1 Hacettepe Journal of Mathematics and Statistics
〇 Volume 46 (1) (2017), 33-52

A study on quasi-pseudometrics

In memory of Professor Lawrence M. Brown

Natasha Demetriou * and Hans-Peter A. Künzi ${ }^{\dagger}$

Abstract

We study some aspects of the space $Q P M(X)$ of all quasipseudometrics on a set X equipped with the extended T_{0}-quasi-metric $A_{X}(f, g)=\sup _{(x, y) \in X \times X}(f(x, y) \dot{-} g(x, y))$ whenever $f, g \in Q P M(X)$. We observe that this space is bicomplete and exhibit various closed subspaces of $\left(Q P M(X), \tau\left(\left(A_{X}\right)^{s}\right)\right)$. In the second part of the paper, as a rough way to measure the asymmety of a quasi-pseudometric f on a set X, we investigate some properties of the value $\left(A_{X}\right)^{s}\left(f, f^{-1}\right)$.

Keywords: quasi-pseudometric; T_{0}-quasi-metric; nonnegatively weightable quasipseudometric
2000 AMS Classification: 54E35; 54E15; 54E05; 54E55

1. Introduction

On the set $Q P M(X)$ of all quasi-pseudometrics on the set X we introduce the extended T_{0}-quasi-metric A_{X} defined by

$$
A_{X}(f, g)=\sup _{(x, y) \in X \times X}(f(x, y) \dot{-} g(x, y))
$$

whenever $f, g \in Q P M(X){ }^{\ddagger} \quad$ Let us immediately mention that obviously the specialization order $\leq_{A_{X}}$ of A_{X} is the usual order on $Q P M(X)$, that is, for $f, g \in$

[^0]$Q P M(X)$ we have $f \leq_{A_{X}} g$ iff $A_{X}(f, g)=0$ iff $f(x, y) \leq g(x, y)$ whenever $(x, y) \in$ $X \times X$. ${ }^{\S}$

1. Remark. We could also consider the bounded counterpart of A_{X} defined by $\min \left\{A_{X}, 1\right\}$. In the analogous metric construction this approach was for instance chosen for the studies $[23,24]$. Since however we are mainly interested in large distance values as they are investigated for instance in the theory of coarse spaces (e.g. [22]), this is not the approach that we have chosen in this paper.

Below we establish that the space $\left(Q P M(X), A_{X}\right)$ is bicomplete. We also show that various natural subspaces of $Q P M(X)$ are $\tau\left(\left(A_{X}\right)^{s}\right)$-closed and thus bicomplete, for instance the set of all totally bounded quasi-pseudometrics on X, the set of all ultra-quasi-pseudometrics on X and the set of all nonnegatively weightable quasi-pseudometrics on X.

In the second part of the paper we consider for any quasi-pseudometric f on X its value of asymmetry defined by $A_{f}:=\left(A_{X}\right)^{s}\left(f, f^{-1}\right)$. The definition is obviously motivated by the fact that f is a pseudometric on X if and only if $\left(A_{X}\right)^{s}\left(f, f^{-1}\right)=$ 0 . ${ }^{\text {a }}$

We discuss some properties of the introduced concept and consider various inequalities that are useful to compute it for suitable quasi-pseudometric spaces (X, f).

2. The space $Q P M(X)$ of all quasi-pseudometrics

After recalling the main definitions of the notions used in this paper, we shall establish bicompleteness of the space $\left(Q P M(X), A_{X}\right)$ and exhibit various $\tau\left(\left(A_{X}\right)^{s}\right)$ closed subspaces of $\left(Q P M(X), A_{X}\right)$. For a more detailed discussion of the basic concepts dealt with in this paper the reader may want to consult [7, 13].

1. Definition. Let X be a set and let $d: X \times X \rightarrow[0, \infty)$ be a function mapping into the set $[0, \infty)$ of the nonnegative reals. Then d is called a quasi-pseudometric on X if
(a) $d(x, x)=0$ whenever $x \in X$, and
(b) $d(x, z) \leq d(x, y)+d(y, z)$ whenever $x, y, z \in X$.

We shall say that d is a T_{0}-quasi-metric provided that d also satisfies the following condition (c): For each $x, y \in X$,
$d(x, y)=0=d(y, x)$ implies that $x=y$.
The specialization order \leq_{d} of d is defined by $x \leq_{d} y$ iff $d(x, y)=0$ whenever $x, y \in X$.
2. Remark. In some cases it is more natural to assume that a quasi-pseudometric d indeed maps into $[0, \infty]$. We shall then speak of an extended quasi-pseudometric. ${ }^{\|}$ It should also be mentioned that the terminology in the literature is fairly diverse (compare for instance [10, Chapter 6]).

[^1]1. Example. (compare for instance [8, Example 2]) On the set \mathbb{R} of the reals set $u(x, y)=x-y$ whenever $x, y \in \mathbb{R}$. Then u is the standard T_{0}-quasi-metric on \mathbb{R}.
2. Remark. Let d be a quasi-pseudometric on a set X. Then $d^{-1}: X \times$ $X \rightarrow[0, \infty)$ defined by $d^{-1}(x, y)=d(y, x)$ whenever $x, y \in X$ is also a quasipseudometric on X, called the conjugate or dual quasi-pseudometric of d. As usual, a quasi-pseudometric d on X such that $d=d^{-1}$ is called a pseudometric. Note that for any $\left(T_{0^{-}}\right)$quasi-pseudometric $d, d^{s}=\sup \left\{d, d^{-1}\right\}=d \vee d^{-1}$ is a pseudometric (metric).

The following auxiliary result is well known. Its proof is included here for the convenience of the reader.

1. Lemma. (see for instance [14, Lemma 8]) Let (X, d) be a quasi-pseudometric space and $a, b, x, y \in X$. Then $|d(x, y)-d(a, b)| \leq d^{s}(x, a)+d^{s}(y, b)$.

Proof. We have that $d(x, y) \leq d(x, a)+d(a, b)+d(b, y)$, and therefore $d(x, y)-$ $d(a, b) \leq d(x, a)+d(b, y)$. Similarly $d(a, b) \leq d(a, x)+d(x, y)+d(y, b)$, and therefore $d(a, b)-d(x, y) \leq d(a, x)+d(y, b)$. Thus $|d(x, y)-d(a, b)| \leq d^{s}(x, a)+d^{s}(y, b)$.

As we have announced above, we equip the set $Q P M(X)$ of all quasi-pseudometrics on X with the (extended) function

$$
A_{X}(f, g)=\sup _{(x, y) \in X \times X}(f(x, y) \dot{-} g(x, y))
$$

whenever $f, g \in Q P M(X)$.

1. Proposition. We have that $\left(Q P M(X), A_{X}\right)$ is an extended T_{0}-quasi-metric space.

Proof. The argument is obvious and left to the reader.
4. Remark. Note that by definition $A_{X}(d, e)=A_{X}\left(d^{-1}, e^{-1}\right)$ whenever $d, e \in$ $Q P M(X)$. In particular for any quasi-pseudometric d on a set X we have that $A_{X}\left(d, d^{-1}\right)=A_{X}\left(d^{-1}, d\right)=\left(A_{X}\right)^{s}\left(d, d^{-1}\right)$.
5. Remark. Let X be a set, d a quasi-pseudometric on X and $\underline{0}$ the constant quasi-pseudometric equal to 0 . Then $A_{X}(d, \underline{0})$ is equal to the diameter $\delta_{d}=\sup _{(x, y) \in X \times X} d(x, y)$ of (X, d).
2. Lemma. Let d, e, f, g be quasi-pseudometrics on a set X.
(a) Then $A_{X}(d+e, f+g) \leq A_{X}(d, f)+A_{X}(e, g)$, where $d+e, f+g$ are quasipseudometrics on X.
(b) Furthermore $A_{X}(\alpha d, \alpha f)=\alpha A_{X}(d, f)$ whenever α is a nonnegative real, where αd and αf are quasi-pseudometrics on X.
(c) If $f \geq g$ and $h \geq e$, then $A_{X}(f, e) \geq A_{X}(g, h)$.

Proof. All these computations are straightforward.

In the following Δ_{X} will denote the diagonal $\{(x, x): x \in X\}$ of the set X.
2. Example. Let \leq be a partial order on a set X. Set, for each $x, y \in X, d_{\leq}(x, y)=$ 0 if $x \leq y$ and $d_{\leq}(x, y)=1$ otherwise. Then d_{\leq}is a T_{0}-quasi-metric on X, which is called the natural T_{0}-quasi-metric of (X, \leq) (compare for instance [2, Section 4]). We now consider the following specific example of this construction: Let X be the set of integers \mathbb{Z}. Set

$$
\leq=\Delta_{\mathbb{Z}} \cup\{(2 n, 2 n+1): n \in \mathbb{Z}\} \cup\{(2 n, 2 n-1): n \in \mathbb{Z}\}
$$

Then \leq is a partial order on \mathbb{Z}. Of course, $\geq=(\leq)^{-1}=\Delta_{\mathbb{Z}} \cup\{(2 n+1,2 n)$: $n \in \mathbb{Z}\} \cup\{(2 n-1,2 n): n \in \mathbb{Z}\}$. We have that $d_{\leq} \wedge\left(d_{\leq}\right)^{-1}=\underline{0}$, since $\leq \cup(\geq$ $)=\{(x, y) \in \mathbb{Z} \times \mathbb{Z}:|x-y| \leq 1\}$. Here we have $\left(d_{\leq}\right)^{-1}=d_{\geq}$and $d_{\leq} \wedge d_{\geq}$is the largest quasi-pseudometric which is $\leq d_{\leq}$and $\leq d_{\geq} .^{* *}$

It follows that $d_{\leq} \wedge\left(d_{\leq}\right)^{-1}<\min \left\{d_{\leq},\left(d_{\leq}\right)^{-1}\right\}$. Obviously $\min \left\{d_{\leq},\left(d_{\leq}\right)^{-1}\right\}$ does not satisfy the triangle inequality.
3. Lemma. Let X be a set and functions $d_{1}, d_{2}: X \times X \rightarrow[0, \infty)$ be given. Set $b:=\min \left\{d_{1}, d_{2}\right\}$ and $s:=d_{1} \vee d_{2}=\max \left\{d_{1}, d_{2}\right\} .{ }^{\dagger} \dagger$

Then $\left(A_{X}\right)^{s}\left(d_{1}, d_{2}\right)=\left(A_{X}\right)^{s}(s, b)$. (Of course, $A_{X}(b, s)=0$.)
Proof. By Lemma 2(c) we have that $A_{X}(s, b) \geq A_{X}\left(d_{1}, d_{2}\right)$ and analogously $A_{X}(s, b) \geq A_{X}\left(d_{2}, d_{1}\right)$. Therefore $A_{X}(s, b) \geq\left(A_{X}\right)^{s}\left(d_{1}, d_{2}\right)$.

