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LM -valued equalities, LM -rough approximation
operators and ML-graded ditopologies
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Abstract

We introduce a certain many-valued generalization of the concept of
an L-valued equality called an LM -valued equality. Properties of LM -
valued equalities are studied and a construction of an LM -valued equal-
ity from a pseudo-metric is presented. LM -valued equalities are ap-
plied to introduce upper and lower LM -rough approximation opera-
tors, which are essentially many-valued generalizations of Z. Pawlak's
rough approximation operators and of their fuzzy counterparts. We
study properties of these operators and their mutual interrelations.
In its turn, LM -rough approximation operators are used to induce
topological-type structures, called here ML-graded ditopologies.

Keywords: LM -valued equalities, LM -rough approximation operators, ML-
graded ditopologies.
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1. Introduction

After the inseption of the concepts of an L-valued equality and an L-valued
set by U. Höhle [19], the study of the category of L-valued sets itself, as well
as of di�erent mathematical structures, speci�cally topological and algebraic, on
L-valued sets attracted interest of many researchers, see e.g. [20], [21], [22], [24],
[45] just to mention a few of them. In Section 3 of this paper we introduce the
concept of an LM -valued set (De�nition 3.1), where L is an iccl-monoid (Subsection
2.1.1) and M is an arbitrary in�nitely distributive lattice. An LM -valued set is,
in a certain sense, a many-valued version of the concept of an L-valued set. We
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consider di�erent special kinds of LM -valued equalities, and study their properties
in Section 3 of this paper. Further, in Section 6, we construct an LM -valued
equality Eρ from an ordinary pseudo-metric ρ on a setX and investigate properties
of the obtained LM -valued set (X,Eρ). We consider this construction to be an
important source for creation many examples of LM -valued sets.

Aiming to de�ne a precise mathematical tool which would be appropriate and
e�ective to deal with big data, Z. Pawlak [32] introduced in 1983 the concept of
a rough set. Pawlak's work was followed by many other researches. In particular,
in 1991 D. Dubois and H. Prade [12] published a paper in which fuzzy rough
sets were de�ned. In this way Pawlak's ideas, aimed speci�cally to deal with
the analysis of big data, were alloyed with L. Zadeh' s vision [49] to develop a
precise mathematical tool, which would be appropriate to deal with unprecise
and vague objects. This combination gave rise to a new �eld of mathematical
reserach, the �eld interesting and important both from theoretical and practical
points of view. Namely, we mean the theory of upper and lower fuzzy rough
approximation operators. In this paper, basing on the concept of an LM -valued
set, we introduce a certain many-valued generalization of this theory. It is done
in Section 4 consisting of three subsection: Subsection 4.1 where we de�ne and
study upper LM -rough approximation operators induced by LM -valued equalities,
Subsection 4.2 dealing with lower LM -rough approximation operators induced by
LM -valued equalities, and Subsection 4.3 where some additional properties of these
operators, in particular their mutual interrelations, are considered.

Topological properties of upper and lower Pawlak's rough approximation oper-
ators where �rst noticed in 1988 by A.Skowron [39] and A. Wiweger [47]. J. Korte-
lainen [26] was probably the �rst one to discover deep connections between fuzzy
upper and lower fuzzy rough approximation operators on one side and (Alexan-
dro�) fuzzy topologies on the other. Later the link between fuzzy rough approx-
imation operators and topological L-fuzzy closure and L-fuzzy interior operators
was in the center of interest of di�erent authors, see e.g. , [13], [18], [23], [30], [33],
[34], [44], [48].‡ In our paper, we use upper and lower LM -approximation operators
in order to de�neM -graded L-fuzzy topologies, orML-graded topologies for short
[6], on LM -valued sets. This is done in Section 5 under an additional assumption
that the lattice M is completely distributive.

2. Prerequisites: The context of the work

2.1. Lattices, iccl-monoids and residuated lattices. In this work the two
objects, lattices L and M , will play the fundamental role.

2.1.1. Lattices. By L=(L,≤L,∧L,∨L) we denote a complete lattice, that is a
lattice in which arbitrary suprema (joins) and in�ma (meets) exist. In particular,
the top 1L and the bottom 0L elements in L exist and 0L 6= 1L. A lattice (L,≤L

‡Although the authors of these papers speak about fuzzy topologies, in fact they are dealing
with fuzzy ditopologies [4], [5] since the families of fuzzy open and fuzzy closed sets obtained in
this way remain unrelated unless some additional assumptions are made, for example under the
assumption that the range L of fuzzy sets is an MV-algebra
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,∧L,∨L) is called in�nitely distributive or a frame if ∧ distributes over arbitrary
joins:

α∧L
(∨

i
βi

)
=
∨

i
(α ∧L βi) ∀α ∈ L, ∀{βi : i ∈ I} ⊆ L.

In the sequel we usually omit the subscript L in notation of ≤,∧,∨ when this
could not lead to misunderstanding.

2.1.2. iccl-monoids. Following e.g. [19, 20] by an integral commutative cl-monoid
(iccl-monoid for short) we call a tuple (L,≤,∧,∨, ∗) where (L,≤,∧,∨) is a com-
plete lattice and (L, ∗, 1L) is a monoid such that:
(1cl) ∗ is commutative: α ∗ β = β ∗ α for all α, β ∈ L;
(2cl) ∗ is associative: (α ∗ β) ∗ γ = α ∗ (β ∗ γ) for all α, β, γ ∈ L;
(3cl) ∗ distributes over arbitrary joins: α ∗

(∨
i∈I βi

)
=
∨
i∈I(α ∗ βi) for all

α ∈ L, for all {βi | i ∈ I} ⊆ L,
(4cl) α ∗ 1L = α for all α ∈ L.

It is known and easy to prove that α ∗ 0L = 0L for every α ∈ L and that ∗ is
monotone:

α ≤ β =⇒ α ∗ γ ≤ β ∗ γ
Note that an iccl-monoid can be characterized also as an integral commutative

quantale in the sense of K.I. Rosenthal [37].

2.1. Example. Among the most important examples of iccl-monois are the fol-
lowing three.

• Let L = [0, 1] and ∗ = ∧. In this case iccl-monoid (L,≤,∧,∨, ∗) just
reduces to the underlying lattice (L,≤,∧,∨,∧).

