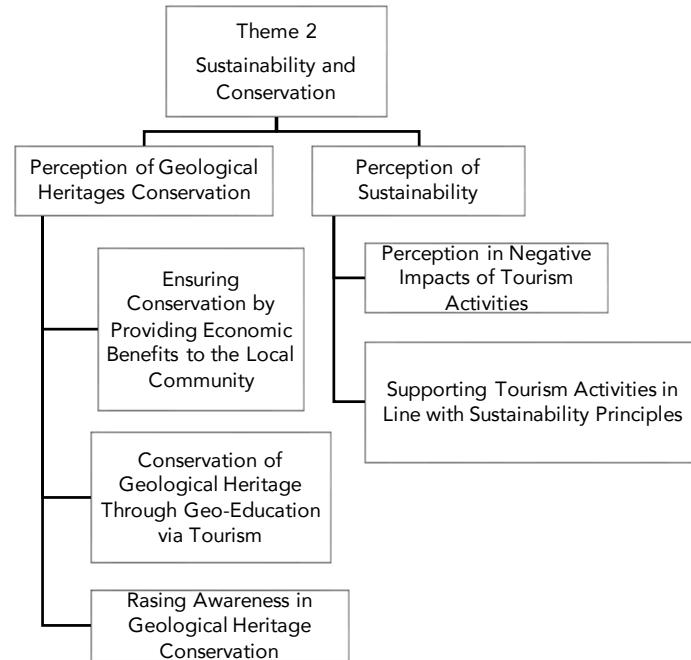


Figure 4. Theme of Sustainability and Conservation

In Theme 2, interview questions aimed to identify views on sustainability and conservation were divided into sub-themes covering the protection of geological and natural heritage, the relationship between geotourism and sustainability, the scientific and visual value of Gökböl Valley, and awareness of threats to its existence. No negative feedback was reported regarding the idea of opening the area to tourism to ensure its conservation and sustainability. Participants recognized a link between geotourism activities and sustainability, agreeing that controlled visitation and protection by local authorities are

essential. Most emphasized the significant role of tourism in the area's sustainability, reflecting strong awareness of the relationship between tourism and sustainability. Participants were also knowledgeable about the unique value of Gökböl Valley, highlighting its visual, historical, and cultural significance. Overall, participants consistently pointed to insufficient promotion and the disinterest of local authorities and stakeholders as key factors hindering geotourism development and awareness in the region (Figure 4).

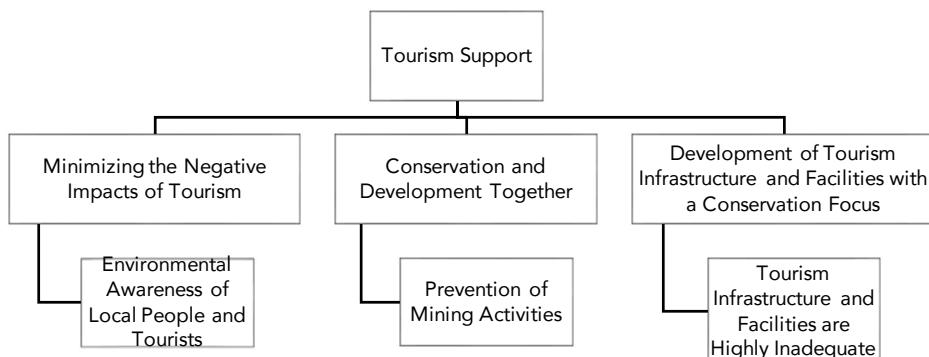


Figure 5. Theme of Tourism Support

Participants expressed positive views on opening the geopark to tourism, viewing it as an opportunity if supported by proper management for conservation and sustainability. Efforts should aim to strengthen the link between sustainability, geo-education, and awareness, using tourism as a tool to unite people under a sustainable tourism framework.

While participants recognized geotourism's role in conserving geological heritage, they expressed con-

ditional concerns regarding sustainability and protection. Raising awareness among local communities, tourists, and businesses is essential; once achieved, tourism can be seen as an opportunity to support conservation. Stakeholders agreed that completing the geopark project would benefit the region, with concerns primarily relating to site management (Figure 5).