Let $x, y \in X$. By considering the various possibilities in any case we have that $s(x, y)-b(x, y) \leq\left(d_{1}(x, y)-d_{2}(x, y)\right) \vee\left(d_{2}(x, y)-d_{1}(x, y)\right) \leq A_{X}\left(d_{1}, d_{2}\right) \vee$ $A_{X}\left(d_{2}, d_{1}\right)=\left(A_{X}\right)^{s}\left(d_{1}, d_{2}\right)$. Hence $A_{X}(s, b) \leq\left(A_{X}\right)^{s}\left(d_{1}, d_{2}\right)$. We conclude that $A_{X}(s, b)=\left(A_{X}\right)^{s}\left(d_{1}, d_{2}\right)$.

1. Corollary. Let X be a set and functions $d_{1}, d_{2}: X \times X \rightarrow[0, \infty)$ be given, and s and b as defined in Lemma 3.

Then $A_{X}\left(s, d_{2}\right)=A_{X}\left(d_{1}, d_{2}\right)$ and $A_{X}\left(d_{1}, b\right)=A_{X}\left(d_{1}, d_{2}\right)$.
Proof. By Lemma 2(c) we have that $A_{X}\left(s, d_{2}\right) \geq A_{X}\left(d_{1}, d_{2}\right)$.
Let $x, y \in X$. By considering the various possibilities, in any case we have $s(x, y)-d_{2}(x, y) \leq d_{1}(x, y)-d_{2}(x, y) \leq A_{X}\left(d_{1}, d_{2}\right)$ and thus $A_{X}\left(s, d_{2}\right) \leq A_{X}\left(d_{1}, d_{2}\right)$.

The second part of the proof is similar: $A_{X}\left(d_{1}, b\right) \geq A_{X}\left(d_{1}, d_{2}\right)$ by Lemma $2(c)$. Let $x, y \in X$. Then by considering the various possibilities, in any case we have $d_{1}(x, y)-b(x, y) \leq d_{1}(x, y)-d_{2}(x, y) \leq A_{X}\left(d_{1}, d_{2}\right)$. Therefore $A_{X}\left(d_{1}, b\right) \leq$ $A_{X}\left(d_{1}, d_{2}\right)$.
2. Proposition. Let X be a set and functions $d, e, f, g: X \times X \rightarrow[0, \infty)$ be given. Then $A_{X}(d \vee e, f \vee g) \leq A_{X}(d, f) \vee A_{X}(e, g)$.

Proof. Let $x, y \in X$. Then we consider the four cases:
Case 1: $(d \vee e)(x, y)=d(x, y)$ and $(f \vee g)(x, y)=f(x, y)$. Then $(d \vee e)(x, y)-$ $(f \vee g)(x, y) \leq A_{X}(d, f)$.

Case 2: $(d \vee e)(x, y)=d(x, y)$ and $(f \vee g)(x, y)=g(x, y)$. Then $(d \vee e)(x, y)-$ $(f \vee g)(x, y) \leq d(x, y)-f(x, y) \leq A_{X}(d, f)$, because $f(x, y) \leq g(x, y)$.

[^2]Case 3: $(d \vee e)(x, y)=e(x, y)$ and $(f \vee g)(x, y)=f(x, y)$. Then $(d \vee e)(x, y)-$ $(f \vee g)(x, y) \leq e(x, y)-g(x, y) \leq A_{X}(e, g)$, because $g(x, y) \leq f(x, y)$.

Case 4: $(d \vee e)(x, y)=e(x, y)$ and $(f \vee g)(x, y)=g(x, y)$. Then $(d \vee e)(x, y)-$ $(f \vee g)(x, y) \leq A_{X}(e, g)$.

The assertion follows.
2. Corollary. Let X be a set and functions $d, e, f, g: X \times X \rightarrow[0, \infty)$ be given. Then $A_{X}(\min \{d, e\}, \min \{f, g\}) \leq A_{X}(d, f) \vee A_{X}(e, g)$.

Proof. Let $x, y \in X$. Then we consider the four cases:
Case 1: $(\min \{d, e\})(x, y)=d(x, y)$ and $(\min \{f, g\})(x, y)=f(x, y)$.
Then $(\min \{d, e\})(x, y)-(\min \{f, g\})(x, y) \leq A_{X}(d, f)$.
Case 2: $(\min \{d, e\})(x, y)=d(x, y)$ and $(\min \{f, g\})(x, y)=g(x, y)$.
Then $(\min \{d, e\})(x, y)-(\min \{f, g\})(x, y)=d(x, y)-g(x, y) \leq A_{X}(e, g)$, because $e(x, y) \geq d(x, y)$.

Case 3: $(\min \{d, e\})(x, y)=e(x, y)$ and $(\min \{f, g\})(x, y)=f(x, y)$.
Then $(\min \{d, e\})(x, y)-(\min \{f, g\})(x, y)=e(x, y)-f(x, y) \leq A_{X}(d, f)$, because $d(x, y) \geq e(x, y)$.

Case 4: $(\min \{d, e\})(x, y)=e(x, y)$ and $(\min \{f, g\})(x, y)=g(x, y)$. Then $(\min \{d, e\})(x, y)-(\min \{f, g\})(x, y) \leq A_{X}(e, g)$.

The assertion follows.
4. Lemma. Let $d_{n}(n \in \mathbb{N})$ and d be quasi-pseudometrics on a set X such that $\lim _{n \rightarrow \infty} A_{X}\left(d, d_{n}\right)=0$. Then $\lim _{n \rightarrow \infty} A_{X}\left(d^{-1},\left(d_{n}\right)^{-1}\right)=0$ and

$$
\lim _{n \rightarrow \infty} A_{X}\left(d^{s},\left(d_{n}\right)^{s}\right)=0
$$

Proof. The first statement follows from Remark 4. The second statement is a consequence of Proposition 2: Indeed we conclude that $A_{X}\left(d^{s},\left(d_{n}\right)^{s}\right) \leq$ $A_{X}\left(d, d_{n}\right) \vee A_{X}\left(d^{-1},\left(d_{n}\right)^{-1}\right)$ whenever $n \in \mathbb{N}$. The assertion now is a consequence of the first statement.
3. Example. Let X be a set and for each $\lambda \in[0,1]$ set $K(f, g, \lambda)=\lambda f+(1-\lambda) g$ where $f, g \in Q P M(X)$ (compare [19]).

Note that $K(f, g, \lambda)=K(g, f, 1-\lambda)$ whenever $f, g \in Q P M(X)$ and $\lambda \in[0,1]$.
Furthermore, obviously, each $K(f, g, \lambda)$ is a quasi-pseudometric on $X, K(f, g, 0)=$ g and $K(f, g, 1)=f$.

Let $\lambda, \lambda^{\prime} \in[0,1]$. Suppose that $\lambda^{\prime} \leq \lambda$.
Then by a straightforward computation we see that

$$
A_{X}\left(K(f, g, \lambda), K\left(f, g, \lambda^{\prime}\right)\right)=\left(\lambda-\lambda^{\prime}\right) A_{X}(f, g)
$$

and

$$
A_{X}\left(K\left(f, g, \lambda^{\prime}\right), K(f, g, \lambda)\right)=\left(\lambda-\lambda^{\prime}\right) A_{X}(g, f)
$$

In particular, since for any quasi-pseudometric d on a set X we have that $A_{X}\left(d, d^{-1}\right)=A_{X}\left(d^{-1}, d\right)$ by Remark 4 , for any $\lambda, \lambda^{\prime} \in[0,1]$ we get that

$$
\begin{gathered}
A_{X}\left(K\left(d, d^{-1}, \lambda\right), K\left(d, d^{-1}, \lambda^{\prime}\right)\right)=A_{X}\left(K\left(d, d^{-1}, \lambda^{\prime}\right), K\left(d, d^{-1}, \lambda\right)\right)= \\
\left|\lambda-\lambda^{\prime}\right| A_{X}\left(d, d^{-1}\right) .
\end{gathered}
$$

3. Corollary. Let X be a set and let d be a quasi-pseudometric on X. Set $d^{+}=$ $d+d^{-1}$. Then d^{+}is a quasi-pseudometric on X.

We have $A_{X}\left(d, \frac{d^{+}}{2}\right)=A_{X}\left(K\left(d, d^{-1}, 1\right), K\left(d, d^{-1}, \frac{1}{2}\right)\right)=\frac{1}{2} A_{X}\left(d, d^{-1}\right)$ and similarly $A_{X}\left(\frac{d^{+}}{2}, d^{-1}\right)=A_{X}\left(K\left(d, d^{-1}, \frac{1}{2}\right), K\left(d, d^{-1}, 0\right)\right)=\frac{1}{2} A_{X}\left(d, d^{-1}\right)$.

Indeed

$$
\begin{gathered}
A_{X}\left(d, \frac{d^{+}}{2}\right)=A_{X}\left(\frac{d^{+}}{2}, d^{-1}\right)= \\
\frac{1}{2} A_{X}\left(d, d^{-1}\right)=\frac{1}{2} A_{X}\left(d^{-1}, d\right)=A_{X}\left(d^{-1}, \frac{d^{+}}{2}\right)=A_{X}\left(\frac{d^{+}}{2}, d\right)
\end{gathered}
$$

Proof. The assertion follows from Remark 4 and Example 3.

3. The $d_{a b}$-construction

In the following we recall a modification of a T_{0}-quasi-metric d studied in $[8$, Section 5]. Below we give some of the details of the proofs that were omitted in [8, 9].
3. Proposition. (compare [8, Lemma 2]) Given a T_{0}-quasi-metric d on X and $a, b \in X$ be such that $d(a, b)>0$ and $d(b, a)>0$, we define $d_{a b}(x, y)=\min \{d(x, a)+$ $d(b, y), d(x, y)\}$ whenever $x, y \in X$. Then $d_{a b}$ is the largest T_{0}-quasi-metric satisfying $e \leq d$ on X such that $e(a, b)=0$.

Proof. The statement that $d_{a b} \leq d$ is obvious by definition of $d_{a b}$. Furthermore $d_{a b}(a, b)=0$, hence $d_{a b}<d$. It is easy to see that $d_{a b}$ is a quasi-pseudometric: We only have to show that $d_{a b}(x, z) \leq d_{a b}(x, y)+d_{a b}(y, z)$ whenever $x, y, z \in X$.