• Let L = [0, 1] and let α ∗ β := α · β be the product. Then we come to the
so called product t-norm.

• Let L = [0, 1] and α ∗ β = max(α + β − 1, 0). Then ∗ is the well-known
�ukasiewicz t-norm.

The monoidal operation ∗ : [0, 1]× [0, 1] → [0, 1] in these cases is usually referred
to as a left semi-continuous t-norm, the term originating from the classic paper
by [29]. These and other t-norms were studied and used by many authors, see e.g.
fundamental monographs [38] and [25].

2.1.3. Residuated lattices. In an iccl-monoid a further binary operation 7→, resid-
uation, is de�ned:

α 7→ β =
∨
{λ ∈ L | λ ∗ α ≤ β} ∀α, β ∈ L.

Residuation is connected with operation ∗ by Galois connection, see [15]:

α ∗ β ≤ γ ⇐⇒ α ≤ (β 7→ γ).

An iccl-monoid (L,≤,∧,∨, ∗) extended by 7→, that is the tuple (L,≤,∧,∨, ∗, 7→),
is known also as a residuated lattice [31].

In the following proposition we collect well-known properties of the residium
which will be used in the main text:

2.2. Proposition. see e.g. [19], [20]
(1) (

∨
i αi) 7→ β =

∧
i (αi 7→ β) for all {αi | i ∈ I} ⊆ L, for all β ∈ L;
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(2) α 7→ (
∧
i βi) =

∧
i(α 7→ βi) for all α ∈ L, for all {βi | i ∈ I} ⊆ L,;

(3) 1L 7→ α = α for all α ∈ L;
(4) α 7→ β = 1L whenever α ≤ β
(5) α ∗ (α 7→ β) ≤ β for all α, β ∈ L;
(6) (α 7→ β) ∗ (β 7→ γ) ≤ α 7→ γ for all α, β, γ ∈ L;
(7) α 7→ β ≤ (α ∗ γ 7→ β ∗ γ) for all α, β, γ ∈ L.
(8) α ∗ β ≤ α ∧ β for any α, β ∈ L.
(10) (α ∗ β) 7→ γ = α 7→ (β 7→ γ) for any α, β, γ ∈ L.

2.1.4. Lattice M. ByM we denote a complete in�nitely distributive lattice (M,≤M
,∧M ,∨M ), whose bottom and top elements are denoted by 0M and 1M respectively.
As di�erent from the lattice L, we do not exclude here the trivial case, that is M
can be the one-element lattice • and hence in this case 0M = 1M . Although in the
larger part of this work M can be an arbitrary in�nitely distributive lattice, when
applying our results for constructing M -graded L-fuzzy ditopologies in Section 5,
we additionally assume thatM is completely distributive. Actually we will use not
the original de�nition of complete distributivity, see e.g [15, De�nition I-2-8], but
its characterization given by G.N. Raney [36]. Namely, given a complete lattice
M and β, α ∈M following [36], see also [15, Excercise IV-3-31], we introduce the
so called "wedge below" relation C on M as follows:

β C α⇐⇒
(
if K ⊆M and α ≤

∨
K then ∃γ ∈ K, α ≤ γ

)
.

As shown by G.N. Raney [36], a lattice M is completely distributive if and only if
relation C has the approximation property, that is

α =
∨
{β ∈M | β C α} for every α ∈M.

Moreover, relation C has the following nice properties (see [15, 36]) used in the
sequel:
(C 1) β C α implies β ≤ α;
(C 2) γ ≤ β C α ≤ δ implies γ C δ;
(C 3) β C α implies that there exists γ ∈ L such that β C γ C α.

2.2. Fuzzy sets. [49], [17] Recall that an L-fuzzy subset of a set X, where L is
a complete lattice, is a mapping A : X → L. Given a family {Ai | i ∈ I} its union∨
iAi : X → L and intersection

∧
iAi : X → L are de�ned respectively by(∨

i
Ai

)
(x) = sup

i∈I
Ai(x),

(∧
i
Ai

)
(x) = inf

i∈I
Ai(x).

2.3. L-relations, L-valued equalities and L-valued sets. �

Given sets X,Y and an iccl-monoid L, by an L-relation between X and Y we
call a mapping R : X × Y → L. In case X = Y , an L-relation E : X ×X → L is
called an L-valued equality if it is

(1) re�exive, that is E(x, x) = 1L for every x ∈ X;
(2) symmetric, that is E(x, y) = E(y, x) for all x, y ∈ X;
(3) transitive, that is E(x, y) ∗ E(y, z) ≤ E(x, z) for all x, y, z ∈ X.

�The concepts called here an L-relation and L-valued equivalence under di�erent names and
with di�erent degrees of generality appear in many papers, see e.g. [46], [50], [1], [2], etc.
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A pair (X,E), where E : X ×X → L is an L-valued equality on X, is called an
L-valued, or a many-valued, set.

When dealing with fuzzy subsets of L-valued sets, the property of extensionality
plays an important role. This property was considered by many authors, see e.g.
U. Höhle [19], [20], F. Klawon [24], etc:

A fuzzy set A in an L-valued set (X,E) is called extensional if

A(x) ∗ E(x, x′) ≤ A(x′) ∀x, x′ ∈ X.

The smallest extensional fuzzy set Ã in (X,E) that is larger than or equal to A
( A ≤ Ã) is called the extensional hull of A. Explicitly the extensional hull of A
can be de�ned by

Ã(x) =
∨
x′∈X

(E(x, x′) ∗A(x′)) ,

see e.g. [19], [20], [24].
In particular, identifying an element x0 with the characteristic function χ{x0}

of the one-element set {x0}, we get the extensional hull of the point x0 called a
fuzzy singleton:

χ̃x0
= E(x0, x).