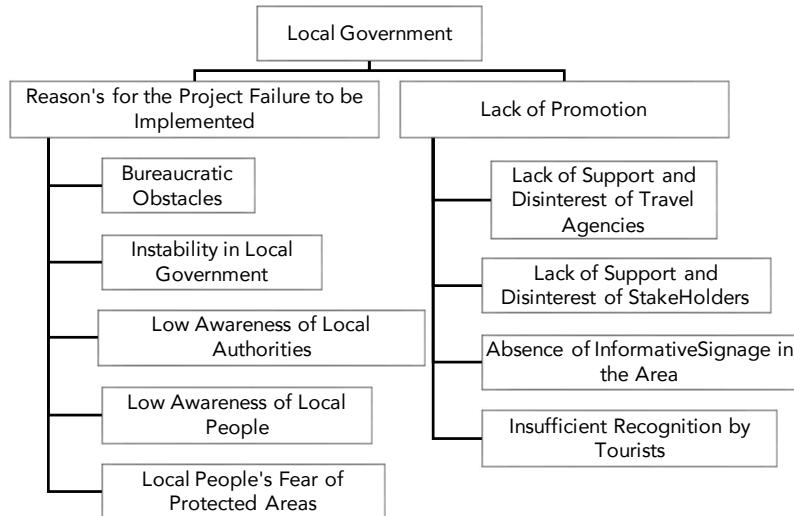


Figure 6. Local Government

The project's failure to be implemented is primarily attributed to the disinterest and lack of knowledge of local authorities and stakeholders. Bureaucratic obstacles and long-standing issues with private land ownership were also highlighted. About 84.6% of participants reported that local authorities do not give sufficient attention to the geopark, and 69.2% noted its low recognition. To improve awareness and support, measures suggested include informing local hotels, raising community awareness, producing promotional materials, organizing tours, removing bureaucratic barriers, and increasing academic studies and projects (Figure 6).

6. Discussion

The analysis revealed that geotourism awareness significantly and positively affects tourism decision-making, tourism derived personal, and tourism knowledge. These findings align with Social Exchange Theory (SET), as residents perceive personal and community benefits from geotourism, which reinforces their willingness to support tourism development (Albayrak & Kirova, 2020; Gonzales et al., 2018). The qualitative data further highlighted that participants visited the area for educational trips, photography, and conservation purposes, describing the experience as "completely enchanting" and expressing a unanimous desire to return. This demonstrates the interplay between perceived benefits and behavioral intention, a core principle of SET.

The geotourism impacts dimension was positively associated with tourism knowledge and tourism derived personal. These results suggest that when residents experience tangible and intangible impacts from tourism, such as environmental awareness or economic opportunities, they are more likely to support sustainable practices. Qualitative findings corroborated this, showing that locals acknowledged the value of the geopark's natural heritage while identifying threats from mining and insufficient

conservation. The combined quantitative and qualitative evidence underscores that local perceptions of geotourism impacts are closely linked to support, consistent with prior studies (Choi & Murray, 2010; Stylidis et al., 2014; Boğan & Sarışık, 2016).

Residents' satisfaction with geotourism was positively associated with trust in local governance and willingness to participate in tourism-related decisions. This finding integrates both SET and Stakeholder Theory, suggesting that perceived fairness in benefit distribution and inclusive governance structures are crucial for sustainable geotourism. Participants reported limited knowledge of local initiatives by authorities but expressed strong support for tourism development, indicating that community engagement and transparent management are essential to enhance both satisfaction and trust (Çiçek & Sarı, 2018; Tür, 1999). The convergent mixed-methods design revealed complementary insights. Quantitative results quantified the relationships between geotourism dimensions and tourism support, while qualitative interviews contextualized these effects, illustrating residents' motivations, concerns, and experiential perceptions. This integration not only validates the geotourism scale but also provides a holistic understanding of local support mechanisms, emphasizing the necessity of participatory approaches and multi-stakeholder governance in geotourism development.