We consider the four cases:
(1) $d_{a b}(x, y)=d(x, y)$ and $d_{a b}(y, z)=d(y, z)$.
(2) $d_{a b}(x, y)=d(x, a)+d(b, y)$ and $d_{a b}(y, z)=d(y, z)$.
(3) $d_{a b}(x, y)=d(x, y)$ and $d_{a b}(y, z)=d(y, a)+d(b, z)$.
(4) $d_{a b}(x, y)=d(x, a)+d(b, y)$ and $d_{a b}(y, z)=d(y, a)+d(b, z)$.

In Case (1) we obtain $d_{a b}(x, z) \leq d(x, z) \leq d(x, y)+d(y, z)$.
In Case (2) we obtain $d_{a b}(x, z) \leq d(x, a)+d(b, z) \leq d(x, a)+d(b, y)+d(y, z)$.
In Case (3) we obtain $d_{a b}(x, z) \leq d(x, a)+d(b, z) \leq d(x, y)+d(y, a)+d(b, z)$.
In Case (4) we obtain $d_{a b}(x, z) \leq d(x, a)+d(b, z) \leq d(x, a)+d(b, y)+d(y, a)+$ $d(b, z)$.

Hence we are done. In the proof of [8, Lemma 2] it is argued that $d_{a b}$ satisfies the T_{0}-condition (c), because d does so and because $d(b, a)>0$.

Let us now note that if $e \leq d$ is a quasi-pseudometric on X such that $e(a, b)=0$, then we have that for any $x, y \in X, e(x, y) \leq e(x, a)+e(a, b)+e(b, y) \leq d(x, a)+$ $d(b, y)$ and $e(x, y) \leq d(x, y)$. Therefore $e \leq d_{a b}$.
6. Remark. Let (X, d) be a $T_{0^{-}}$quasi-metric space and let $a, b \in X$ be $\leq_{d^{-}}$ incomparable. Then $\left(d_{a b}\right)^{-1}=\left(d^{-1}\right)_{b a}$ according to [9, Remark 1]: Indeed let $x, y \in X$. Then $\left(d_{a b}\right)^{-1}(x, y)=\min \{d(y, a)+d(b, x), d(y, x)\}=\min \left\{d^{-1}(x, b)+\right.$ $\left.d^{-1}(a, y), d^{-1}(x, y)\right\}=\left(d^{-1}\right)_{b a}(x, y)$.
4. Proposition. Let d be a T_{0}-quasi-metric on a set X and let $a, b \in X$ be incomparable with respect to the specialization order of d, that is, $d(a, b)>0$ and $d(b, a)>0$.
(a) We have that $A_{X}\left(d_{a b}, d\right)=0$.
(b) Moreover the equation $A_{X}\left(d, d_{a b}\right)=d(a, b)$ holds.

Proof. (a) The statement immediately follows from $d_{a b} \leq d$.
(b) By definition $A_{X}\left(d, d_{a b}\right)=\sup _{(x, y) \in X \times X}\left(d(x, y) \dot{-} d_{a b}(x, y)\right)$. We need to consider two possible differences in the latter expression: $d(x, y) \dot{-} d(x, y)=0$ or $d(x, y) \dot{-}(d(x, a)+d(b, y))$. But $d(x, y)-d(x, a)-d(b, y) \leq d(a, b)$ by the triangle inequality. Note that equality in the latter inequality holds for $(x, y)=(a, b)$. Indeed $d(a, b) \dot{-} d_{a b}(a, b)=d(a, b)-0$. We conclude that $A_{X}\left(d, d_{a b}\right)=d(a, b)$.
5. Proposition. Let (X, d) be a T_{0}-quasi-metric space and let $a, b \in X$ be $\leq_{d^{-}}$ incomparable. Then $d(b, a) \leq A_{X}\left(d_{a b},\left(d_{a b}\right)^{-1}\right) \leq d(a, b)+A_{X}\left(d, d^{-1}\right)$.

Proof. The first inequality follows from the fact that $d_{a b}(b, a)-\left(d_{a b}\right)^{-1}(b, a)=$ $d(b, a)-0=d(b, a)$.

We then have the following chain of inequalities: By the triangle inequality, Remark 6 and Proposition 4 we see that $A_{X}\left(d_{a b},\left(d_{a b}\right)^{-1}\right) \leq A_{X}\left(d_{a b}, d\right)+$ $A_{X}\left(d, d^{-1}\right)+A_{X}\left(d^{-1},\left(d_{a b}\right)^{-1}\right)=0+A_{X}\left(d, d^{-1}\right)+A_{X}\left(d^{-1},\left(d^{-1}\right)_{b a}\right)=A_{X}\left(d, d^{-1}\right)+$ $d^{-1}(b, a)$.
4. Corollary. Let (X, m) be a metric space and let $a, b \in X$ be two distinct points in X. Then $A_{X}\left(m_{a b},\left(m_{a b}\right)^{-1}\right)=m(a, b)$.

Proof. The result follows from Proposition 5, since m is a metric and $A_{X}\left(m, m^{-1}\right)=$ 0.

4. Some bicomplete subspaces of the space of all quasi-pseudometrics

An (extended) quasi-pseudometric space (X, d) is called bicomplete if the (extended) pseudometric space (X, d^{s}) is complete, that is, each d^{s}-Cauchy sequence in X converges with respect to the pseudometric topology $\tau\left(d^{s}\right)$.
5. Lemma. The extended metric space $\left(Q P M(X),\left(A_{X}\right)^{s}\right)$ is complete, hence $\left(Q P M(X), A_{X}\right)$ is bicomplete.

Proof. The standard proof that the set of real-valued functions on a set X with the uniform sup-metric is complete shows that each Cauchy sequence $\left(d_{n}\right)_{n \in \mathbb{N}}$ of quasi-pseudometrics in $\left(Q P M(X),\left(A_{X}\right)^{s}\right)$ has a $[0, \infty)$-valued limit function a on $X \times X$ to which it converges uniformly. Therefore we only need to show that a is a quasi-pseudometric on X. But this follows from the observation that the pointwise limit of a sequence of quasi-pseudometrics is a quasi-pseudometric: Indeed for each $x \in X$ we have $d(x, x)=\lim _{n \rightarrow \infty} d_{n}(x, x)=\lim _{n \rightarrow \infty} 0=0$. Furthermore we see that for any $x, y, z \in X$ we have that $d_{n}(x, z) \leq d_{n}(x, y)+d_{n}(y, z)$. Therefore taking limits in the reals equipped with the usual topology, we get that $d(x, z) \leq$ $d(x, y)+d(y, z)$ whenever $x, y, z \in X$.

A quasi-pseudometric d on a set X is called bounded if there is $b \in[0, \infty)$ such that $d(x, y) \leq b$ whenever $x, y \in X$, that is, its diameter $\delta_{d}<\infty$. By $B Q P M(X)$ we shall denote the set of bounded quasi-pseudometrics on X.
6. Proposition. The set $B Q P M(X)$ of bounded quasi-pseudometrics is closed in $\left(Q P M(X), \tau\left(\left(A_{X}\right)^{s}\right)\right)$.

Proof. Suppose that $\left(d_{n}\right)_{n \in \mathbb{N}}$ is a sequence of bounded quasi-pseudometrics on X such that $\left(A_{X}\right)^{s}\left(d, d_{n}\right) \rightarrow 0$ where $d \in Q P M(X)$. There is $n \in \mathbb{N}$ such that $\left(A_{X}\right)^{s}\left(d_{n}, d\right)<1$. By assumption there is $a \in[0, \infty)$ such that $\delta_{d_{n}} \leq a$. Then for any $(x, y) \in X \times X$ we have that $d(x, y) \leq\left(d(x, y)-d_{n}(x, y)\right)+d_{n}(x, y) \leq 1+a$. Therefore the quasi-pseudometric d is bounded, too.
6. Lemma. Given a set X with at least 2 points, the set of all T_{0}-quasi-metrics is not closed in $\left(Q P M(X), \tau\left(\left(A_{X}\right)^{s}\right)\right)$.

Proof. For any fixed T_{0}-quasi-metric d on X, the indiscrete quasi-pseudometric $i(x, y)=0$ whenever $(x, y) \in X \times X$ is obviously the uniform limit of the sequence $\left(\frac{1}{n} d\right)_{n \in \mathbb{N}}$ in $\left(Q P M(X), \tau\left(\left(A_{X}\right)^{s}\right)\right)$, but i is not a T_{0}-quasi-metric in case that X contains at least two points.
7. Proposition. Let X be a set and $P M(X)$ the set of all pseudometrics belonging to $Q P M(X)$. Then $P M(X)$ is closed in $\left(Q P M(X), \tau\left(\left(A_{X}\right)^{s}\right)\right)$.

Proof. Suppose that the sequence $\left(m_{n}\right)_{n \in \mathbb{N}}$ of pseudometrics on X converges to the quasi-pseudometric d on X in the sense that $\left(A_{X}\right)^{s}\left(m_{n}, d\right) \rightarrow 0$. Therefore $d(x, y)=\lim _{n \rightarrow \infty} m_{n}(x, y)=\lim _{n \rightarrow \infty} m_{n}(y, x)=d(y, x)$ whenever $x, y \in X$. The statement follows.

Recall that a quasi-pseudometric d on a set X is called totally bounded provided that given any $\epsilon>0$, there is a finite subset F_{ϵ} of X such that for each $x \in X$ there is $f \in F_{\epsilon}$ such that $d^{s}(x, f)<\epsilon$.

Of course, the standard proof shows that each totally bounded quasi-pseudometric is bounded: Indeed given a totally bounded quasi-pseudometric d on X choose a finite subset F_{1} of X as given by the definition. Then for any $x, y \in X$ we have that $d(x, y) \leq 1+\max _{f, f^{\prime} \in F_{1}} d\left(f, f^{\prime}\right)+1$ by an obvious application of the triangle inequality.
8. Proposition. Let X be a set and let $T Q P M(X)$ be the set of all totally bounded quasi-pseudometrics on X.

Then $T Q P M(X)$ is closed in $\left(Q P M(X), \tau\left(\left(A_{X}\right)^{s}\right)\right)$.
Proof. Let $\left(d_{n}\right)_{n \in \mathbb{N}}$ be a sequence of totally bounded quasi-pseudometrics on X converging to a quasi-pseudometric d in $\left(Q P M(X), \tau\left(\left(A_{X}\right)^{s}\right)\right)$.