3. LM -valued equalities and LM -valued sets

3.1. LM -fuzzy sets. Let, as it was assumed, L = (L,≤L,∧L,∨L, ∗) be an iccl-
monoid and M = (M,≤M ,∧M ,∨M ) be a complete in�nitely distributive lattice.
Then the powerset LM = {ϕ | ϕ :M → L} becomes an iccl-monoid by point-wise
extension of operations ≤L,∧L,∨L, ∗ from L to LM :

(ϕ ∧ ψ)(α) = ϕ(α) ∧ ψ(α); (ϕ ∨ ψ)(α) = ϕ(α) ∨ ψ(α); (ϕ ∗ ψ)(α) = ϕ(α) ∗ ψ(α)

for all ϕ,ψ ∈ LM and every α ∈M.
Applying the standard de�nition of a fuzzy set to this situation, we say that

an LM -fuzzy subset A of a set X is just a mapping A : X → LM . However,
the special form of the range set LM allows to interpret A either as a mapping
assigning to each x ∈ X the mapping A(x) = ϕx : M → L, or as an L-fuzzy
subset Ã ∈ LX×M of X ×M , that is as a mapping Ã : X ×M → L assigning to
a pair (x, α) ∈ X ×M the element A(x, α) = A(x)(α) ∈ L. This interpretation of
an LM -fuzzy set A allows to represent it as the family {Aα : α ∈ M} of L-fuzzy
subsets Aα ∈ LX of X ordered by the elements of M , where the L-fuzzy sets Aα

are de�ned by Aα(x) = A(x, α).

3.2. LM -valued equalities: De�nitions and basic properties. Adjusting
the de�ntion of an L-valued relation (see De�nition 2.3) to our situation we get
the following:

3.1. De�nition. Given a set X, an LM -valued equality on it is a mapping E :
X ×X → LM such that

(1ELM ) E(x, x)(α) = 1L for every x ∈ X and every α ∈M ;
(2ELM ) E(x, y)(α) = E(y, x)(α) for all x, y ∈ X and every α ∈M ;
(3ELM ) E(x, y)(α) ∗ E(y, z)(α) ≤ E(x, z)(α) for all x, y, z ∈ X, α ∈M .
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(4ELM ) E(x, y)(·) is not-increasing, that is
α < β =⇒ E(x, y)(α) ≥ E(x, y)(β) for all x, y ∈ X, α, β ∈M .

Sometimes we will speak about some special properties of an LM -valued rela-
tions collected in the next de�nition:

3.2. De�nition. An LM -valued equality E will be called upper semi-continuous
if

(5ELM ) E(x, y)
(∨

i∈I αi
)
=
∧
i∈I E(x, y)(αi) for all x, y ∈ X, {αi | i ∈ I} ⊆M .

An LM -valued equality E will be called lower semi-continuous if
(6ELM ) E(x, y)

(∧
i∈I αi

)
=
∨
i∈I E(x, y)(αi) for all x, y ∈ X, {αi | i ∈ I} ⊆M .

An LM -valued equality satisfying both properties (5ELM ) and (6ELM ) is called
continuous.
An LM -valued equality E will be called global if it satis�es properties (7ELM ) and
(8ELM ) below:

(7ELM ) E(x, y)(0M ) = 1L for all x, y ∈ X,
(8ELM )

E(x, y)(1M ) =

{
1L if x = y
0L otherwise.

Note that each one of the properties (5ELM ) and (6ELM ) implies the property
(4ELM ).

3.3. Remark. Sometimes we interpret an LM -equality E : X × X → LM as a
mapping Ẽ : X ×X ×M → L de�ned by Ẽ(x, y, α) = E(x, y)(α) satisfying corre-
sponding analogues of conditions (1ELM ) - (8ELM ) reformulated in an obvious
way. In what follows we will use both entries E(x, y)(α) and Ẽ(x, y, α) and inter-
pret E as a mapping E : X ×X → LM and as a mapping Ẽ : X ×X ×M → L,
when it is more convenient. Besides we usually write just E instead of Ẽ when it
cannot lead to misunderstanding.

The proof of the following proposition is straightforward:

3.4. Proposition. A mapping E : X ×X ×M → L is an LM -valued equality on
a set X if and only if for every α ∈M the restriction Eα of E to X ×X ×{α} is
an L-valued equality on X and α ≤ β =⇒ Eα ≥ Eβ . Thus an LM - valued equality
on a set X can be represented as a non-increasing family of L-valued equalities on
this set ordered by the elements of the lattice M .

3.5. Example. Let (X,E) be an L-valued set and M be an arbitrary complete
lattice. Then setting Ẽ(x, y, α) = E(x, y) for every α ∈M we obtain a continuous
LM -valued equality Ẽ : X ×X ×M → L. In this way the L-valued set (X,E) can
be identi�ed with the LM -valued set (X, Ẽ). In particular, in the role of M , one
can take here the one-element lattice M = •.
3.6. De�nition. An LM -fuzzy set B is called extensional, if B(x, α)∗E(x, x′α) ≤
B(x′, α) for every x, x′ ∈ X and for every α ∈ M . By the LM -etensioanal hull of
an L-fuzzy set A ∈ LX we call the smallest extensional LM -fuzzy set B ∈ (LM )X

which is larger than or equal to A, that is A(x) ≤ B(x, α) for all x ∈ X and for
all α ∈M.



21

From the de�nitions one can straightforward get the following

3.7. Proposition. An LM -fuzzy set B is extensional if and only for each α ∈M
the L-fuzzy set Bα is extensional. Speci�cally, an LM -fuzzy set B is the extensional
hull of the LM -fuzzy set A if an only for each α ∈ M Bα is the extensional hull
of Aα.

4. LM -rough approximation operators on an LM -valued set

4.1. Upper LM -rough approximation operator on an LM -valued set. Let
E : X × X → LM be an LM -valued equality on a set X. Given an L-fuzzy set
A ∈ LX we de�ne an LM -fuzzy set uE(A) ∈ (LM )X as follows:

uE(A)(x)(α) =
∨

x′∈X
(E(x, x′)(α) ∗A(x′)) .

In such a way we obtaine an operator uE : LX →= (LM )X that, in an obvious
way, can be interpreted also as an operator uE : LX → LM×X

4.1. De�nition. Let (X,E) be an LM -valued set We call operator uE : LX →
(LM )X the upper LM -fuzzy rough approximation operator induced on the LM -
valued set (X,E).

Such operator can be represented as a family of L-fuzzy rough approximation
operators {uαE : LX → LX : α ∈M} de�ned by

uα(A)(x) = u(A)(x)(α) ∀A ∈ LX , ∀x ∈ X.