7. Theoretical Implications

This study contributes to tourism and geotourism research by developing a validated geotourism scale, integrating both quantitative and qualitative findings to provide a comprehensive understanding of residents' perceptions and support. It extends Social Exchange Theory by demonstrating how residents' awareness and satisfaction with geotourism influence engagement, trust in local governance, and personal benefits from tourism. Additionally,

by incorporating Stakeholder Theory, the study highlights the importance of multi-actor collaboration in managing and conserving geoheritage, bridging gaps between tourism development, environmental conservation, and community empowerment.

8. Practical Implications

The study demonstrates that residents recognize the importance of geotourism for sustainable development, yet geotourism knowledge remains limited, and project support from authorities is insufficient. Both quantitative and qualitative results indicate strong local support for tourism, highlighting the need for enhanced engagement by local governments and stakeholders.

- Guidance and Infrastructure: Establish walking trails, signage, and viewing platforms within the geopark to enhance visitor experience while protecting geological heritage.
- Education and Awareness: Conduct school visits, workshops, and local community campaigns to raise awareness of geotourism and conservation.
- Communication and Promotion: Increase visibility and engagement through local websites, brochures, and tourism partnerships.
- Management and Participation: Form a multi-stakeholder Geopark Management Board including municipalities, universities, NGOs, tourism enterprises, and provincial authorities to coordinate management and promotion.
- Tourist Guiding and Participatory Rules: Train tourist guides and develop visitor behavior guidelines through a participatory process to support sustainable tourism.
- Sustained Promotion and Communication: Update digital and print promotion tools and strengthen local partnerships during the medium term.
- Strategic Planning and Investment: Prepare for UNESCO Geopark designation, establish sustainable funding mechanisms, and plan infrastructure.
- Conservation and Monitoring: Implement continuous monitoring and evaluation protocols to ensure long-term geological and environmental protection.
- Interdisciplinary Projects: Develop projects that foster collaboration between academia and industry to strengthen both tourism and conservation outcomes.

This integrated roadmap provides concrete steps for geopark management, offering quick wins in the short term while enhancing long-term sustainability and community engagement. The findings confirm that integrating Social Exchange and Stakeholder Theory provides a robust framework for understanding and fostering local support in geotourism.

9. Limitations and Future Research

This study has several limitations that should be acknowledged. First, it was conducted in a single geopark region, which may limit the generalizability of the findings to other geotourism destinations. Second, although a mixed-methods design was employed, data were collected simultaneously, which may affect causal interpretations. Third, the study focused primarily on local residents and stakeholders, and did not include tourists' perspectives, which could provide additional insights into geotourism development and management.

A limitation of the study is that SRMR (Standardized Root Mean Square Residual) and Q^2 (predictive relevance) could not be reported due to model specifications. However, based on the available statistical evidence—including CFA factor loadings, Composite Reliability, Cronbach's Alpha, ρ_A , AVE, R^2 , f^2 , HTMT, and Fornell-Larcker criteria—limited but robust inferences about the model's adequacy can still be made. These results indicate that the model reliably represents the relationships among variables and that the measurement instruments are valid and consistent (Hair et al., 2011; Doğan, 2019).

Future research could apply the developed geotourism scale to other regions, investigate the influence of demographic and socio-economic factors on residents' perceptions and attitudes, and examine the interrelationships among tourism support, sustainability practices, and governance strategies. Longitudinal studies could also provide deeper insights into changes in awareness, satisfaction, and engagement over time, further informing evidence-based policy-making and stakeholder collaboration in geotourism management. Future research could focus on the longitudinal tracking of awareness and trust, experimental geo-education interventions, and comparative studies across multiple geoparks.

Ethical Statement

This study received ethical approval from the Ethics Committee of Muğla Sitki Koçman University. The approval was granted on October 26, 2021, under the decision number 09. All procedures performed in the study involving human participants were conducted in accordance with the ethical standards of the institutional research committee and the principles of the Declaration of Helsinki.

Author Contributions Statement: The conception and design of this study were carried out by the corresponding author. All authors actively contributed to the processes of data collection, analysis, and interpretation. The initial draft of the manuscript was prepared by the corresponding author, and all authors contributed to the critical revision and further development of the content. The final version to be published has been read and approved by all

authors. All authors agree to be accountable for all aspects of the work.