Let $\epsilon>0$. There is $m \in \mathbb{N}$ such that $\left(A_{X}\right)^{s}\left(d, d_{m}\right)<\epsilon$. Furthermore there is a finite subset F of X such that for any $x \in X$ there is an $f \in F$ such that $\left(d_{m}\right)^{s}(x, f)<\epsilon$. Thus for any $x \in X$ there is $f \in F$ such that $d(x, f) \leq(d(x, f)-$ $\left.d_{m}(x, f)\right)+d_{m}(x, f) \leq\left(A_{X}\right)^{s}\left(d, d_{m}\right)+\epsilon=2 \epsilon$ and similarly, $d(f, x) \leq(d(f, x)-$ $\left.d_{m}(f, x)\right)+d_{m}(f, x) \leq\left(A_{X}\right)^{s}\left(d, d_{m}\right)+\epsilon=2 \epsilon$. We conclude that d is totally bounded.

Recall that a quasi-pseudometric d on a set X is called an ultra-quasi-pseudometric provided that $d(x, z) \leq \max \{d(x, y), d(y, z)\}$ whenever $x, y, z \in X$. The latter inequality is called the strong triangle inequality for d.
9. Proposition. The set of all ultra-quasi-pseudometrics on a set X is $\tau\left(\left(A_{X}\right)^{s}\right)$ closed in $Q P M(X)$.

Proof. Let $\left(u_{n}\right)_{n \in \mathbb{N}}$ be a sequence of ultra-quasi-pseudometrics on X converging to the quasi-pseudometric d with respect to the topology $\tau\left(\left(A_{X}\right)^{s}\right)$.

Using (uniform) convergence, the existence of $x, y, z \in X$ such that $d(x, z)>$ $\max \{d(x, y), d(y, z)\}$ would imply the existence of an $n \in \mathbb{N}$ such that $d_{n}(x, z)>$ $\max \left\{d_{n}(x, y), d_{n}(y, z)\right\}$-a contradiction. The assertion follows.
7. Lemma. Each quasi-pseudometric space (X, d) with d having a finite range is bicomplete.

Proof. The statement obviously holds for the indiscrete quasi-pseudometric on X. So we can assume that d is not indiscrete. Suppose that $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a d^{s}-Cauchy sequence in X. Then there is $\epsilon>0$ such that $\epsilon \leq \min (d(X \times X) \backslash\{0\})$. Hence we have that there is $N_{\epsilon} \in \mathbb{N}$ such that $0=d\left(x_{n}, x_{m}\right)<\epsilon$ whenever $n, m \in \mathbb{N}$ with $n, m \geq N_{\epsilon}$. We conclude that $\left(x_{n}\right)_{n \in \mathbb{N}}$ converges to $x_{N_{\epsilon}}$ in $\left(X, d^{s}\right)$ and thus d is bicomplete.

Our next example shows that the subset of complete pseudometrics need not be closed in $\left(Q P M(X), \tau\left(\left(A_{X}\right)^{s}\right)\right)$, which also shows that the subset of bicomplete quasi-pseudometrics need not be closed in $\left(Q P M(X), \tau\left(\left(A_{X}\right)^{s}\right)\right)$.
4. Example. Let $X=[0,1) \subseteq \mathbb{R}$ and let $d(x, y)=|x-y|$ whenever $x, y \in X$ be the usual metric on X.

Furthermore for any $x \in X$ suppose that $p(x)=0 . e_{1} e_{2} e_{3} \ldots e_{n} \ldots$ is a fixed decimal representation of x with infinitely many digits. Of course, $d(x, y)=\mid p(x)-$ $p(y) \mid$ whenever $x, y \in X$.

For each $n \in \mathbb{N}$ let $p_{n}(x)=0 . e_{1} e_{2} \ldots e_{n}$. Of course, for each $n \in \mathbb{N}, d_{n}(x, y)=$ $\left|p_{n}(x)-p_{n}(y)\right|$ whenever $x, y \in X$ is a pseudometric. Note that each d_{n} has a finite range.

Obviously $\lim _{n \rightarrow \infty}\left(A_{X}\right)^{s}\left(d_{n}, d\right)=0$, since by Lemma 1

$$
\begin{gathered}
\left(A_{X}\right)^{s}\left(d_{n}, d\right)=\sup _{(x, y) \in X \times X}\left|d_{n}(x, y)-d(x, y)\right| \\
=\sup _{(x, y) \in X \times X} \| p_{n}(x)-p_{n}(y)|-|p(x)-p(y)|| \\
\leq \sup _{x \in X}\left|p(x)-p_{n}(x)\right|+\sup _{y \in X}\left|p(y)-p_{n}(y)\right| \leq \frac{2}{10^{n}} .
\end{gathered}
$$

Furthermore $\left(1-\frac{1}{n}\right)_{n \in \mathbb{N}}$ is a d-Cauchy sequence that is not convergent in $(X, \tau(d))$ and thus d not complete. However by Lemma 7 each pseudometric d_{n} is complete and $\left(A_{X}\right)^{s}\left(d_{n}, d\right) \rightarrow 0$.

The following concept was introduced by Steve Matthews.
2. Definition. (see for instance $[5,18,15])$ Let (X, f) be a quasi-pseudometric space. If there exists a function $w: X \rightarrow[0, \infty)$ such that $f(x, y)+w(x)=$ $f(y, x)+w(y)$ whenever $x, y \in X$, then f is called nonnegatively weightable and w is said to be a nonnegative weight for (X, f).
7. Remark. Note that the weight of a nonnegatively weightable quasi-pseudometric is not unique; for instance for a given metric space (X, m) any nonnonegative real constant function yields a nonnegative weight function.

That is why in the proof given below, if $n \in \mathbb{N}$ and w_{n} is a weight function for a nonnegatively weightable quasi-pseudometric space $\left(X, d_{n}\right)$, we cannot expect that the sequence $\left(w_{n}\right)_{n \in \mathbb{N}}$ converges to some nonnegative weight function of $\lim _{n \rightarrow \infty} d_{n}$, even if the latter limit exists.
10. Proposition. The set $W Q P M(X)$ of all nonnegatively weightable quasipseudometrics on X is $\tau\left(\left(A_{X}\right)^{s}\right)$-closed in $Q P M(X)$.

Proof. Suppose that $\left(d_{n}\right)_{n \in \mathbb{N}}$ is a sequence of nonnegatively weightable quasipseudometrics on X and $\left(A_{X}\right)^{s}\left(d, d_{n}\right) \rightarrow 0$ where $d \in Q P M(X)$. For each $n \in \mathbb{N}$ and $x, y \in X$ set $F_{n}(x, y):=d_{n}(x, y)-d_{n}(y, x)$, that is, F_{n} is the disymmetry function of d_{n} in the sense of [5].

Then $\left|F_{n}(x, y)-F_{m}(x, y)\right| \leq\left|d_{n}(x, y)-d_{m}(x, y)\right|+\left|d_{n}(y, x)-d_{m}(y, x)\right|$ whenever $x, y \in X$ and $n, m \in \mathbb{N}$.

Since $\left(d_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence in $\left(Q P M(X),\left(A_{X}\right)^{s}\right)$, we conclude that for each $(x, y) \in X \times X,\left(F_{n}(x, y)\right)_{n \in \mathbb{N}}$ is a Cauchy sequence in $\left(\mathbb{R}, u^{s}\right)$.

For each $(x, y) \in X \times X$ set $F(x, y)=\lim _{n \rightarrow \infty} F_{n}(x, y)$. By the previous argument we see that indeed $\lim _{n \rightarrow \infty}\left(A_{X}\right)^{s}\left(F_{n}, F\right)=0$.

It is known by [5, Theorem 3.5] and readily checked that, by the weightability of $d_{n}, F_{n}(x, z)=F_{n}(x, y)+F_{n}(y, z)$ whenever $n \in \mathbb{N}$ and $x, y, z \in X$. By taking limits we have therefore $F(x, z)=F(x, y)+F(y, z)$ whenever $x, y, z \in X$. We deduce that $F(x, y)=d(x, y)-d(y, x)=\phi(y)-\phi(x)$ for some function $\phi: X \rightarrow \mathbb{R}$ by Sincov's functional equation [11].

It remains to be seen that we can choose the function ϕ in such a way that $\phi(y) \geq 0$ whenever $y \in X$.

By the argument above we can find $n \in \mathbb{N}$ such that $\left|F_{n}(x, y)-F(x, y)\right|<1$ whenever $(x, y) \in X \times X$.

Fix $x \in X$. Since F_{n} stems from a nonnegatively weightable quasi-pseudometric d_{n} with a nonnegative weight $\phi_{n}: X \rightarrow[0, \infty)$, we have $F_{n}(x, y)=d_{n}(x, y)-$ $d_{n}(y, x)=\phi_{n}(y)-\phi_{n}(x) \geq-\phi_{n}(x)$ whenever $y \in X$.

Hence $-\phi_{n}(x) \leq F_{n}(x, y)$ whenever $y \in X$ and therefore $-\phi_{n}(x)-F(x, y) \leq$ $F_{n}(x, y)-F(x, y)<1$. Thus $-\phi_{n}(x)-1 \leq F(x, y)=\phi(y)-\phi(x)$ whenever $y \in X$. We conclude that $-\phi_{n}(x)+\phi(x)-1 \leq \phi(y)$ whenever $y \in X$. Therefore $w(y):=\phi(y)+\phi_{n}(x)-\phi(x)+1$ whenever $y \in X$ is a nonnegative weight for d.

5. The difference approach to the skewness of a quasi-pseudometric

In this section we are interested in measuring the asymmetry or skewness of a T_{0}-quasi-metric f on a set X. Several methods suggest themselves.

For instance we could compare the specialization orders \leq_{f} and \leq_{f-1}, or we could compare the topologies $\tau(f)$ and $\tau\left(f^{-1}\right)$. Observe that $\leq_{f}=\leq_{f-1}$ iff the specialization order \leq_{f} is equality, that is, f is a T_{1}-quasi-metric. (A quasipseudometric d on X satisfying the condition that $d(x, y) \neq 0$ whenever $x, y \in$ X with $x \neq y$ is called a T_{1}-quasi-metric.) Of course, $\tau(f)=\tau\left(f^{-1}\right)$ if and only if for any $x \in X$ and sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in $X, \lim _{n \rightarrow \infty} f\left(x, x_{n}\right)=0$ iff $\lim _{n \rightarrow \infty} f^{-1}\left(x, x_{n}\right)=0$.

We could also study relationships between the induced quasi-uniformities \mathcal{U}_{f} and \mathcal{U}_{f-1}, or the induced totally bounded quasi-uniformities $\left(\mathcal{U}_{f}\right)_{\omega}$ and $\left(\mathcal{U}_{f-1}\right)_{\omega} .^{\ddagger \ddagger}$ Observe that $\mathcal{U}_{f}=\mathcal{U}_{f-1}$ iff \mathcal{U}_{f} is a uniformity. Similarly $\left(\mathcal{U}_{f}\right)_{\omega}=\left(\mathcal{U}_{f-1}\right)_{\omega}$ iff $\left(U_{f}\right)_{\omega}$ is a uniformity (compare [7, Corollary 1.40]).