This family is ordered by elements of the lattice M in such a way that

α ≤ β =⇒ uαE(A) ≥ u
β
E(A) ∀A ∈ L

X ,

see Proposition 4.2 (5u).
We de�ne the reduced composition uE � uE : LX → (LM )X for operator uE by

setting

(uE � uE)(A)(x)(α) = uE(uE(A)(x)(α))(x)(α) ∀A ∈ LX , ∀x ∈ X.

The most important properties of operator uE are collected in the following
proposition:

4.2. Proposition. Let (X,E) be an LM -valued set and uE : LX → (LM )X be the
induced upper LM -fuzzy rough approximation operator. Then uE : LX → (LM )X

has the following properties:

(1u) uE(0X)(x, 0M ) = 0L for all x ∈ X;
(2u) uE(A)(x, α) ≥ A(x) for every x ∈ X,α ∈M.
(3u) uE(

∨
iAi) =

∨
i uE(Ai) ∀{Ai | i ∈ I} ⊆ LX in particular

(3′u) uE(A1 ∨A2) = uE(A1) ∨ u(A2)∀A1, A2 ∈ LX ;
(4u) (uE � uE)(A) = uE(A) ∀A ∈ LX ;
(5u) α ≤ β ⇒ uE(A)(x, α) ≥ uE(A)(x, β) ∀x ∈ X;
(6u) If E is upper semicontinuous, then uE(A)(x,

∧
i αi) =

∨
i uE(A)(x, αi) for

every set {αi | i ∈ I} ⊆M ;
(7u) If E is global, then uE(A)(x, 0M ) =

∨
x′∈X A(x

′)
and uE(A)(x, 1M ) = A(x).
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Proof Statement (1u) is obvious. Statement (2u) follows easily taking into
account re�exivity of the LM -relation E.

We prove property (3u) as follows:

uE(
∨
i

Ai)(x)(α) =
∨

x′
(E(x, x, α′)∗(

∨
i
Ai(x

′))) =
∨

x′
(
∨

i
E(x, x′, α)∗Ai(x′)) =

∨
i
(
∨

x′
(E(x, x′, α) ∗Ai(x′))) =

∨
i
(uE(Ai)(x, α)) =

(∨
i
(uE(Ai)

)
(x, α).

To prove property (4u) we �x α ∈ M and x ∈ X and taking into account
transitivity of the LM -relation we have:

(uE � uE)(A)(x)(α) = uαE(u
α
E(A))(x) =

∨
x′
(uαE(A)(x

′) ∗ Eα(x, x′)) =∨
x′′

∨
x′
(A(x′′) ∗ Eα(x, x′) ∗ Eα(x′, x′′)) ≤

∨
x′′
A(x′′) ∗ Eα(x, x′′) =

uαE(A)(x) = uE(A)(x)(α)

Since the converse inequality follows from (2u), we get property (4u).
Property (5u) is clear from the de�nitions taking into account that the LM -

valued equality E is non-increasing.
We prove property (6u) as follows. Let {αi | i ∈ I} ⊆ M and let α =

∧
i∈I αi.

Then for every x ∈ X we have:

uE(A)(x, α) = uE(A)
(
x,
∧

i
αi

)
=
∨

x′

(∨
i∈I

(E(x, x′, αi) ∗A(x′))
)
=∨

i∈I

∨
x′
(E(x, x′, αi) ∗A(x′)) =

∨
i∈I
uE(A)(x, αi).

In case E is global, we prove property (7u) as follows:

uE(A)(x, 0M ) =
∨
x′

(E(x, x′, 0M ) ∗A(x′)) =
∨
x′

(1L ∗A(x′)) =
∨
x′

A(x′) and

uE(A)(x, 1M ) =
∨
x′

E(x, x′, 1M ) ∗A(x) = A(x).

2

4.3. Corollary. L-fuzzy set uE(A) ∈ (LM )X is the LM -extensional hull of the
L-fuzzy set A ∈ LX .

The proof is straightforward from the de�nitions and taking into account prop-
erty (2u) in Proposition 4.2.

4.2. Lower LM -rough approximation operator on an LM -valued set. Let
E : X × X → LM be an LM -valued equality on a set X. Given an L-fuzzy set
A ∈ LX we de�ne the LM -fuzzy set lE(A) ∈ (LM )X as follows:

lE(A)(x)(α) =
∧

x′∈X
(E(x, x′)(α) 7→ A(x′)) .

In such a way we obtain an operator lE : LX → (LM )X . In an obvious way it can
be interpreted also as an operator lE : LX → LM×X

4.4. De�nition. Let (X,E) be an LM -valued set. We call lE : LX → (LM )X

by the lower LM -fuzzy rough approximation operator induced by the LM -valued
equality E.
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Such operator can be represented as a family of lower L-fuzzy rough approxi-
mation operators {lαE : LX → LX : α ∈M} de�ned by

lα(A)(x) = l(A)(x) ∀A ∈ LX , ∀x ∈ X.
This family is ordered by elements of the lattice M in such a way that

α ≤ β =⇒ lαE(A) ≤ l
β
E(A) ∀A ∈ L

X ,

see Proposition 4.5 (5l).
We de�ne the reduced composition lE � lE : LX → (LM )X for operator lE by

setting

(lE � lE)(A)(x)(α) = lE(lE(A)(x)(α))(x)(α) ∀A ∈ LX , ∀x ∈ X.
The most important properties of this operator are collected in the following

proposition:

4.5. Proposition. Let (X,E) be an LM -valued set.

(1l) lE(1X)(x, α) = 1L ∀α ∈M, ∀x ∈ X;
(2l) A(x) ≥ lE(A)(x, α) ∀A ∈ LX , ∀α ∈M ;
(3l) lE(

∧
iAi) =

∧
i lE(Ai) ∀{Ai | i ∈ I} ⊆ LX in particular

(3′l) lE(A1 ∧A2) = lE(A1) ∧ u(A2)∀A1, A2 ∈ LX ;
(4l) (lE � lE)(A)(x)(α) = lE(A)(x)(α);
(5l) If E is non-increasing, then α ≤ β =⇒ lE(A)(x, α) ≤ lE(A)(x, β);
(6l) If E is upper semicontinuous, then lE(A)(x,

∨
i αi) =

∧
i lE(A)(x, αi);

(7l) If E is global, then lE(A)(x, 0M ) =
∧
x′ A(x′) and lE(A)(x, 1M ) = A(x).