Disclosure statement: No potential conflict of interest was reported by the author(s).

Funding Statement: No funding was received for this research.

References

Acuner, E., & Aydin, E. U. (2022). Yerel halkın alternatif bir turizm türü olarak heliski turizmine yönelik algısının heliski turizmi destekine etkisi: Rize örneği. *Alanya Akademik Bakış*, 6(1), 1757–1781.

Akova, O. (2014). Yerel halkın turizmin etkilerini algılamalarına ve tutumlarına yönelik bir araştırma. *Akademik İncelemeler Dergisi*, 1(2), 77–109.

Aksu, G., Eser, M. T., & Güzeller, C. O. (2017). Açımlayıcı ve doğrulayıcı faktör analizi ile yapısal eşitlik modeli uygulamaları [Structural equation modeling applications with exploratory and confirmatory factor analysis]. Ankara: Detay Yayıncılık.

Altunışık, R., Coşkun, R., Bayraktaroğlu, S., & Yıldırım, E. (2010). Sosyal bilimlerde araştırma yöntemleri SPSS uygulamalı. Sakarya: Sakarya Yayıncılık.

Ayazlar, R. A., & Ayazlar, G. (2016). Yerel halkın turizmin etkilerine yönelik tutumunda aidiyet duygusu ve yaşam tatmininin rolü. *Atatürk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi*, 20(4), 1451–1470.

Baltacı, F. (2020). Turizmin sürdürülebilir gelişiminde yerel halkın davranışsal rolü, çevresel tutumu ve verdiği destek arasındaki ilişki: Alanya örneği. *Journal of Economy, Culture and Society*, 63, 213–236.

Buzlukçu, C., & Avcıktır, C. (2020). Yavaş şehirlerde yerel halkın yer kimliği ve topluluğa bağlılıklarının sürdürülebilir turizm tutumlarına etkisi: Seferihisar'da bir araştırma. *Pamukkale Üniversitesi Sosyal Bilimler Enstitüsü Dergisi*, 43, 117–138.

Bramwell, B., & Lane, B. (2011). Critical research on the governance of tourism and sustainability. *Journal of Sustainable Tourism*, 19(4–5), 411–421.

Brilha, J. (2016). Inventory and Quantitative Assessment of Geo-sites and Geodiversity Sites: A Review. *Geoheritage*, 8, 119–134.

Büyüköztürk, Ş. (2017). Sosyal bilimler için veri analizi el kitabı. Ankara: Pegem Akademik Yayıncılık.

Byrd, E. T. (2007). Stakeholders in sustainable tourism development and their roles: Applying stakeholder theory to sustainable tourism development. *Tourism Review*, 62(2), 6–13.

Cárdenas, D. A., Byrd, E. T., & Duffy, L. N. (2015). An exploratory study of community awareness of impacts and agreement to sustainable tourism development principles. *Tourism and Hospitality Research*, 1–13.

Choi, H. C., & Murray, I. (2010). Resident attitudes toward sustainable community tourism. *Journal of Sustainable Tourism*, 18(4), 575–594.

Cohen, J. (1988). *Statistical Power Analysis for the Behavioral Sciences* (2. ed.). Hillsdale, NJ: Lawrence Erlbaum Associates.

Creswell, J. W. (1999). Mixed-method research. *Handbook of Educational Policy*, 455–472.

Creswell, J. W. (2013). *Research design: Qualitative, quantitative, and mixed methods approaches* (4th ed.). Thousand Oaks, CA: Sage.

Çalışkan, U., & Özer, Ö. (2014). Yerel halkın turizme karşı tutumu: Kuşadası ilçesinde karşılaştırmalı bir uygulama. *Dokuz Eylül Üniversitesi İşletme Fakültesi Dergisi*, 15(2), 117–133.

Çalışkan, U., Özer, Ö., & Tütüncü, Ö. (2018). Yerel halkın turizme bakış açısı ve turizm planlamasına etkisi. *Kuşadası Peyzaj Değerleri*.