In the following we shall consider a metric approach to asymmetry that is more in the spirit of paper [5] where the function $F(x, y)=d(x, y)-d(y, x)$ (whenever $x, y \in X$) of disymmetry is considered. The following sets might be of special interest for a more detailed study on asymmetry, which will be conducted elsewhere.
5. Example. Let (X, d) be a T_{0}-quasi-metric space and let $k, r \in[0, \infty)$.
(a) Let $S_{d, k}=\{(x, y) \in X \times X:|d(x, y)-d(y, x)| \leq k\}$. Then $S_{d, k}$ is a $\tau\left(d^{s}\right) \times \tau\left(d^{s}\right)$-closed symmetric reflexive relation. We can call it the set of k symmetric pairs.
(b) $A_{d, k}=\{(x, y) \in X \times X:|d(x, y)-d(y, x)| \geq k\}$ is a $\tau\left(d^{s}\right) \times \tau\left(d^{s}\right)$-closed symmetric relation. We can call it the set of k-asymmetric pairs.
(c) Further interesting tools to measure asymmetry could be the sets of reals $\sigma_{d, k ; r}=\{d(x, y):(x, y) \in X \times X$ and $|d(y, x)-r| \leq k\}$ and $\alpha_{d, k ; r}=\{d(x, y):$ $(x, y) \in X \times X$ and $|d(y, x)-r| \geq k\}$.

In particular we can speak of a symmetric pair $(x, y) \in X \times X$ if $d(x, y)=d(y, x)$ and call $x \in X$ a symmetric point of (X, d) provided that $d(x, y)=d(y, x)$ whenever $y \in X$.

In the present paper we shall concentrate on investigating the following much simpler concept.
3. Definition. Let (X, d) be a quasi-pseudometric space. We define $A_{d}:=$ $A_{X}\left(d, d^{-1}\right)=\sup _{(x, y) \in X \times X}(d(x, y) \dot{-} d(y, x))=\sup _{(x, y) \in X \times X}|d(x, y)-d(y, x)|$.
8. Remark. Of course if X is finite, it may be more reasonable to consider the T_{0}-quasi-metric $S_{X}(d, e):=\sum_{(x, y) \in X \times X}(d(x, y) \dot{-} e(x, y))$ for $d, e \in Q P M(X)$ and then for instance to investigate the value

$$
S_{X}^{\oplus}\left(d, d^{-1}\right)=\frac{1}{2} \sum_{(x, y) \in X \times X}|d(x, y)-d(y, x)|
$$

in order to make sure that all the relevant differences can contribute to the value of asymmetry.

But we shall restrict our study in the following to the value $A_{X}\left(d, d^{-1}\right)$, which is much easier to handle.

Let us consider some examples.
6. Example. Let $X=[a, b]$ be the closed interval with endpoints a and b of the set \mathbb{R}. Then $A_{u}=A_{X}\left(u, u^{-1}\right) \geq u(b, a)-u^{-1}(b, a)=b-a$, where u denotes also the restriction of u to $[a, b]$.

The following observation was already stated in the introduction.

[^3]9. Remark. Let f be a quasi-pseudometric on a set X. Then $A_{f}=0$ if and only if f is a pseudometric on X.
7. Example. Let (X, d, w) be a nonnegatively weighted quasi-pseudometric space, that is, $d(x, y)+w(x)=d(y, x)+w(y)$ whenever $x, y \in X$ where $w: X \rightarrow[0, \infty)$ is the weight function. Therefore $A_{d}=\sup _{(x, y) \in X \times X}|w(y)-w(x)|$.
8. Example. Let $X=[0, \infty)$ and for all $x, y \in X$ set $d(x, y)=0$ if $x \leq y$ and $d(x, y)=x$ if $x \not \leq y$, where \leq is the usual order on X. We first note that d is a T_{0}-ultra-quasi-metric on $X:$ Observe that if $x, y \in X$ such that $x<y$, then $d^{s}(x, y) \geq y$, which shows that the T_{0}-condition (c) is satisfied by d.

We next verify that d satisfies the strong triangle inequality: Otherwise there are $x, y, z \in X$ such that $d(x, z) \not \leq \max \{d(x, y), d(y, z)\}$. Then $x \not \leq z$ and thus $d(x, z)=x$. Note that the case that $x \leq y$ and $y \leq z$ is impossible, since $x \not \leq z$.

If $x \not \leq y$, then $d(x, y)=x$ and the strong triangle inequality for d is satisfied.
On the other hand, if $x \leq y$ and $y \not \leq z$, then $d(y, z)=y$ and the strong triangle inequality is satisfied for d, because $d(x, z) \leq d(y, z)$. Hence d is a T_{0}-ultra-quasimetric.

We now conclude the following: Let $x, y \in[0, \infty)$. If $y<x$, then $d(x, y) \dot{-} d(y, x)=$ $x \dot{-} 0=x$. If $y=x$, then $d(x, y) \dot{-} d(y, x)=0 \dot{-} 0=0$. If $y>x$, then $d(x, y) \dot{-} d(y, x)=$ $0 \dot{-} y=0$.

Therefore for each $x \in X, \sup _{y \in X}(d(x, y) \dot{-} d(y, x))=x$ and for each $y \in X$, $\sup _{x \in X}(d(x, y) \dot{-} d(y, x))=\infty$. In particular $A_{d}=\infty$.
8. Lemma. Let (X, d) be a quasi-pseudometric space. Then $A_{d} \leq \delta_{d}$ where δ_{d} denotes the diameter of (X, d).

Proof. For any $(x, y) \in X \times X$ we have that $d(x, y)-d(y, x) \leq d(x, y)$.
9. Lemma. Let d, d^{\prime} be quasi-pseudometrics on a set X and $\lambda \in[0, \infty)$. Then the following inequalities hold:
(a) $A_{\lambda d}=\lambda A_{d}$.
(b) $A_{d+d^{\prime}} \leq A_{d}+A_{d^{\prime}}$.
(c) $A_{d \vee d^{\prime}} \leq A_{d} \vee A_{d^{\prime}}$. Furthermore $A_{\min \left\{d, d^{\prime}\right\}} \leq A_{d} \vee A_{d^{\prime}}$ (where $\min \left\{d, d^{\prime}\right\}$ in general is not a quasi-pseudometric on X).
(d) $A_{d}=A_{d^{-1}}$.

Proof. The statements follow from Lemma 2(b), Lemma 2(a), Proposition 2, Corollary 2 and Remark 4.
10. Remark. Given a quasi-pseudometric d on a set X, we cannot establish any nontrivial lower bounds for $A_{d+d^{-1}}$ and $A_{d \vee d^{-1}}$ in (b) and (c) above: Note that for any quasi-pseudometric d on X we have that $A_{d+d^{-1}}=0=A_{d \vee d^{-1}}$. Considering the space (\mathbb{R}, u), we observe that $u \wedge u^{-1}=\min \left\{u, u^{-1}\right\}=\underline{0}$ is the constant indiscrete quasi-pseudometric equal to 0 on $\mathbb{R} \times \mathbb{R}$. Since $A_{\underline{0}}=0$, we deduce that there is also no nontrivial lower bound for $A_{d \wedge d^{-1}}$.

The following result shows that quasi-pseudometrics that are close to each other have asymmetry values that are close to each other, too.
10. Lemma. For any quasi-pseudometrics p and q on a set X such that $\left(A_{X}\right)^{s}(p, q)<$ ∞ we have that either $\left(A_{X}\right)^{s}\left(p, p^{-1}\right)=\left(A_{X}\right)^{s}\left(q, q^{-1}\right)=\infty$ or $\mid\left(A_{X}\right)^{s}\left(p, p^{-1}\right)-$ $\left(A_{X}\right)^{s}\left(q, q^{-1}\right) \mid \leq 2\left(A_{X}\right)^{s}(p, q)$.

Proof. Suppose that $\left(A_{X}\right)^{s}\left(p, p^{-1}\right)=\infty$. Then by the triangle inequality we have that $\left(A_{X}\right)^{s}\left(p, p^{-1}\right) \leq\left(A_{X}\right)^{s}(p, q)+\left(A_{X}\right)^{s}\left(q, q^{-1}\right)+\left(A_{X}\right)^{s}\left(q^{-1}, p^{-1}\right)$. By Remark 4 and our assumption we see that $\left(A_{X}\right)^{s}\left(q, q^{-1}\right)=\infty$, too. The case that $\left(A_{X}\right)^{s}\left(q, q^{-1}\right)=\infty$ implies similarly that $\left(A_{X}\right)^{s}\left(p, p^{-1}\right)=\infty$.

So assume that both $\left(A_{X}\right)^{s}\left(p, p^{-1}\right)$ and $\left(A_{X}\right)^{s}\left(q, q^{-1}\right)$ are $<\infty$. By Remark 4 we conclude analogously as in Lemma 1 that $\left|\left(A_{X}\right)^{s}\left(p, p^{-1}\right)-\left(A_{X}\right)^{s}\left(q, q^{-1}\right)\right| \leq$ $\left(A_{X}\right)^{s}(p, q)+\left(A_{X}\right)^{s}\left(p^{-1}, q^{-1}\right)=2\left(A_{X}\right)^{s}(p, q)$.

According to [21, p. 131] a costfunction is an arbitrary function $g:[0, \rightarrow) \longrightarrow$ $[0, \rightarrow)$ with $g(0)=0$ that is concave (so $g((1-\lambda) s+\lambda t) \geq(1-\lambda) g(s)+\lambda g(t)$ whenever $s, t \in[0, \infty)$ and $\lambda \in[0,1])$. ${ }^{*}$ For instance $g(x)=\sqrt{x}$ whenever $x \in$ $[0, \infty)$ defines such a costfunction.
11. Proposition. Let d be a quasi-pseudometric on a set X and let g be a costfunction on $[0, \infty)$. Then $A_{g \circ d} \leq g\left(A_{d}\right)$.

Proof. We first note that $g \circ d$ is a quasi-pseudometric on X (compare [21, Theorem 5, Lemma 3 (2) and (3)]). Now we are going to establish the stated inequality.

Case 1: Let $x, y \in X$. If $g(d(x, y))-g(d(y, x)) \leq 0$, then obviously $g(d(x, y))-$ $g(d(y, x)) \leq 0=g(0) \leq g\left(A_{d}\right)$, because g is nondecreasing [21, Lemma 3 (3)] and $0 \leq A_{d}$.