Proof Statement (1l) is obvious. Statement (2l) follows easily taking into
account re�exivity of the LM -equivalence E. We prove property (3l) as follows:

lE(
∧

i
Ai)(x, α) =

∧
x′

(
E(x, x′, α) 7→

∧
i
Ai(x

′)
)
=
∧

x′

∧
i
(E(x, x′, α) 7→ Ai(x

′)) =∧
i

∧
x′
(E(x, x′, α) 7→ Ai(x

′)) =
∧

i
lE(Ai).

To prove property (4l) we take into account transitivity of the L-valued equality
Eα and are reasoning as follows:

(lE � lE)(A)(x)(α) = lαE(l
α
E(A))(x) =

∧
x′
(Eα(x, x′) 7→ lαE(A)(x

′)) =∧
x′
(Eα(x, x′) 7→

∧
x′
(Eα(x′, x′′) 7→ A(x′′))) =∧

x′
(
∧

x′′
(Eα(x, x′) ∗ Eα(x′, x′′) 7→ A(x′′))) ≥∧

x′′
(Eα(x, x′′) 7→ A(x′′)) = lαE(A)(x) = lE(A)(x)(α).

Since the converse inequality follows from (2l), we get property (4l).
Property (5l) is clear from the de�nitions taking into account that the LM -

valued equality E is non-increasing.
We prove property (6l) as follows. Let x ∈ X and {αi : i ∈ I} ⊆M. Then

lEA(x,
∨

i
αi) =

∧
x′

(
E(x, x′,

∨
i
αi) 7→ A(x′)

)
=∧

x′

(∧
i
E(x, x′, αi) 7→ A(x′)

)
=
∧

x′

∧
i
(E(x, x′, αi) 7→ A(x′)) =
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i

∧
x′
(E(x, x′, αi) 7→ A(x′)) =

∧
i
lE(A)(x, αi).

To prove property (7l) we notice that in case of the global LM -valued equality
we have

lE(A)(x, 0M ) =
∧
x′

(E(x, x′, 0M ) 7→ A(x′)) =∧
x′

(1L 7→ A(x′)) = 1 7→
∧
x′

A(x′) =
∧
x′

A(x′);

lE(A)(x, 1M ) =
∧
x′

(E(x, x′, 1M ) 7→ A(x′)) = E(x, x, 1M ) 7→ A(x)) = A(x).

4.3. Additional properties of the LM -rough approximation operators.

In this section �rst of all, we are interested in the interchange properties of the
upper and lower rough approximation operators uE : LX → (LM )X and lE :
LX → (LM )X . Since we need to deal with combination of operators uE and lE ,
we have to specify how to "compose" them. We de�ne the operation of reduced
composition uE � lEX → (LM )X and lE � uEX → (LM )X in the same manner as
it was done in the previous two subsections:

(uE � lE)(A)(x)(α) = uE(lE(A)(x)(α))(x)(α) ∀A ∈ LX , ∀x ∈ X;

(lE � uE)(A)(x)(α) = lE(uE(A)(x)(α))(x)(α) ∀A ∈ LX , ∀x ∈ X.

4.6. Proposition. Given an LM -valued set (X,E) we have uE � lE = lE, or,
explicitely,

uE(lE(A)(x)(α))(x, α) = lE(A)(x, α) for any x ∈ X and any α ∈M.

Proof From the de�nition of the operators uE , lE : LX → (LM )X and oper-
ation � we have:

(uE � lE)(A)(x)(α) =∨
y∈X

(
E(x, y, α) ∗

∧
z∈X

(E(z, y, α) 7→ A(z))
)
≤∨

y∈X

∧
z∈X

(E(x, y, α) ∗ (E(z, y, α) 7→ A(z))) ≤∧
z∈X

∨
y∈X

E(x, y, α) ∗ (E(z, y, α) 7→ A(z)) ≤∧
z∈X

∨
y∈X

((E(x, y, α) 7→ E(y, z, α)) 7→ A(z)) ≤∧
z∈X

(
∧

y∈Y
(E(x, y, α) 7→ E(y, z, α)) 7→ A(z)) ≤∧

z∈X
(E(x, z, α) 7→ A(z)) = lE(A)(x)(α).

The �rst two inequalities in the above series are obvious; The third and the fourth
inequalities in the above series are ensured by the easily established inequalities
a ∗ (b 7→ c) ≤ (a ∗ b 7→ c) and

∨
i(ai 7→ b) ≤ (

∧
i ai 7→ b) which hold in every iccl-

monoid; the last inequality follows from the de�nition of an L-valued equality: the
condition E(x, y, α) ≤ E(x, z, α)∗E(z, y, α) implies that E(x, z, α) ≤ E(z, y, α) 7→
E(y, x, α),∀y ∈ X.
Thus we have (uE � lE)(A)(x)(α) ≤ lE(A)(x)(α). We complete the proof noticing
that the inequality lE(A)(x)(α) ≤ (uE � lE)(A)(x)(α) is obvious. 2
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4.7. Remark. In case M is the one-element lattice, the corresponding result is
contained in [14] In particular, in the special case when L = [0, 1] is viewed as
a Gödel algebra, that is ∗ = ∧ is the minimum t-norm and M is the one point
lattice, the statement of the above theorem is contained in Proposition 9 in [35].

4.8. Proposition. For every L-fuzzy set A in an LM -valued set (X,E) its lower
LM -rough approximation lE(A) is an extensional fuzzy set.

Proof From Proposition 4.6 we know that uE � lE = lE , that is for every
α ∈ M and for every A ∈ LX the equality uαE(l

α
E(A)) = lαE(A) holds. Now from

Proposition 3.7 it follows that lαE(A) is extensional for every α ∈ M . Finally,
applying Proposition 4.3 we conclude that lE(A) is extensional. 2

4.9. De�nition. Let (X,E) be an LM -valued set (X,E) and A ∈ LX be its
L-fuzzy subset. By the extensional kernel of A in (X,E) we call the smallest
extensional LM -fuzzy set A0 ∈ (LM )X which is smaller than or equal to A.

