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A study on quasi-pseudometrics
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Abstract

We study some aspects of the space QPM(X) of all quasi-
pseudometrics on a set X equipped with the extended T0-quasi-metric
AX(f, g) = sup(x,y)∈X×X(f(x, y)−̇g(x, y)) whenever f, g ∈ QPM(X).
We observe that this space is bicomplete and exhibit various closed
subspaces of (QPM(X), τ((AX)s)).
In the second part of the paper, as a rough way to measure the asym-
mety of a quasi-pseudometric f on a set X, we investigate some prop-
erties of the value (AX)s(f, f−1).
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pseudometric
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1. Introduction

On the set QPM(X) of all quasi-pseudometrics on the set X we introduce the
extended T0-quasi-metric AX de�ned by

AX(f, g) = sup
(x,y)∈X×X

(f(x, y)−̇g(x, y))

whenever f, g ∈ QPM(X).‡ Let us immediately mention that obviously the
specialization order ≤AX of AX is the usual order on QPM(X), that is, for f, g ∈
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QPM(X) we have f ≤AX g i� AX(f, g) = 0 i� f(x, y) ≤ g(x, y) whenever (x, y) ∈
X ×X. �

1. Remark. We could also consider the bounded counterpart of AX de�ned by
min{AX , 1}. In the analogous metric construction this approach was for instance
chosen for the studies [23, 24]. Since however we are mainly interested in large
distance values as they are investigated for instance in the theory of coarse spaces
(e.g. [22]), this is not the approach that we have chosen in this paper.

Below we establish that the space (QPM(X), AX) is bicomplete. We also show
that various natural subspaces of QPM(X) are τ((AX)s)-closed and thus bicom-
plete, for instance the set of all totally bounded quasi-pseudometrics on X, the set
of all ultra-quasi-pseudometrics on X and the set of all nonnegatively weightable
quasi-pseudometrics on X.

In the second part of the paper we consider for any quasi-pseudometric f on X
its value of asymmetry de�ned by Af := (AX)s(f, f−1). The de�nition is obviously
motivated by the fact that f is a pseudometric on X if and only if (AX)s(f, f−1) =
0. ¶

We discuss some properties of the introduced concept and consider various
inequalities that are useful to compute it for suitable quasi-pseudometric spaces
(X, f).

2. The space QPM(X) of all quasi-pseudometrics

After recalling the main de�nitions of the notions used in this paper, we shall es-
tablish bicompleteness of the space (QPM(X), AX) and exhibit various τ((AX)s)-
closed subspaces of (QPM(X), AX). For a more detailed discussion of the basic
concepts dealt with in this paper the reader may want to consult [7, 13].

1. De�nition. Let X be a set and let d : X ×X → [0,∞) be a function mapping
into the set [0,∞) of the nonnegative reals. Then d is called a quasi-pseudometric

on X if
(a) d(x, x) = 0 whenever x ∈ X, and
(b) d(x, z) ≤ d(x, y) + d(y, z) whenever x, y, z ∈ X.
We shall say that d is a T0-quasi-metric provided that d also satis�es the fol-

lowing condition (c): For each x, y ∈ X,
d(x, y) = 0 = d(y, x) implies that x = y.
The specialization order ≤d of d is de�ned by x ≤d y i� d(x, y) = 0 whenever

x, y ∈ X.
2. Remark. In some cases it is more natural to assume that a quasi-pseudometric
d indeed maps into [0,∞].We shall then speak of an extended quasi-pseudometric.‖

It should also be mentioned that the terminology in the literature is fairly diverse
(compare for instance [10, Chapter 6]).

�For later use we note that the extended T0-quasi-metric AX can indeed be de�ned for
arbitrary functions f, g : X ×X → [0,∞). Let us mention that we shall however not de�ne AX

in the case of extended functions f and g in this paper.
¶We remark that in the paper [21] a measure of asymmetry is considered that is based on the

quotient f
f−1 instead of the di�erence f−̇f−1 .

‖For extended quasi-pseudometrics the triangle inequality is interpreted in the obvious way.
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1. Example. (compare for instance [8, Example 2]) On the set R of the reals set
u(x, y) = x−̇y whenever x, y ∈ R. Then u is the standard T0-quasi-metric on R.

3. Remark. Let d be a quasi-pseudometric on a set X. Then d−1 : X ×
X → [0,∞) de�ned by d−1(x, y) = d(y, x) whenever x, y ∈ X is also a quasi-
pseudometric on X, called the conjugate or dual quasi-pseudometric of d. As usual,
a quasi-pseudometric d on X such that d = d−1 is called a pseudometric. Note that
for any (T0-)quasi-pseudometric d, ds = sup{d, d−1} = d ∨ d−1 is a pseudometric
(metric).