Case 2: Suppose now that $g(d(x, y))-g(d(y, x))>0$. Thus $g(d(x, y))>$ $g(d(y, x))$. Then $d(x, y) \leq d(y, x)$ is impossible, since g is nondecreasing [21, Lemma 3 (3)]. Thus necessarily $d(x, y)>d(y, x)$. Therefore $g(d(x, y))=g(d(x, y)-$ $d(y, x)+d(y, x)) \leq g(d(x, y)-d(y, x))+g(d(y, x))$ using [21, Lemma 3 (2)]. It follows that $g(d(x, y))-g(d(y, x)) \leq g(d(x, y)-d(y, x)) \leq g\left(A_{d}\right)$, since g is nondecreasing and $d(x, y)-d(y, x) \leq A_{d}$. We conclude that $A_{g \circ d} \leq g\left(A_{d}\right)$.
9. Example. Let (X, d) be a quasi-pseudometric space. It is well known that $\frac{d}{1+d}$ is a bounded quasi-pseudometric on X. See for instance [21, Example 1]: Indeed it suffices to note that $s \mapsto \frac{s}{1+s}$ is a costfunction. By Proposition 11 we then have that $A_{\frac{d}{1+d}} \leq \frac{A_{d}}{A_{d}+1}$ if $A_{d}<\infty$, and $A_{\frac{d}{1+d}} \leq 1$ if $A_{d}=\infty$.

6. Asymmetrically normed real vector spaces

We next recall the concept of an asymmetric norm (see for instance [6]; compare [21, Section 2.5] or [20, p. 183]), which leads to many interesting examples of quasipseudometrics.
4. Definition. Let X be a real vector space and let $\| \cdot \mid \rightarrow[0, \infty)$ be a map such that
(1) $\| 0 \mid=0$.
(2) $||x+y| \leq||x|+||y|$ whenever $x, y \in X$.

[^4](3) $||\alpha x|=\alpha \| x|$ whenever $x \in X$ and $\alpha \geq 0$. Furthermore suppose that $\| x \mid=$ $\|-x \mid=0$ implies that $x=0$.

The function $\| \cdot \mid$ is called an asymmetric norm on X. It is known that each asymmetrically normed vector space X induces a T_{0}-quasi-metric d on X by setting $d(x, y)=\| x-y \mid$ whenever $x, y \in X$.

To motivate the preceding definition we recall the concept of the asymmetric segment.
10. Example. [1, Remark 2] Let $X=[0,1]$. Find $a, b \in[0, \infty)$ such that $a+b \neq 0$. Set $d_{[a b]}(x, y)=(x-y) a$ if $x>y$ and $d_{[a, b]}(x, y)=(y-x) b$ if $y \geq x$. Then ($[0,1], d_{[a b]}$) is a T_{0}-quasi-metric space induced by the asymmetric norm $n_{[a b]}$ on \mathbb{R} defined by $n_{[a b]}(x)=x a$ if $x>0$ and $n_{[a b]}(x)=-x b$ if $x \leq 0$.

The following related example then yields another illustration of Proposition 11.
11. Example. Let $X=[-1,1]$ be the real interval and set for $x, y \in X d(x, y)=$ $|x-y|$ if $x \geq y$ and $d(x, y)=2|x-y|$ if $x<y$. Then by Example $10 d$ is a T_{0}-quasi-metric on X.

Using the costfunction $g(x)=\sqrt{x}(x \in[0, \infty))$ we compute that
$A_{d}=\sup _{(x, y) \in X \times X}|x-y|=2$ and hence $\sqrt{A_{d}}=\sqrt{2}$,
while $A_{\sqrt{d}}=\sup _{(x, y) \in X \times X}(\sqrt{2}-1) \sqrt{|x-y|}=2-\sqrt{2}$, which is indeed $<\sqrt{2}$.
11. Remark. Given a set X, it is often useful to abuse the notation and write $A_{X}(f, g)=\| f-g \mid$ where $f, g \in Q P M(X)$, although in this case obviously not all conditions of Definition 4 are satisfied, since the vector space structure is missing.
12. Proposition. Let X be a non-trivial real vector space, let $\| \cdot \mid$ be an asymmetric norm on X and let d be the induced T_{0}-quasi-metric as defined above. Then $A_{d}=\sup _{x \in X}\left|\|-x \mid-\| x \|\right.$. Hence $A_{d}=\infty$ if $\left.\| \cdot\right|$ is not a norm.

Proof. The first statement is obvious. For the second statement, without loss of generality there is $x_{0} \in X$ such that $\|-x_{0}\left|>\left|\left|x_{0}\right|\right.\right.$. Let $\alpha>0$. Then $d\left(0, \alpha x_{0}\right)-$ $d\left(\alpha x_{0}, 0\right)=\left\|0-\alpha x_{0}\left|-\| \alpha x_{0}-0\right|=\alpha\left(\left\|-x_{0}\left|-\| x_{0}\right|\right)\right.\right.$, which can be made arbitrarily large by choosing α appropriately.
12. Remark. In [21] a multiplicative approach to an asymmetry measure σ_{d} of a T_{0}-quasi-metric d on a set X (with at least two elements) is chosen: σ_{d} is computed as

$$
\sup _{(x, y) \in(X \times X) \backslash \Delta_{X}} \frac{d(x, y)}{d(y, x)},
$$

where the latter expression is defined to be infinite in case that $d(y, x)=0$ for some $(x, y) \in(X \times X) \backslash \Delta_{X}$. Hence this definition is mainly suitable for a T_{1} -quasi-metric. We also note that this approach is very useful in an asymmetrically normed space $(X, \| \cdot \mid)$, since in this case for an induced T_{1}-quasi-metric d the value σ_{d} does not depend on the length $\| z \mid$ of the vector $z \in X$ and thus can be determined on the unit sphere $\{z \in X: \| z \mid=1\}$ (see Proposition 12 and compare [21, Lemma 10]).

We refer the reader to [4, Section 4] for a short discussion of connections between additive and multiplicative approaches to distance functions.

7. Some properties of A_{d} where d is a quasi-pseudometric

Given a quasi-pseudometric d on a set X, in this section we prove two simple facts about the asymmetry value A_{d} of d.
13. Proposition. Let (X, d) be a quasi-pseudometric space such that the topology $\tau\left(d^{s}\right)$ is compact. Then there is $(a, b) \in X \times X$ such that $A_{d}=d(a, b)-d(b, a)$, that is, the supremum A_{d} is attained.

Proof. We sketch the standard argument. By compactness of the pseudometric topology $\tau\left(d^{s}\right)$, we see that d is bounded. Hence $A_{d}<\infty$ by Lemma 8 . Therefore there is a sequence $\left(x_{n}, y_{n}\right)_{n \in \mathbb{N}}$ in $X \times X$ such that the real sequence $\left(F\left(x_{n}, y_{n}\right)\right)_{n \in \mathbb{N}}$, where for each $n \in \mathbb{N} F\left(x_{n}, y_{n}\right)=d\left(x_{n}, y_{n}\right)-d\left(y_{n}, x_{n}\right)$, converges to the value A_{d}. By compactness of $\tau\left(d^{s}\right)$ there is a subsequence $\left(n_{k}\right)_{k \in \mathbb{N}}$ of $(n)_{n \in \mathbb{N}}$ and $x, y \in X$ such that $\left(x_{n_{k}}\right)_{k \in \mathbb{N}}$ resp. $\left(y_{n_{k}}\right)_{k \in \mathbb{N}} \tau\left(d^{s}\right)$-converges to x resp. y in X. Since $\lim _{n \rightarrow \infty} F\left(x_{n}, y_{n}\right)=A_{d}$, we conclude that $F(x, y)=A_{d}$ by continuity of d on $\left(X \times X, \tau\left(d^{s}\right) \times \tau\left(d^{s}\right)\right)$.
11. Lemma. Let (X, d) be a quasi-pseudometric space and $Y \subseteq X$. Then

$$
\sup _{(x, y) \in Y \times Y}|d(x, y)-d(y, x)| \leq \sup _{(x, y) \in X \times X}|d(x, y)-d(y, x)| .
$$

Proof. The argument is obvious.
Our next result considers a density condition under which the inverse inequality also holds.
14. Proposition. Let Y be a subspace of a quasi-pseudometric space (X, d) such that $\operatorname{cl}_{\tau\left(d^{s}\right)} Y=X$. Then $A_{Y}\left(\left.d\right|_{Y \times Y},\left.d^{-1}\right|_{Y \times Y}\right)=A_{X}\left(d, d^{-1}\right)$.

Proof. Let $x, y \in \operatorname{cl}_{\tau\left(d^{s}\right)} Y$. Then there are sequences $\left(x_{n}\right)_{n \in \mathbb{N}}$ and $\left(y_{n}\right)_{n \in \mathbb{N}}$ in X such that $d^{s}\left(x, x_{n}\right) \rightarrow 0$ and $d^{s}\left(y_{n}, y\right) \rightarrow 0$. Fix $n \in \mathbb{N}$. Then $|d(x, y)-d(y, x)| \leq$ $\left|d(x, y)-d\left(x_{n}, y_{n}\right)\right|+\left|d\left(x_{n}, y_{n}\right)-d\left(y_{n}, x_{n}\right)\right|+\left|d\left(y_{n}, x_{n}\right)-d(y, x)\right| \leq d^{s}\left(x, x_{n}\right)+$ $d^{s}\left(y, y_{n}\right)+\left|d\left(x_{n}, y_{n}\right)-d\left(y_{n}, x_{n}\right)\right|+d^{s}\left(y_{n}, y\right)+d^{s}\left(x_{n}, x\right) \leq 2 d^{s}\left(x_{n}, x\right)+2 d^{s}\left(y_{n}, y\right)+$ $\sup _{(x, y) \in Y \times Y}|d(x, y)-d(y, x)|$ by Lemma 1. Therefore

$$
\sup _{(x, y) \in X \times X}|d(x, y)-d(y, x)| \leq \sup _{(x, y) \in Y \times Y}|d(x, y)-d(y, x)| .
$$

Hence the stated equality is established.
5. Corollary. Let (X, d) be a T_{0}-quasi-metric with bicompletion $(\widetilde{X}, \widetilde{d})$ (see [13, Example 2.7.1]). Then $A_{X}\left(d, d^{-1}\right)=A_{\widetilde{X}}\left(\widetilde{d},(\widetilde{d})^{-1}\right)$.

Proof. It is known that X is $\tau\left((\widetilde{d})^{s}\right)$-dense in \widetilde{X}.

8. The q-hyperconvex hull of a T_{0}-quasi-metric space

We first recall some basic facts about the q-hyperconvex hull of a T_{0}-quasimetric space. For additional information we refer the reader to $[12,17]$ and the literature cited in these papers.