From the de�nitions one can easily prove

4.10. Proposition. A0 ∈ (LM )X is the extensional kernel of A ∈ LX if and
only if for each α ∈ L the L-fuzzy set (A0)α is the extensional kernel of A in the
L-valued set (X,Eα).

4.11. Proposition. Let A be an L-fuzzy subset of an LM -valued set (X,E) and
let A0 be its kernel. Then A0 ≤ lE(A)

Proof Referring to Proposition 3.7 we conclude that for every α ∈M L-fuzzy
set A0,α is extensional in (X,E). Therefore we have

(A0)α(x) ∗ Eα(x, x′) ≤ (A0)α(x′) for every x, x′ ∈ X,

and hence

(A0)α(x) ≤ Eα(x, x′) 7→ (A0)α(x′) ≤ Eα(x, x′) 7→ A(x′), ∀x, x′ ∈ X.

It follows from here that

(A0)α(x) ≤
∧

x′∈X
(Eα(x, x′) 7→ A(x′)) = lαE(A)(x), ∀x ∈ X,

that is (A0)α ≤ lα(A).
Referring to Proposition 3.7 again we conclude that A0 ≤ lE(A) 2

From Propositions 4.6 and 4.11 we get the following important result:

4.12. Theorem. For every L-fuzzy set A in an LM -valued set (X,E) the lower
fuzzy rough approximation operator lE assigns to A its kernel A0: That is lE(A) =
A0.

From this theorem we get

4.13. Corollary. The equality lE � uE = uE holds. Explicetely

(lE � uE)(A)(x)(α) = uE(A)(x)(α)

for every L-fuzzy set A in an LM -valued set (X,E).
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4.14. Remark. Let L = {0, 1} =: 2, M = • be the one-element lattice and
let E : X × X → {0, 1} be an equivalence relation. Obviously, in this case E is
actually the crisp equivalence relation on X. Then the images of a set A ∈ 2X

under operators uE : 2X → 2 and lE : 2X → 2 make the pair (uE(A), lE(A))
which is actually Pawlak's originally de�ned rough set (AH, AN) determined by
the set A. Indeed, notice �rst that uE(A) in this case is just the set of all elements
x ∈ A whose classes [x]E of E-equivalence have non-empty intersections with A:
[x]E ∩ A 6= ∅, and hence uE(A) = AH. On the other hand, lE(A) is the set of all
elements x ∈ A, whose classes of equivalence [x]E are contained in A: [x]E ⊆ A,
and hence lE(A) = AN.

5. ML-graded ditopology induced by an LM -valued equality

In this section we apply upper and lower LM -rough approximation operators
induced by an LM -valued equality on a set X in order to present a construction of
an ML-graded ditopology on this set. However �rst we have to make comments
on the terminology used here.

Generalizing the concept of an L-fuzzy topology in the sense of Chang-Goguen
(see [7], [17] [16]), T. Kubiak [27] and A.�ostak [40] independently introduced
an alternative, in a certain sense more consequent, concept of a fuzzy topology.
According to this de�nition the topology itself is an L-fuzzy subset (and not a
crisp one as it is in the case of Chang-Goguen's de�nition) of the family of L-fuzzy
subsets of the ground set X, see Subsection 5.1 To distinguish such approach from
the one in the sense of Chang-Goguen, we call it here a graded topology.¶ In order
to specify the role of the iccl-monoid L and the lattice M in this case, we use
a more precise term an M -graded L-fuzzy topology or an ML-graded topology for
short.

In classical topology, as well as, to a large extent, in fuzzy topology, the notion
of an open set is usually taken as the primitive and that of a closed set being an
auxiliary one, since closed sets are easily obtained from open by taking comple-
ments. However in some cases it is reasonable to consider open and closed sets as
independent notions. This is especially crucial when dealing with L-fuzzy topolo-
gies in case when the lattice L is not equipped with an order reversing involution.
To handle with such and analogous more general problems, L.M. Brown with co-
aurthors has developed the theory of a dichotomous topology, or just ditopology in
short [3], [4], [5], etc. Developing the idea of a ditopology, we have introduced and
studied the graded version of a ditopology in [6]. In the context of this work the
termML-ditopology on a set means just a pair of mutually independent mappings
T : LX → (LM )X and K : LX → (LM )X satisfying certain topological axioms, see
Subsections 5.1, 5.2 for the precise de�nitions. It is the aim of this section to elab-
orate a construction ofML-ditopologies induced on LM -valued sets by LM -valued
equalities.

5.1. ML-graded topology on an LM -valued set. Let (X,E) be an LM -valued
set and let lE : LX → (LM )X be the lower LM -rough approximation operator
induced on this set. Further, let as before, its α-levels lαE : LX → LX be de�ned

¶This term was already used by some authors, [8], [9].
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by lαE(A)(x) = lE(A)(x, α). Then the properties (1l)− (4l) of lE related to lαE can
be reformulated as follows:
(1lα) lα(1X) = 1L;
(2lα) A ≥ lαE(A) ∀A ∈ LX ;
(3lα) lαE(

∧
iAi) =

∧
i lE(Ai) ∀{Ai | i ∈ I} ⊆ LX in particular

(3'lα) lαE(A1 ∧A2) = lαE(A1) ∧ u(A2)∀A1, A2 ∈ LX .
(4lα) lαE(l

α
E(A)) = lαE(A) ∀A ∈ LX ;

However, this means that lαE : LX → LX can be interpreted as an L-fuzzy interior
operator on the set X. (This fact is well-known, see, e.g. [28], [41], [42]). Hence
by setting Tα = {A ∈ LX : lαE(A) = A}, we obtain the L-fuzzy topology corre-
sponding to this L-fuzzy interior operator. Moreover, the property (3l) allows to
conclude that it is actually an Alexandro� L-fuzzy topology (see e.g. [26], [10]),
that is the intersection axiom holds also for in�nite families. Thus for each α the
family Tα satis�es the following axioms of an Alexandro� L-fuzzy topology:

(1) 1X ∈ Tα;
(2) {Ai : i ∈ I} ⊆ Tα =⇒

∧
iAi ∈ Tα;