The following auxiliary result is well known. Its proof is included here for the
convenience of the reader.

1. Lemma. (see for instance [14, Lemma 8]) Let (X, d) be a quasi-pseudometric
space and a, b, x, y ∈ X. Then |d(x, y)− d(a, b)| ≤ ds(x, a) + ds(y, b).

Proof. We have that d(x, y) ≤ d(x, a) + d(a, b) + d(b, y), and therefore d(x, y)−
d(a, b) ≤ d(x, a)+d(b, y). Similarly d(a, b) ≤ d(a, x)+d(x, y)+d(y, b), and therefore
d(a, b)− d(x, y) ≤ d(a, x) + d(y, b). Thus |d(x, y)− d(a, b)| ≤ ds(x, a) + ds(y, b). 2

As we have announced above, we equip the setQPM(X) of all quasi-pseudometrics
on X with the (extended) function

AX(f, g) = sup
(x,y)∈X×X

(f(x, y)−̇g(x, y))

whenever f, g ∈ QPM(X).

1. Proposition. We have that (QPM(X), AX) is an extended T0-quasi-metric
space.

Proof. The argument is obvious and left to the reader. 2

4. Remark. Note that by de�nition AX(d, e) = AX(d−1, e−1) whenever d, e ∈
QPM(X). In particular for any quasi-pseudometric d on a set X we have that
AX(d, d−1) = AX(d−1, d) = (AX)s(d, d−1).

5. Remark. Let X be a set, d a quasi-pseudometric on X and 0 the con-
stant quasi-pseudometric equal to 0. Then AX(d, 0) is equal to the diameter

δd = sup(x,y)∈X×X d(x, y) of (X, d).

2. Lemma. Let d, e, f, g be quasi-pseudometrics on a set X.
(a) Then AX(d+ e, f + g) ≤ AX(d, f) +AX(e, g), where d+ e, f + g are quasi-

pseudometrics on X.
(b) Furthermore AX(αd, αf) = αAX(d, f) whenever α is a nonnegative real,

where αd and αf are quasi-pseudometrics on X.
(c) If f ≥ g and h ≥ e, then AX(f, e) ≥ AX(g, h).

Proof. All these computations are straightforward. 2

In the following ∆X will denote the diagonal {(x, x) : x ∈ X} of the set X.
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2. Example. Let≤ be a partial order on a setX. Set, for each x, y ∈ X, d≤(x, y) =
0 if x ≤ y and d≤(x, y) = 1 otherwise. Then d≤ is a T0-quasi-metric on X, which
is called the natural T0-quasi-metric of (X,≤) (compare for instance [2, Section
4]). We now consider the following speci�c example of this construction: Let X
be the set of integers Z. Set

≤= ∆Z ∪ {(2n, 2n+ 1) : n ∈ Z} ∪ {(2n, 2n− 1) : n ∈ Z}.

Then ≤ is a partial order on Z. Of course, ≥= (≤)−1 = ∆Z ∪ {(2n + 1, 2n) :
n ∈ Z} ∪ {(2n − 1, 2n) : n ∈ Z}. We have that d≤ ∧ (d≤)−1 = 0, since ≤ ∪(≥
) = {(x, y) ∈ Z× Z : |x− y| ≤ 1}. Here we have (d≤)−1 = d≥ and d≤ ∧ d≥ is the
largest quasi-pseudometric which is ≤ d≤ and ≤ d≥. ∗∗

It follows that d≤ ∧ (d≤)−1 < min{d≤, (d≤)−1}. Obviously min{d≤, (d≤)−1}
does not satisfy the triangle inequality.

3. Lemma. Let X be a set and functions d1, d2 : X ×X → [0,∞) be given. Set
b := min{d1, d2} and s := d1 ∨ d2 = max{d1, d2}. ††

Then (AX)s(d1, d2) = (AX)s(s, b). (Of course, AX(b, s) = 0.)

Proof. By Lemma 2(c) we have that AX(s, b) ≥ AX(d1, d2) and analogously
AX(s, b) ≥ AX(d2, d1). Therefore AX(s, b) ≥ (AX)s(d1, d2).

Let x, y ∈ X. By considering the various possibilities in any case we have that
s(x, y) − b(x, y) ≤ (d1(x, y) − d2(x, y)) ∨ (d2(x, y) − d1(x, y)) ≤ AX(d1, d2) ∨
AX(d2, d1) = (AX)s(d1, d2). Hence AX(s, b) ≤ (AX)s(d1, d2). We conclude that
AX(s, b) = (AX)s(d1, d2). 2

1. Corollary. Let X be a set and functions d1, d2 : X × X → [0,∞) be given,
and s and b as de�ned in Lemma 3.

Then AX(s, d2) = AX(d1, d2) and AX(d1, b) = AX(d1, d2).