Let (X, d) be a T_{0}-quasi-metric space. We consider the set Q_{X} of all function pairs $f=\left(f_{1}, f_{2}\right)$ on (X, d), where $f_{i}: X \rightarrow[0, \infty)(i=1,2)$, satisfying

$$
f_{1}(x)=\sup \left\{d(y, x)-f_{2}(y): y \in X\right\} \text { and } f_{2}(x)=\sup \left\{d(x, y) \doteq f_{1}(y): y \in X\right\}
$$

whenever $x \in X$.
We equip Q_{X} with the T_{0}-quasi-metric D defined by

$$
D(f, g)=\sup _{x \in X}\left(f_{1}(x) \dot{-} g_{1}(x)\right)=\sup _{x \in X}\left(g_{2}(x) \dot{-} f_{2}(x)\right)
$$

whenever $f, g \in Q_{X}$.
Then the map e defined for each $x \in X$ by $x \mapsto e(x)=f_{x}$ where $\left(f_{x}\right)_{1}(y):=$ $d(x, y)$ and $\left(f_{x}\right)_{2}(y):=d(y, x)$ whenever $y \in X$ yields an isometric embedding of (X, d) into $\left(Q_{X}, D\right)$. The T_{0}-quasi-metric space $\left(Q_{X}, D\right)$ is called the q-hyperconvex hull of (X, d).

Let us mention that for each $f, g \in Q_{X}$, we have

$$
\begin{equation*}
D(f, g)=\sup \left\{\left(D\left(f_{x_{1}}, f_{x_{2}}\right)-D\left(f_{x_{1}}, f\right)-D\left(g, f_{x_{2}}\right)\right) \vee 0: x_{1}, x_{2} \in X\right\} \tag{*}
\end{equation*}
$$

according to $[12$, Remark 7].
15. Proposition. Let (X, d) be a T_{0}-quasi-metric space and let $\left(Q_{X}, D\right)$ be its q-hyperconvex hull. Then $\delta_{d}=A_{D}=\delta_{D}$.

Proof. We first show that the diameter δ_{D} of the q-hyperconvex hull $\left(Q_{X}, D\right)$ of a T_{0}-quasi-metric space (X, d) is equal to the diameter δ_{d} of (X, d).

Obviously $\delta_{D} \geq \delta_{d}$, since (X, d) embeds as an isometric subspace into $\left(Q_{X}, D\right)$. Note that for any $f, g \in Q_{X}$ we have that by the result $(*)$ stated above,

$$
D(f, g)=\sup _{(x, y) \in X \times X}\{D(x, y)-D(x, f)-D(g, y), 0\}=\sup _{(x, y) \in X \times X} D(x, y) \leq \delta_{d}
$$

Thus $\delta_{D} \leq \delta_{d}$. Hence the equality of the two diameters δ_{D} and δ_{d} is established.
We next consider now the case that the diameter $\delta_{d}<\infty$. Define a function pair \perp by setting $\perp_{1}(x)=0$ and $\perp_{2}(x)=\sup _{a \in X} d(x, a)$ whenever $x \in X$. Furthermore define a function pair \top by setting $\top_{1}(x)=\sup _{a \in X} d(a, x)$ and $\top_{2}(x)=0$ whenever $x \in X$.

One verifies that $\perp, T \in Q_{X}$ by checking the defining equations: Indeed for each $x \in X$,

$$
\perp_{1}(x)=0=\sup _{y \in X}\left(d(y, x) \dot{-} \perp_{2}(y)\right)=\sup _{y \in X}\left(d(y, x) \dot{-} \sup _{a \in X} d(y, a)\right)
$$

and similarly

$$
\perp_{2}(x)=\sup _{y \in X}\left(d(x, y) \dot{-} \perp_{1}(y)\right)=\sup _{y \in X}(d(x, y) \dot{-} 0)
$$

Analogously for each $x \in X$,

$$
\top_{1}(x)=\sup _{y \in X} d(y, x)=\sup _{y \in X}\left(d(y, x) \dot{-} \top_{2}(y)\right)=\sup _{y \in X}(d(y, x) \dot{-} 0)
$$

and

$$
\top_{2}(x)=0=\sup _{y \in X}\left(d(x, y) \dot{-} \top_{1}(y)\right)=\sup _{y \in X}\left(d(x, y) \dot{-} \sup _{a \in X} d(a, y)\right) .
$$

Hence $\perp, \top \in Q_{X}$, as asserted.
Furthermore one computes

$$
D(\perp, f)=\sup _{x \in X}\left(\perp_{1}(x) \dot{-} f_{1}(x)\right)=\sup _{x \in X}\left(0 \dot{-} f_{1}(x)\right)=0
$$

and similarly $D(f, \top)=\sup _{x \in X}\left(\top_{2}(x) \dot{-} f_{2}(x)\right)=\sup _{x \in X}\left(0 \dot{-} f_{2}(x)\right)=0$ whenever $f \in Q_{X}$. Hence \perp is the bottom and \top the top of Q_{X} with respect to the specialization order \leq_{D} of D on Q_{X}.

Thus $D(\top, \perp)-D(\perp, \top)=D(\top, \perp)-0=\sup _{x \in X}\left(\top_{1}(x) \dot{-} \perp_{1}(x)\right)$ $=\sup _{x \in X}\left(\sup _{a \in X} d(a, x) \dot{-} 0\right)=\delta_{d}$. We conclude that $A_{D} \geq \delta_{d}$.

Hence we know by Lemma 8 that $A_{d} \leq \delta_{d} \leq A_{D} \leq \delta_{D} \leq \delta_{d}$ and conclude that $\delta_{d}=A_{D}=\delta_{D}$.

Suppose now that (X, d) is an unbounded T_{0}-quasi-metric space and let $\left(Q_{X}, D\right)$ be the q-hyperconvex hull of (X, d).

Choose $x_{0} \in X$. For each $n \in \mathbb{N}$ set $X_{n}=\left\{x \in X: d^{s}\left(x_{0}, x\right) \leq n\right\}$ and denote the restriction of d to $X_{n} \times X_{n}$ by d_{n}.

Note that for each $n \in \mathbb{N}$ we have that $\delta_{d_{n}} \leq 2 n$, thus $\left(X_{n}, d_{n}\right)$ is bounded. We also observe that $\bigcup_{n \in \mathbb{N}} X_{n}=X$ where the sequence $\left(X_{n}\right)_{n \in \mathbb{N}}$ of subspaces of X is increasing.

Let $\left(Q_{X_{n}}, D_{n}\right)$ denote the q-hyperconvex hull of the subspace $\left(X_{n}, d_{n}\right)$ of (X, d). Denote by \top_{n} resp. \perp_{n} the top resp. bottom element of $\left(Q_{X_{n}}, D_{n}\right)$, as constructed in the first part of the present proof.

For each $n \in \mathbb{N}$ consider an isometry $\tau_{n}: Q_{X_{n}} \rightarrow Q_{X}$ as given in [1, Proposition 4].*

For each $n \in \mathbb{N}$ set $f_{n}:=\tau_{n}\left(\top_{n}\right)$ and $g_{n}:=\tau_{n}\left(\perp_{n}\right)$. We have that

$$
\delta_{d_{n}}=\sup _{x \in X_{n}}\left(\sup _{a \in X_{n}} d_{n}(a, x)\right)=D_{n}\left(\top_{n}, \perp_{n}\right)=D\left(\tau_{n}\left(\top_{n}\right), \tau_{n}\left(\perp_{n}\right)\right)=D\left(f_{n}, g_{n}\right)
$$

and $0=D_{n}\left(\perp_{n}, \top_{n}\right)=D\left(\tau_{n}\left(\perp_{n}\right), \tau_{n}\left(\top_{n}\right)\right)=D\left(g_{n}, f_{n}\right)$ whenever $n \in \mathbb{N}$, as we have noted above.

Thus $A_{D} \geq D\left(f_{n}, g_{n}\right)-D\left(g_{n}, f_{n}\right)=D\left(f_{n}, g_{n}\right)-0=\delta_{d_{n}}$ whenever $n \in \mathbb{N}$ and therefore $A_{D} \geq \sup _{n \in \mathbb{N}} \delta_{d_{n}}=\delta_{d}$. Consequently in the unbounded case $A_{d} \leq \delta_{d} \leq$ $A_{D} \leq \delta_{D} \leq \delta_{d}$, too. Hence the stated equality is also established in the case that $\delta_{d}=\infty$.
12. Example. Let (X, m) be a metric space and let $\left(Q_{X}, D\right)$ be its q-hyperconvex hull. Then $A_{m}=0$, but $A_{D}=\delta_{m}$.

Proof. The assertion follows from the previous result and the trivial fact that $A_{m}=0$.

9. The Hausdorff quasi-pseudometric

In this section we consider a T_{0}-quasi-metric space (X, d) with associated Hausdorff quasi-pseudometric space $\left(\mathcal{B}_{0}(X), d_{H}\right)$ where $\mathcal{B}_{0}(X)$ denotes the set of all bounded nonempty subsets of (X, d).

Recall that for any $A, B \in \mathcal{B}_{0}(X)$ we define $d_{H^{-}}(A, B)=\sup _{a \in A} d(a, B)$ and $d_{H^{+}}(A, B)=\sup _{b \in B} d(A, b)$. It is known that $d_{H^{-}}$and $d_{H^{+}}$are both quasipseudometrics on $\mathcal{B}_{0}(X)$. Finally we set $d_{H}=d_{H^{+}} \vee d_{H^{-}}$. Then d_{H} is the Hausdorff quasi-pseudometric on $\mathcal{B}_{0}(X)$ (compare for instance $[3,16]$).

[^5]Below we shall make use of the fact that $\left(d_{H^{+}}\right)^{-1}=\left(d^{-1}\right)_{H^{-}}$, which can be verified by a straightforward computation with the help of the definitions of $d_{H^{+}}$ and $d_{H^{-1}}$.
16. Proposition. Let (X, d) be a $T_{0^{-}}$quasi-metric space. Then $A_{d_{H^{+}}}=\delta_{d}$.

Proof. By Lemma 8 we have $A_{d_{H^{+}}} \leq \delta_{d_{H^{+}}}$. Furthermore the inequality $\delta_{d_{H^{+}}} \leq$ δ_{d} holds by the definition of $d_{H^{+}}$: Indeed in order to reach a contradiction suppose that for some $A, B \in \mathcal{B}_{0}(X)$ we have $d_{H^{+}}(A, B)>\delta_{d}$. Then there must be $b \in B$ such that $d(A, b)>\delta_{d}$ and so for each $a \in A$ we have that $d(a, b)>\delta_{d}$-a contradiction. Hence $\delta_{d_{H^{+}}} \leq \delta_{d}$.