(3) {Ai : i ∈ I} ⊆ Tα =⇒
∨
iAi ∈ Tα

Taking such L-fuzzy topologies for all α ∈M , we obtain the family {Tα : α ∈M}.
Besides, since lαE ≤ l

β
E whenever α ≤ β, we conclude that

α ≤ β =⇒ Tα ⊃ Tβ ,
that is the family {Tα : α ∈ M} is non-increasing. We use this family of L-fuzzy
topologies to de�ne an (Alexandro�) ML-graded topology T on the set X, by
setting

T(A) =
∨
{α ∈M : A ∈ Tα.}

5.1. Theorem. If M is completely distributive, then T is an M -graded L-fuzzy
topology on the LM -valued set (X,E), that is T : LX → M satis�es the following
axioms:

(1) T(1X) = 1M ;
(2) T(

∧
iAi) ≥

∧
i T(Ai) for every family {Ai : i ∈ I} ⊆ LX ;

(3) T(
∨
iAi) ≥

∧
i T(Ai) for every family {Ai : i ∈ I} ⊆ LX ;

Proof The �rst property is obvious, since 1X ∈ Tα for all α ∈M .
To prove the second property, take any family {Ai : i ∈ I} ⊆ LX and assume

that
∧
i T(Ai) = α. In case α = 0M the inequality is obvious, therefore we assume

that α > 0M . Take any β C α where C is the way below relation on the completely
distributive lattice M . From the de�nition of T it is clear that Ai ∈ Tβ for every
i ∈ I and hence, recalling that Tβ is an Alexandro� L-fuzzy topology, we conclude
that also

∧
iAi ∈ Tβ . Therefore T(

∧
iAi) ≥ β. Since this is true for any β C α and

lattice M is completely distributive, we conclude that T(
∧
iAi) ≥ α =

∧
i T(Ai).

The proof of the third property is similar and we omit it.

5.2. Graded co-topology of an LM -valued set. Let (X,E) be an LM -valued
set and let uE : LX → (LM )X be the upper rough approximation operator induced
by the LM -valued equality E on the set X. Further, as before, let its α-levels uαE :
LX → LX be de�ned by uαE(A)(x) = uE(A)(x, α). Then properties (1u)− (4u) of
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the upper LM -rough approximation operator uE related to uαE can be reformulated
as follows:

(1uα) uα(1X) = 1L;
(2uα) A ≤ uαE(A) ∀A ∈ LX ;
(3uα) uαE(

∨
iAi) =

∨
i lE(Ai) ∀{Ai | i ∈ I} ⊆ LX in particular

(3'uα) uαE(A1 ∧A2) = uαE(A1) ∧ u(A2)∀A1, A2 ∈ LX .
(4uα) uαE(u

α
E(A)) = uαE(A) ∀A ∈ LX ;

However, this means that uαE : LX × LX can be interpreted as an L-fuzzy closure
operator on the set X (This fact is well-known, see, e.g. [28], [41], [42]). Hence
by setting Kα = {A ∈ LX : uαE(A) = A}, we obtain the L-fuzzy co-topology
corresponding to this L-fuzzy closure operator. Moreover, the property (3u) allows
to conclude that it is actually an Alexandro� L-fuzzy co-topology [10]: this means
that the union axiom holds also for in�nite families. Thus, for each α the family
Kα satis�es the following axioms of an Alexandto� L-fuzzy co-topology:

(1) 1X ∈ Kα;
(2) {Ai : i ∈ I} ⊆ Kα =⇒

∨
iAi ∈ Kα;

(3) {Ai : i ∈ I} ⊆ Kα =⇒
∧
iAi ∈ Kα

Taking such L-fuzzy co-topologies for all α ∈ M , we obtain the family {Kα : α ∈
M}. Besides, since uαE ≥ u

β
E whenever α ≤ β, we conclude that

α ≤ β =⇒ Kα ⊃ Kβ ,

that is the family {Kα : α ∈ M} is non-increasing. We use this family of L-fuzzy
co-topologies to de�ne an (Alexandro�) L-fuzzy co-topology K on the set X, by
setting

K(A) =
∨
{α ∈M : A ∈ Kα.}

5.2. Theorem. IfM is completely distributive, then K is anM -graded L-fuzzy co-
topology on the LM -valued set (X,E). This means that the mapping K : LX →M
satis�es the following axioms:

(1) K(1X) = 1M ;
(2) K(

∨
iAi) ≥

∧
iK(Ai) for every family {Ai : i ∈ I} ⊆ LX ;

(3) K(
∧
iAi) ≥

∧
iK(Ai) for every family {Ai : i ∈ I} ⊆ LX ;

Proof The �rst property is obvious, since 1X ∈ Kα for all α ∈M .
To prove the second property, take any family {Ai : i ∈ I} ⊆ LX and assume

that
∧
iK(Ai) = α. In case α = 0M the inequality is obvious, therefore we

assume that α > 0M . Take any β C α where C is the wedge-below relation in
the completely distributive lattice. Then from the de�nition of K it is clear that
Ai ∈ Kβ for every i ∈ I, and hence, recalling that Kβ is an Alexandro� L-fuzzy
co-topology, we conclude that also

∨
iAi ∈ Kβ . Therefore K(

∨
iAi) ≥ β. Since

this is true for any β C α and lattice M is completely distributive, we conclude
that K(

∨
iAi) ≥ α =

∧
iK(Ai).

The proof of the third property is similar and we omit it.
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6. Construction of an LM -valued equality from a pseudo-metric

In this section we construct an LM -valued equality Eρ from an ordinary pseudo-
metric ρ on a set X. We think that this construction presents an important source
for creation of many examples of LM -valued sets with prescribed properties.

Let L =M = [0, 1] be the unit intervals viewed as lattices and let ∗ : L×L→ L
be a continuous t-norm. Further, let X be a set and ρ : X×X → [0, 1] be a pseudo-
metric on this set. We de�ne a mapping Eρ : X ×X × [0, 1]→ [0, 1] by setting

Eρ(x, y)(α) =

{ 1−α
1−α+αρ(x,y) if α 6= 1 or ρ(x, y) 6= 0

1 if α = 1 and ρ(x, y) = 0.