Çalışkan, U., & Özer, Ö. (2022). Turizm çeşidi ve destinasyonun gelişmişliği ile yerel halkın algıları ve destek tutumları arasındaki ilişki: Karşılaştırmalı bir araştırma. *Güncel Turizm Araştırmaları Dergisi*, 6(1), 28–52.

Çiçek, D. (2017). Bir kalkınma modeli olarak sakin şehirlerde yerel halkın turizm desteği: Ege-Marmara bölgesi örneği (Doctoral dissertation, Eskisehir Osmangazi Üniversitesi, Eskisehir).

Çiçek, D., & Sarı, Y. (2018). Yerel halkın turizme olan desteği: Türkiye'deki sakin şehirler üzerine bir araştırma. *Anatolia: Turizm Araştırmaları Dergisi*, 29(2), 185–196.

Derinöz, B. (2021). Towards a new tourism approach: Bafa (Latmos) geotourism area. *Kültür Araştırmaları Dergisi*, 9, 309–337.

Doğan, D. (2019). SmartPLS ile veri analizi. Ankara: Zet Yayınları.

Doxey, G. V. (1975). A causation theory of visitor-resident irritants: Methodology and research inferences. *The Impact of Tourism*, 195–198.

Ekici, R., & Çizel, B. (2015). Yerel halkın turizm gelişimi destekine ilişkin tutumlarının destinasyonların gelişme düzeylerine göre farklılıklar. *Seyahat ve Otel İşletmeciliği Dergisi*, 11(3).

Ekinci Demirelli, A. (2024). Kadın hekimlerde iş-yaşam dengesi ölçünün yapı geçerliliğinin doğrulayıcı faktör analizi ile incelenmesi. *Uluslararası Yönetim İktisat ve İşletme Dergisi*, 20(2), 508–531.

Emiroğlu, B. (2023). Yerel halkın turizme yönelik kızgınlık algısının yaşam kalitesi ve turizme verilen destek üzerindeki etkisi: Mardin ili örneği. *Journal of Tourism and Gastronomy Studies*, 11.

Farsani, N. T., Coelho, C. O. A., & Costa, M. M. C. (2013). Rural geotourism: A new tourism product. *Acta Geoturistica*, 4(2), 1–10.

Ferraro, F. X., Schilling, M. E., Baeza, S., Oms, O., & Sá, A. A. (2020). Bottom-up strategy for the use of geological heritage by local communities: Approach in the "Litoral del Biobío" Mining Geopark project (Chile). *Proceedings of the Geologists' Association*.

Freeman, R. E. (1984). *Strategic management: A stakeholder approach*. Boston: Pitman.

González, V. M., Coromina, L., & Espelt, N. G. (2018). Overtourism: Residents' perceptions of tourism impact as an indicator of resident social carrying capacity – Case study of a Spanish heritage town. *Tourism Review*, 73(3), 277–296.

Gordon, J. E. (2018). *Geoheritage, Geotourism and the Geosciences*. *Geoheritage*, 10, 1–2.

Gupta, V., Anand, S., Wei, D., Wang, G., & Tripathi, S. C. (2024). Exploring applied sustainable strategies through geoheritage and geotourism: A systematic literature review. *International Journal of Geoheritage and Parks*, 12(4), 660–677.

Gursoy, D., Jurowski, C., & Uysal, M. (2002). Resident attitudes: A structural modeling approach. *Annals of Tourism Research*, 29(1), 79–105.

Gül, M., & Uslular, G. (2017). Çine (Aydın)-Yatağan (Muğla) arası Menderes Masifinde gözlenen jeomorfolojik yapılar. *Mavi Gelegen*, 22, 38–47.

Güney, S. (2019). Turizmde psikososyal bileşenler: Yerel halkın algı, tutum ve davranışları. *Turizm Çalışmaları Dergisi*, 1(1), 29–36.

Gürbüz, S. (2021). AMOS ile yapısal eşitlik modellemesi. Ankara: Seçkin.

Gürsay, M. S., & Güneş, S. G. (2014). Jeoturizm ve sürdürülebilirlik: Kızılcahamam – Çamlıdere Jeoparkı örneği. *Ankara Araştırmaları Dergisi*, 2(2), 203–215.

Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. *Journal of Marketing Theory and Practice*, 19(2), 139–151.

Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2014). *Exploratory factor analysis*. Multivariate Data Analysis. Prentice Hall.

Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). *Çok değişkenli veri analizi* (8th ed.). Londra: Cengage Learning.

Henriques, M. H., & Brilha, J. (2023). *Geotourism and geoparks as drivers for community empowerment and sustainable development*. *Geoheritage*, 15(2), 37.

Johnson, R. B., & Onwuegbuzie, A. J. (2004). Mixed methods research: A research paradigm whose time has come. *Educational Researcher*, 33(7), 14–26.

Jurowski, C., Uysal, M., & Williams, R. D. (1997). A theoretical analysis of host community resident reactions to tourism. *Journal of Travel Research*, 36(2), 3–11.

Kement, Ü., & Demirci, B. (2017). Ekolojik farkındalıkın çevre dostu rekreasyon davranışına etkisi: Turizm eğitimi alan öğrenciler üzerine bir araştırma. *Seyahat ve Otel İşletmeciliği Dergisi*, 135–148.

Khodayar, S. (2018). Residents' perceptions of geotourism in Qeshm Island UNESCO Global Geopark, Iran. *Edith Cowan University King, B., Pizam, A. and Milman, A. (1993). Social impacts of tourism: Host perceptions. Annals of Tourism Research*, 20(4), 650-665.

Louis, A. A., Talib, H., & Chan, J. K. L. (2025). Benefits of geopark from the perspective of local communities: A case study of Kinabalu UNESCO Global Geopark, Malaysia. *International Journal of Geoheritage and Parks*, 13(4), 534–546.

Moswete, N., Thapa, B., & Darley, W. K. (2020). Local communities' attitudes and support towards the Kgalagadi Transfrontier Park in Southwest Botswana. *Sustainability*, 12(4), 1524.

Ruban, D. A. (2015). Geotourism—A geographical review of the literature. *Tourism Management Perspectives*, 15, 1–15.

Ruban, D. A. (2021). Geotourism and local communities: Principles, prospects, and challenges. *Geosciences*, 11(7), 283.

Sarstedt, M., Ringle, C.M. and Hair, J. F. (2017). Partial least squares structural equation modelling. In C. Hoburg, M. Klarmann & A. Vomberg (Eds.). *Handbook of market research*. Heidelberg: Springer.

Shahhoseini, H., Modabberi, S., & Shahabi, M. (2016). Study of factors influencing the attitude of local people toward geotourism development in Qeshm National Geopark, Iran. *Geoheritage*, 9(1), 35–48.

Shao, A. T. (2002). *Marketing research: An aid to decision making*. Cincinnati, OH: South-Western/Thomson Learning.

Styliidis, D., Biran, A., Sit, J., & Szivas, E. (2014). Residents' support for tourism development: The role of residents' place image and perceived tourism impacts. *Tourism Management*, 45, 260–274.

Tunçay, M. (2011). İlköğretim 7. sınıf öğrencilerinin Yatağan Jeoparkı projesine yönelik yaşıntı ve tutumları (Yayınlanmamış yüksek lisans tezi). Mehmet Akif Ersoy Üniversitesi, Sosyal Bilimler Enstitüsü, Burdur.

Tür, Ş. (1999). Yerel yönetimler ve turizme etkileri. *Öneri Dergisi*, 2(12), 159–161.

Türkmen, S., & Saatci, G. (2020). Yer bağlılığı, turizmin algılanan etkileri ve turizmin gelişimine destek olma tutumu arasındaki ilişki: Mordoğan örneği. *AHBVÜ Turizm Fakültesi Dergisi*, 23(2), 237–255.

Waligo, V. M., Clarke, J., & Hawkins, R. (2013). Implementing sustainable tourism: A multi-stakeholder involvement management framework. *Tourism Management*, 36, 342–353.

Yazıcı, Ö. (2017). Jeomirasa ilişkin öz-yeterlik algısı ölçüği geliştirme çalışması: A developmental study of self-efficacy perception scale for geoheritage. *ZfWT*, 9(1), 81–102.