Let $\left(x_{n}, y_{n}\right)_{n \in \mathbb{N}}$ be a sequence in $X \times X$ such that $\left(d\left(x_{n}, y_{n}\right)\right)_{n \in \mathbb{N}}$ converges to δ_{d}, where δ_{d} could possibly be infinite.

Set for each $n \in \mathbb{N}, A_{n}=\left\{x_{n}, y_{n}\right\}$ and $B_{n}=\left\{x_{n}\right\}$. Obviously all these sets belong to $\mathcal{B}_{0}(X)$. Then $d_{H^{+}}\left(B_{n}, A_{n}\right)-d_{H^{+}}\left(A_{n}, B_{n}\right)=d\left(x_{n}, y_{n}\right)-0$ whenever $n \in \mathbb{N}$. We conclude that $A_{d_{H^{+}}} \geq \delta_{d}$.

Hence the stated equality $A_{d_{H^{+}}}=\delta_{d}$ is established.
6. Corollary. Let (X, d) be a $T_{0^{-}}$quasi-metric space. Then $A_{d_{H^{-}}}=\delta_{d}$.

Proof. We conclude by Proposition 16 and Lemma 9(d) that
$A_{d_{H^{-}}}=A_{\left(\left(d^{-1}\right)_{H^{+}}\right)^{-1}}=A_{\left(d^{-1}\right)_{H^{+}}}=\delta_{d^{-1}}=\delta_{d}$.
7. Corollary. Let (X, d) be a $T_{0^{-}}$quasi-metric space. Then $A_{d_{H}} \leq A_{d_{H^{+}}} \vee A_{d_{H^{-}}}=$ δ_{d}.

Proof. The statement follows from the definition $d_{H}=d_{H^{+}} \vee d_{H^{-}}$and Lemma 9(c), Corollary 6 and Proposition 16.
13. Remark. Let (X, m) be a metric space. Then m_{H} is a pseudometric, since $\left(m_{H^{+}}\right)^{-1}=\left(m^{-1}\right)_{H^{-}}=m_{H^{-}}$. Thus $A_{m_{H}}=0$.

10. The infimum-problem

We finish this paper by stating a problem. Given two quasi-pseudometrics f and g on a set $X, f \wedge g$ denotes the largest quasi-pseudometric which is $\leq f$ and $\leq g$.

Indeed the following explicit form of $f \wedge g$ is well known (compare [21, Lemma 6]).
12. Lemma. Let X be a set and let f, g be quasi-pseudometrics on X. For any $x, y \in X$ set $(f \wedge g)(x, y)=\inf \left\{\sum_{i=0}^{n-1} h\left(x_{i}, x_{i+1}\right): x_{0}=x, x_{n}=y ; x_{1}, \ldots, x_{n-1} \in\right.$ $X ; n \in \mathbb{N} ; h \in\{f, g\}\}$. Then $f \wedge g$ is the largest quasi-pseudometric which is $\leq f$ and $\leq g$.

Proof. The standard proof is left to the reader.
14. Remark. Note that for any $d \in Q P M(X), d \wedge d^{-1}$ is indeed a pseudometric.

Proof. For any $x, y \in X$, by definition we clearly have that $\left(d \wedge d^{-1}\right)(x, y)=$ $\left(d \wedge d^{-1}\right)(y, x)$.

Of course, $d_{1} \wedge d_{2} \leq \min \left\{d_{1}, d_{2}\right\}$ and the two functions can be distinct, as Example 2 above shows. The authors have only been able to establish the upper bound
for $A_{d_{1} \wedge d_{2}}$ given in Lemma 13 below. It should be mentioned that on the other hand Plastria obtained an interesting upper bound for $\sigma_{d_{1} \wedge d_{2}}$, the corresponding multiplicative counterpart of $A_{d_{1} \wedge d_{2}}$: He namely proved that $\sigma_{d_{1} \wedge d_{2}} \leq \sigma_{d_{1}} \vee \sigma_{d_{2}}$ [21, Lemma 14.6].
13. Lemma. Let d_{1}, d_{2} be quasi-pseudometrics on a set X. Then $A_{d_{1} \wedge d_{2}} \leq \delta_{d_{1}} \wedge$ $\delta_{d_{2}}$.

Proof. We have that $A_{d_{1} \wedge d_{2}} \leq \delta_{d_{1} \wedge d_{2}} \leq \delta_{d_{i}}$ whenever $i \in\{1,2\}$ by Lemma 8.

1. Problem. Let d_{1} and d_{2} be quasi-pseudometrics on a set X. Is it possible that $A_{d_{1} \wedge d_{2}}>A_{d_{1}} \vee A_{d_{2}}$?

References

[1] C.A. Agyingi, P. Haihambo and H.-P.A. Künzi, Tight extensions of T_{0}-quasi-metric spaces, in: V. Brattka, H. Diener, D. Spreen (Eds.), Logic, Computation, Hierarchies, Festschrift in Honour of V.L. Selivanov's 60th Birthday, Ontos Verlag, De Gruyter Berlin, Boston, 2014, pp. 9-22.
[2] C.A. Agyingi, P. Haihambo and H.-P.A. Künzi, Endpoints in T_{0}-quasi-metric spaces: Part II, Abstract and Applied Analysis, Vol. 2013, Article ID 539573, 10 pages.
[3] G. Berthiaume, On quasi-uniformities in hyperspaces, Proc. Amer. Math. Soc. 66 (1977), 335-343.
[4] M. Bukatin, R. Kopperman and S. Matthews, Some corollaries of the correspondence between partial metrics and multivalued equalities, Fuzzy Sets Systems 256 (2014), 5772.
[5] M.J. Campión, E. Induráin, G. Ochoa and O. Valero, Functional equations related to weighable quasi-metrics, Hacettepe J. Mat. Stat. 44 (4) (2015), 775-787.
[6] Ş. Cobzaş, Functional Analysis in Asymmetric Normed Spaces, Frontiers in Mathematics, Springer, Basel, 2012.
[7] P. Fletcher and W.F. Lindgren, Quasi-uniform Spaces, Dekker, New York, 1982.
[8] Y.U. Gaba and H.-P.A. Künzi, Splitting metrics by T_{0}-quasi-metrics, Topology Appl. 193 (2015), 84-96.
[9] Y.U. Gaba and H.-P.A. Künzi, Partially ordered metric spaces produced by T_{0}-quasimetrics, Topology Appl. 202 (2016), 366-383.
[10] J. Goubault-Larrecq, Non-Hausdorff Topology and Domain Theory, Selected Topics in Point-Set Topology, Cambridge University Press, Cambridge, 2013.
[11] D. Gronau, A remark on Sincov's functional equation, Not. S. Afr. Math. Soc. 31 (2000), 1-8.
[12] E. Kemajou, H.-P.A. Künzi and O.O. Otafudu, The Isbell-hull of a di-space, Topology Appl. 159 (2012), 2463-2475.
[13] H.-P.A. Künzi, An introduction to quasi-uniform spaces, Beyond Topology, Contemp. Math. 486 (2009), 239-304.
[14] H.-P.A. Künzi and C. Makitu Kivuvu, A double completion for an arbitrary T_{0}-quasimetric space, J. Logic Algebraic Programming 76 (2008), 251-269.
[15] H.-P.A. Künzi and S. Romaguera, Weightable quasi-uniformities, Acta Math. Hungar. 136 (1-2), (2012), 107-128.
[16] H.-P.A. Künzi and C. Ryser, The Bourbaki quasi-uniformity, Topology Proceedings 20 (1995), 161-183.
[17] H.-P.A. Künzi and M. Sanchis, The Katětov construction modified for a T_{0}-quasi-metric space, Topology Appl. 159 (2012), 711-720.
[18] H.-P.A. Künzi and V. Vajner, Weighted quasi-metrics, Ann. New York Acad. Sci. 728 (1994), 64-77.
[19] H.-P. A. Künzi and F. Yıldız, Convexity structures in T_{0}-quasi-metric spaces, Topology Appl. 200 (2016), 2-18.
[20] L. Nel, Continuity Theory, Springer, Switzerland, 2016.
[21] F. Plastria, Asymmetric distances, semidirected networks and majority in Fermat-Weber problems, Ann. Oper. Res. (2009) 167: 121-155.
[22] I.V. Protasov, Coronas of balleans, Topology Appl. 149 (2005), 149-160.
[23] T. Šalát, J. Tóth and L. Zsilinszky, Metric space of metrics defined on a given set, Real Anal Exch., 18 no. 1 (1992-1993), 225-231.
[24] T. Šalát, J. Tóth and L. Zsilinszky, On the structure of the space of metrics defined on a given set, Real Anal. Exch. 19, no. 1 (1993-1994), 321-327.

[^0]: *Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701, South Africa
 Email : natashademetriou7@gmail.com
 ${ }^{\dagger}$ Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701, South Africa
 Email : hans-peter.kunzi@uct.ac.za
 The authors would like to thank the South African National Research Foundation for partial financial support under grants IFR1202200082 and CPRR14071175245.
 \ddagger For $a, b \in \mathbb{R}$ we set $a \dot{-} b=\max \{a-b, 0\}=(a-b) \vee 0$.
 Doi: 10.15672/HJMS.2016.396

[^1]: ${ }^{\S}$ For later use we note that the extended T_{0}-quasi-metric A_{X} can indeed be defined for arbitrary functions $f, g: X \times X \rightarrow[0, \infty)$. Let us mention that we shall however not define A_{X} in the case of extended functions f and g in this paper.

 TWe remark that in the paper [21] a measure of asymmetry is considered that is based on the quotient $\frac{f}{f^{-1}}$ instead of the difference $f \dot{-} f^{-1}$.
 $\|_{\text {For extended quasi-pseudometrics the triangle inequality is interpreted in the obvious way. }}$

[^2]: **The general construction of the infimum of two quasi-pseudometrics will be discussed briefly below in the last section of this paper.
 ${ }^{\dagger}$ Note that if d_{1}, d_{2} are quasi-pseudometrics, then s is a quasi-pseudometric, while b need not satisfy the triangle inequality, as Example 2 shows.

[^3]: $\ddagger \ddagger$ Here as usual, for any quasi-uniformity \mathcal{U} on a set X, \mathcal{U}_{ω} will denote the finest totally bounded quasi-uniformity coarser than \mathcal{U} on X.

[^4]: * For possible use in our two next results we also set $g(\infty):=\sup _{x \in[0, \infty)} g(x)$.

[^5]: * The latter result states that if (Z, d) is a T_{0}-quasi-metric space and S is a nonempty subspace of (Z, d), then there exists an isometric embedding $\tau: Q_{S} \rightarrow Q_{Z}$ such that $\left.\tau(f)\right|_{S}=f$ whenever $f \in Q_{S}$.

