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ENERGY CONDITIONS FOR SOME HAMILTONIAN

PROPERTIES OF GRAPHS

Rao Li

The energy of a graph is defined as the sum of the absolute values of the

eigenvalues of the graph. In this note, we present energy conditions for some

Hamiltonian properties of graphs.

1. INTRODUCTION

All the graphs considered in this note are undirected graphs without loops or
multiple edges. Notation and terminology not defined here follow those in [1]. Let
G be a graph of order n with e edges. We use δ = δ(G) and ∆ = ∆(G) to denote
the minimum and maximum degrees of G, respectively. The 2-degree, denoted t(v),
of a vertex v in G is defined as the sum of degrees of vertices adjacent to v. We
use T = T (G) to denote the maximum 2-degree of G. Obviously, T (G) ≤ (∆(G))2.
A bipartite graph G is called semiregular if all the vertices in the same vertex part
of a bipartition of the vertex set of G have the same degree. The independence
number, denoted α = α(G), is defined as the size of the largest independent set in
G. The eigenvalues µ1(G) ≥ µ2(G) ≥ ... ≥ µn(G) of the adjacency matrix A(G) of
G are called the eigenvalues of G. The spread, denoted Spr(G), of G is defined as
µ1(G)− µn(G). The energy, denoted Eng(G), of G is defined as

∑n
i=1 |µi(G)| (see

[5]). A cycle C in a graph G is called a Hamiltonian cycle of G if C contains all the
vertices of G. A graph G is called Hamiltonian if G has a Hamiltonian cycle. A
path P in a graph G is called a Hamiltonian path of G if P contains all the vertices
of G. A graph G is called traceable if G has a Hamiltonian path. In this note,
we will present energy conditions for Hamiltonicity and traceability of graphs. The
main results are as follows.
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Theorem 1. Let G be a k-connected (k ≥ 2) graph with n ≥ 3 vertices and e
edges. If

Eng(G) ≥ 2
√
e+

√
2(n− 2)

(
e+

√
T dn

2
e bn

2
c − 2δ2(k + 1)

n− k − 1

)
,

then G is Hamiltonian or G is Kk, k+1 with n = 2k + 1.

Theorem 2. Let G be a k-connected graph with n ≥ 2 vertices and e edges. If

Eng(G) ≥ 2
√
e+

√
2(n− 2)

(
e+

√
T dn

2
e bn

2
c − 2δ2(k + 2)

n− k − 2

)
,

then G is traceable.

2. LEMMAS

In order to prove Theorems 1 and 2, we need the following lemmas. Lemma
1 below is Theorem 1.5 on Page 26 in [4].

Lemma 1. [4] For a graph G with n vertices and e edges,

Spr(G) ≤ µ1 +
√

2e− µ2
1 ≤ 2

√
e.

Equality holds throughout if and only if equality holds in the first inequality; equiv-
alently, if and only if e = 0 or G is Ka, b for some a, b with e = ab and a+ b ≤ n.

Lemma 2 below is Corollary 3.4 on Page 2731 in [7].

Lemma 2. [7] Let G be a graph. Then Spr(G) ≥ 2δ
√

α(G)
n−α(G) . If equality holds,

then G is a semiregular bipartite graph.

Lemma 3 is Theorem 1 on Page 5 in [2].

Lemma 3. [2] Let G be a connected graph. Then µ1 ≤
√
T (G) with equality if

and only if G is either a regular graph or a semiregular bipartite graph.

Lemma 4 follows from Proposition 2 on Page 174 in [3].

Lemma 4. [3] Let G be a graph. Then µn ≥ −
√
dn2 e b

n
2 c with equality if and only

if G is Kdn2 e,b
n
2 c.
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3. PROOFS

Proof of Theorem 1. Let G be a graph satisfying the conditions in Theorem
1. Suppose, to the contrary, that G is not Hamiltonian. Since G is k-connected
(k ≥ 2), G has a cycle. Choose a longest cycle C in G and give an orientation
on C. Since G is not Hamiltonian, there exists a vertex u0 ∈ V (G) − V (C). By
Menger’s theorem, we can find s (s ≥ κ) pairwise disjoint (except for u0) paths
P1, P2, ..., Ps between u0 and V (C). Let vi be the end vertex of Pi on C, where
1 ≤ i ≤ s. Without loss of generality, we assume that the appearance of v1, v2, ...,
vs agrees with the orientation of C. We use v+

i to denote the successor of vi along
the orientation of C, where 1 ≤ i ≤ s. Since C is a longest cycle in G, we have
that v+

i 6= vi+1, where 1 ≤ i ≤ s and the index s + 1 is regarded as 1. Moreover,
S := {u0, v

+
1 , v

+
2 , ..., v

+
s } is independent (otherwise G would have cycles which are

longer than C). Then α ≥ s+ 1 ≥ k + 1.

Some proof techniques in [6] will be used in the remainder of the proofs.
From Cauchy-Schwarz inequality, we have that

Eng(G) =

n∑
i=1

|µi| = |µ1|+ |µn|+
n−1∑
i=2

|µi|

≤ µ1 − µn +

√√√√(n− 2)

n−1∑
i=2

µ2
i

= µ1 − µn +

√√√√(n− 2)

(
n∑
i=1

µ2
i − µ2

1 − µ2
n

)

= µ1 − µn +
√

(n− 2)(2e− (µ1 − µn)2 − 2µ1µn).