It is easy to see that the mapping E(x, y)(·) : [0, 1] → [0, 1] is continuous for any
x, y ∈ [0, 1]. Indeed, the statement is obvious if ρ(x, y) 6= 0 or α 6= 1, otherwise
limα→1E(x, y)(α) = limα→1

1−α
1−α+αρ(x,y) = 1.

6.1. Proposition. For every pseudo-metric ρ : X × X → [0, 1] the mapping
Eρ : X × X × [0, 1] → [0, 1] satis�es conditions (1ELM ), (2ELM ), (4ELM ),
(5ELM ), (6ELM ), (7ELM ) and (8ELM ). The mapping Eρ : X × X × [0, 1] →
[0, 1] satis�es condition (3ELM ) in cases of the product t-norm ∗ = · and of
the �ukasiewicz t-norm ∗ = ∗L. If ρ is an ultra pseudo-metric, then mapping
Eρ : X × X × [0, 1] → [0, 1] satis�es condition (3ELM ) in case of the minimum
t-norm ∗ = ∧.

The validity of conditions (1ELM ) and (2ELM ) follows directly from the de�-
nition of the mapping Eρ : X ×X × [0, 1]→ [0, 1].

To prove (3ELM ) consider separately the cases of the three t-norms:
∗ = ∧ Since in this case ρ is assumed to be an ultra pseudo-metric, we have

ρ(x, y) ≤ max{ρ(x, z), ρ(z, y)} for all x, y, z. It is straightforward to con-
clude from here that

1− α
1− α+ αρ(x, y)

≥ 1− α
1− α+ αρ(x, z)

∧ 1− α
1− α+ αρ(z, y)

.

∗ = · The inequality
1− α

1− α+ αρ(x, y)
≥ 1− α

1− α+ αρ(x, z)
· 1− α
1− α+ αρ(z, y)

can be easily established taking into account the triangular property ρ(x, y) ≤
ρ(x, z) + ρ(z, y) of the pseudo-metric ρ.

∗ = ∗L It is well known that ∗L ≤ · and hence this property follows from the
analogous property of the product t-norm establish above.

Property (4ELM ) follows directly from the de�nition of the LM valued equality
Eρ.

To prove Property (5ELM ) let α =
∨
n∈N αn for some α ∈ [0, 1] and {αn : n ∈

N} ⊂ [0, 1]. Without loss of generality we may assume that

n ≤ n+ 1⇒ αn ≤ αn+1 for every n ∈ N.
Then, referring to the continuity and already the established non-increaseness of
the mapping Eρ(x, y) : [0, 1]→ [0, 1] we have

Eρ(x, y, α) = Eρ(x, y, lim
n→∞

αn) = lim
n→∞

Eρ(x, y, αn) =
∧

n∈N
Eρ(x, y, αn).



30

To prove Property (6ELM ), let α =
∧
n∈N αn for some αn ∈ [0, 1]. Without

loss of generality we may assume that n ≤ n + 1 ⇒ αn ≥ αn+1 for every n ∈ N.
Then, referring to the continuity and already established non-increaseness of the
mapping Eρ(x, y) : [0, 1]→ [0, 1] we have

Eρ(x, y, α) = Eρ(x, y, lim
n→∞

αn) = lim
n→∞

Eρ(x, y, αn) =
∨

n∈N
Eρ(x, y, αn).

From the de�nition of Eρ it is clear that Eρ(x, y, 0) = 1 for every x, y ∈ X and

Eρ(x, y)(1M ) =

{
1L if x = y
0L otherwise,

and hence (7ELM ) and (8ELM ) hold. 2

6.2. Corollary. In case ∗ = · and ∗ = ∗L the mapping Eρ : X×X → [0, 1]→ [0, 1]
is a global continuous LM -equality for any pseudo-metric ρ : X × X → [0, 1]. If
ρ is an ultra pseudo-metric, then Eρ is a global continuous LM -valued equality in
case ∗ = ∧.

6.3. Remark. It is well known that for every pseudo-metric d : X ×X → (0,∞)
there exist fuzzy metrics ρ : X×X → [0, 1] equivalent to the given pseudo-metric d.
By saying equivalent we mean that d and ρ induce the same topology on the set X.
Therefore, if we start with an arbitrary pseudo-metric d : X×X → (0,∞), then we
take the equivalent pseudo-metric ρ : X ×X → [0, 1] de�ned by ρ(x, y) = d(x,y)

1+d(x,y)

as its counterpart. In this case LM -valued equality Eρ can be rewritten as

Ed(x, y, α) =
(1− α)(1 + d(x, y)

1− α+ d(x, y
.

7. Conclusion

We have introduced the notions of an LM -valued equality and an LM -valued
set, which conceptionally generalize the concepts of an L-valued equality and an
L-valued set, well-known to people working in this �eld. We have studied the basic
properties of these concepts. An example of an LM -valued equality induced by a
bounded pseudometric was presented. We showed that LM -equalities induce in a
natural way a certain kind of many-valued rough approximation operators; we call
them an upper and a lower LM -rough approximation operators. Finally we apply
these operators to construct an ML-graded ditopology on the LM -valued set.

We view this work as the �rst part of the reserach in this direction. Among
important, in our opinion, issues, which remained beyond the scope of this work,
we mention here the following:

In this work we did not touch the question how special properties of LM -
equalities (upper and lower semicontinuity, etc.,) are re�ected in the structure of
the constructedML-graded topologies? Can we characterize the class of ditopolo-
gies which are induced by an LM -equality with a certain property? In particular,
how do the levels Tα and Kα of the ML-graded topology T and K are related to
the L-fuzzy topology Tα and co-topology Kα depending on the properties of the
LM -valued equality E ?

Having LM -valued sets on one side and ML-graded ditopogical spaces on the
other it seems important to study their relations on the categorical level, that
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is when certain ordinary functions or fuzzy functions [11], [43], [24] are taken
as morphisms in the corresponding category. A similar question was studied for
ordinary L-valued sets in our paper [14].

Related to the previous question: what are the connections between the opera-
tions in the (prospective!) category of LM -valued sets (products, coproducts, etc)
and the corresponding operations in the category of LM -graded ditopologies?
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