Proof. By Lemma 2(c) we have that AX(s, d2) ≥ AX(d1, d2).
Let x, y ∈ X. By considering the various possibilities, in any case we have

s(x, y)−d2(x, y) ≤ d1(x, y)−d2(x, y) ≤ AX(d1, d2) and thusAX(s, d2) ≤ AX(d1, d2).
The second part of the proof is similar: AX(d1, b) ≥ AX(d1, d2) by Lemma

2(c). Let x, y ∈ X. Then by considering the various possibilities, in any case we
have d1(x, y) − b(x, y) ≤ d1(x, y) − d2(x, y) ≤ AX(d1, d2). Therefore AX(d1, b) ≤
AX(d1, d2). 2

2. Proposition. Let X be a set and functions d, e, f, g : X × X → [0,∞) be
given. Then AX(d ∨ e, f ∨ g) ≤ AX(d, f) ∨AX(e, g).

Proof. Let x, y ∈ X. Then we consider the four cases:
Case 1: (d ∨ e)(x, y) = d(x, y) and (f ∨ g)(x, y) = f(x, y). Then (d ∨ e)(x, y)−

(f ∨ g)(x, y) ≤ AX(d, f).
Case 2: (d ∨ e)(x, y) = d(x, y) and (f ∨ g)(x, y) = g(x, y). Then (d ∨ e)(x, y)−

(f ∨ g)(x, y) ≤ d(x, y)− f(x, y) ≤ AX(d, f), because f(x, y) ≤ g(x, y).

∗∗The general construction of the in�mum of two quasi-pseudometrics will be discussed brie�y
below in the last section of this paper.
††Note that if d1, d2 are quasi-pseudometrics, then s is a quasi-pseudometric, while b need

not satisfy the triangle inequality, as Example 2 shows.
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Case 3: (d ∨ e)(x, y) = e(x, y) and (f ∨ g)(x, y) = f(x, y). Then (d ∨ e)(x, y)−
(f ∨ g)(x, y) ≤ e(x, y)− g(x, y) ≤ AX(e, g), because g(x, y) ≤ f(x, y).

Case 4: (d ∨ e)(x, y) = e(x, y) and (f ∨ g)(x, y) = g(x, y). Then (d ∨ e)(x, y)−
(f ∨ g)(x, y) ≤ AX(e, g).

The assertion follows. 2

2. Corollary. Let X be a set and functions d, e, f, g : X ×X → [0,∞) be given.
Then AX(min{d, e},min{f, g}) ≤ AX(d, f) ∨AX(e, g).

Proof. Let x, y ∈ X. Then we consider the four cases:
Case 1: (min{d, e})(x, y) = d(x, y) and (min{f, g})(x, y) = f(x, y).

Then (min{d, e})(x, y)− (min{f, g})(x, y) ≤ AX(d, f).
Case 2: (min{d, e})(x, y) = d(x, y) and (min{f, g})(x, y) = g(x, y).

Then (min{d, e})(x, y)− (min{f, g})(x, y) = d(x, y)− g(x, y) ≤ AX(e, g), because
e(x, y) ≥ d(x, y).

Case 3: (min{d, e})(x, y) = e(x, y) and (min{f, g})(x, y) = f(x, y).
Then (min{d, e})(x, y)− (min{f, g})(x, y) = e(x, y)− f(x, y) ≤ AX(d, f), because
d(x, y) ≥ e(x, y).

Case 4: (min{d, e})(x, y) = e(x, y) and (min{f, g})(x, y) = g(x, y).
Then (min{d, e})(x, y)− (min{f, g})(x, y) ≤ AX(e, g).

The assertion follows. 2

4. Lemma. Let dn (n ∈ N) and d be quasi-pseudometrics on a set X such that
limn→∞AX(d, dn) = 0. Then limn→∞AX(d−1, (dn)−1) = 0 and

lim
n→∞

AX(ds, (dn)s) = 0.

Proof. The �rst statement follows from Remark 4. The second statement
is a consequence of Proposition 2: Indeed we conclude that AX(ds, (dn)s) ≤
AX(d, dn)∨AX(d−1, (dn)−1) whenever n ∈ N. The assertion now is a consequence
of the �rst statement. 2

3. Example. Let X be a set and for each λ ∈ [0, 1] set K(f, g, λ) = λf + (1−λ)g
where f, g ∈ QPM(X) (compare [19]).

Note that K(f, g, λ) = K(g, f, 1− λ) whenever f, g ∈ QPM(X) and λ ∈ [0, 1].
Furthermore, obviously, eachK(f, g, λ) is a quasi-pseudometric onX, K(f, g, 0) =

g and K(f, g, 1) = f.
Let λ, λ′ ∈ [0, 1]. Suppose that λ′ ≤ λ.
Then by a straightforward computation we see that

AX(K(f, g, λ),K(f, g, λ′)) = (λ− λ′)AX(f, g)

and

AX(K(f, g, λ′),K(f, g, λ)) = (λ− λ′)AX(g, f).