Then by Lemmas 1, 2, 3, 4, α ≥ k+1 and assumptions of Theorem 1, we have that

2
√
e+

√
2(n− 2)

(
e+

√
T dn

2
e bn

2
c − 2δ2(k + 1)

n− k − 1

)
≤ Eng(G) ≤

2
√
e+

√
(n− 2)

(
2e+ 2

√
T dn

2
e bn

2
c − 4δ2α

n− α

)

≤ 2
√
e+

√
2(n− 2)

(
e+

√
T dn

2
e bn

2
c − 2δ2(s+ 1)

n− s− 1

)

≤ 2
√
e+

√
2(n− 2)

(
e+

√
T dn

2
e bn

2
c − 2δ2(k + 1)

n− k − 1

)
.
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Thus

Eng(G) = 2
√
e+

√
2(n− 2)

(
e+

√
T dn

2
e bn

2
c − 2δ2(k + 1)

n− k − 1

)
.

Therefore, µ2 = · · · = µn−1, Spr(G) = 2
√
e = 2δ

√
α

n−α , α = s+ 1 = k+ 1, µ1 = T ,

and µn = −
√
dn2 e b

n
2 c. In view of Lemmas 1, 2, 3, 4, we have that S is a largest

independent set of size α = k + 1 and G is Kdn2 e,b
n
2 c.

If n is even, then G is Kr, r where n = 2r for some integer r ≥ 2. Thus
r = α = k + 1 and G is Hamiltonian, a contradiction.

If n is odd, then G is Kr, r+1 where n = 2r + 1 for some integer r ≥ 2. Thus
r + 1 = α = k + 1 and G Kk, k+1 with n = 2k + 1.

This completes the proof of Theorem 1. �

Proof of Theorem 2. Let G be a graph satisfying the conditions in Theorem 2.
Suppose, to the contrary, that G is not traceable. Choose a longest path P in G
and give an orientation on P . Let x and y be the two end vertices of P . Since G
is not traceable, there exists a vertex u0 ∈ V (G) − V (P ). By Menger’s theorem,
we can find s (s ≥ k) pairwise disjoint (except for u0) paths P1, P2, ..., Ps between
u0 and V (P ). Let vi be the end vertex of Pi on P , where 1 ≤ i ≤ s. Without
loss of generality, we assume that the appearance of v1, v2, ..., vs agrees with the
orientation of P . Since P is a longest path in G, x 6= vi and y 6= vi, for each i with
1 ≤ i ≤ s, otherwise G would have paths which are longer than P . We use v+

i to
denote the successor of vi along the orientation of P , where 1 ≤ i ≤ s. Since P
is a longest path in G, we have that v+

i 6= vi+1, where 1 ≤ i ≤ s − 1. Moreover,
S := {u0, v

+
1 , v

+
2 , ..., v

+
s , x} is independent (otherwise G would have paths which

are longer than P ). Then α ≥ s+ 2 ≥ k + 2.

Using the proofs which are similar to the ones in Proof of Theorem 1, we
have that

2
√
e+

√
2(n− 2)

(
e+

√
T dn

2
e bn

2
c − 2δ2(k + 2)

n− k − 2

)
≤ Eng(G) ≤

2
√
e+

√
(n− 2)

(
2e+ 2

√
T dn

2
e bn

2
c − 4δ2α

n− α

)

≤ 2
√
e+

√
2(n− 2)

(
e+

√
T dn

2
e bn

2
c − 2δ2(s+ 2)

n− s− 2

)
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≤ 2
√
e+

√
2(n− 2)

(
e+

√
T dn

2
e bn

2
c − 2δ2(k + 2)

n− k − 2

)
.

Thus

Eng(G) = 2
√
e+

√
2(n− 2)

(
e+

√
T dn

2
e bn

2
c − 2δ2(k + 2)

n− k − 2

)
.

Therefore, µ2 = · · · = µn−1, Spr(G) = 2
√
e = 2δ

√
α

n−α , α = s+ 2 = k+ 2, µ1 = T ,

and µn = −
√
dn2 e b

n
2 c. In view of Lemmas 1, 2, 3, 4, we have that S is a largest

independent set of size α = k + 2 and G is Kdn2 e,b
n
2 c.

If n is even, then G is Kr, r where n = 2r for some integer r. Thus r = α =
k + 2 and G is traceable, a contradiction.

If n is odd, then G is Kr, r+1 where n = 2r + 1 for some integer r. Thus
r + 1 = α = k + 2 and G is Kk+1, k+2 with n = 2k + 3 and G is traceable, a
contradiction.

This completes the proof of Theorem 2. �

Notice that µ1 ≤
√
T ≤ ∆ and G is regular when µ1 = ∆. Thus Theorem 1

and Theorem 2 have the following Corollary 1 and Corollary 2, respectively.

Corollary 1. Let G be a k-connected (k ≥ 2) graph with n ≥ 3 vertices and e
edges. If

Eng(G) ≥ 2
√
e+

√
2(n− 2)

(
e+

√
∆ dn

2
e bn

2
c − 2δ2(k + 1)

n− k − 1

)
,

then G is Hamiltonian.

Corollary 2. Let G be a k-connected graph with n ≥ 2 vertices and e edges. If

Eng(G) ≥ 2
√
e+

√
2(n− 2)

(
e+

√
∆ dn

2
e bn

2
c − 2δ2(k + 2)

n− k − 2

)
,

then G is traceable.
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