In particular, since for any quasi-pseudometric d on a set X we have that
AX(d, d−1) = AX(d−1, d) by Remark 4, for any λ, λ′ ∈ [0, 1] we get that

AX(K(d, d−1, λ),K(d, d−1, λ′)) = AX(K(d, d−1, λ′),K(d, d−1, λ)) =

|λ− λ′|AX(d, d−1).



38

3. Corollary. Let X be a set and let d be a quasi-pseudometric on X. Set d+ =
d+ d−1. Then d+ is a quasi-pseudometric on X.

We have AX(d, d
+

2 ) = AX(K(d, d−1, 1),K(d, d−1, 1
2 )) = 1

2AX(d, d−1) and simi-

larly AX(d
+

2 , d
−1) = AX(K(d, d−1, 1

2 ),K(d, d−1, 0)) = 1
2AX(d, d−1).

Indeed

AX(d,
d+

2
) = AX(

d+

2
, d−1) =

1

2
AX(d, d−1) =

1

2
AX(d−1, d) = AX(d−1,

d+

2
) = AX(

d+

2
, d).

Proof. The assertion follows from Remark 4 and Example 3. 2

3. The dab-construction

In the following we recall a modi�cation of a T0-quasi-metric d studied in [8,
Section 5]. Below we give some of the details of the proofs that were omitted in
[8, 9].

3. Proposition. (compare [8, Lemma 2]) Given a T0-quasi-metric d on X and
a, b ∈ X be such that d(a, b) > 0 and d(b, a) > 0, we de�ne dab(x, y) = min{d(x, a)+
d(b, y), d(x, y)} whenever x, y ∈ X. Then dab is the largest T0-quasi-metric satis-
fying e ≤ d on X such that e(a, b) = 0.

Proof. The statement that dab ≤ d is obvious by de�nition of dab. Furthermore
dab(a, b) = 0, hence dab < d. It is easy to see that dab is a quasi-pseudometric: We
only have to show that dab(x, z) ≤ dab(x, y) + dab(y, z) whenever x, y, z ∈ X.

We consider the four cases:
(1) dab(x, y) = d(x, y) and dab(y, z) = d(y, z).
(2) dab(x, y) = d(x, a) + d(b, y) and dab(y, z) = d(y, z).
(3) dab(x, y) = d(x, y) and dab(y, z) = d(y, a) + d(b, z).
(4) dab(x, y) = d(x, a) + d(b, y) and dab(y, z) = d(y, a) + d(b, z).
In Case (1) we obtain dab(x, z) ≤ d(x, z) ≤ d(x, y) + d(y, z).
In Case (2) we obtain dab(x, z) ≤ d(x, a) + d(b, z) ≤ d(x, a) + d(b, y) + d(y, z).
In Case (3) we obtain dab(x, z) ≤ d(x, a) + d(b, z) ≤ d(x, y) + d(y, a) + d(b, z).
In Case (4) we obtain dab(x, z) ≤ d(x, a) + d(b, z) ≤ d(x, a) + d(b, y) + d(y, a) +

d(b, z).
Hence we are done. In the proof of [8, Lemma 2] it is argued that dab satis�es

the T0-condition (c), because d does so and because d(b, a) > 0.
Let us now note that if e ≤ d is a quasi-pseudometric on X such that e(a, b) = 0,

then we have that for any x, y ∈ X, e(x, y) ≤ e(x, a) + e(a, b) + e(b, y) ≤ d(x, a) +
d(b, y) and e(x, y) ≤ d(x, y). Therefore e ≤ dab. 2

6. Remark. Let (X, d) be a T0-quasi-metric space and let a, b ∈ X be ≤d-
incomparable. Then (dab)

−1 = (d−1)ba according to [9, Remark 1]: Indeed let
x, y ∈ X. Then (dab)

−1(x, y) = min{d(y, a) + d(b, x), d(y, x)} = min{d−1(x, b) +
d−1(a, y), d−1(x, y)} = (d−1)ba(x, y).

4. Proposition. Let d be a T0-quasi-metric on a set X and let a, b ∈ X be
incomparable with respect to the specialization order of d, that is, d(a, b) > 0 and
d(b, a) > 0.
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(a) We have that AX(dab, d) = 0.
(b) Moreover the equation AX(d, dab) = d(a, b) holds.

Proof. (a) The statement immediately follows from dab ≤ d.
(b) By de�nition AX(d, dab) = sup(x,y)∈X×X(d(x, y)−̇dab(x, y)). We need to

consider two possible di�erences in the latter expression: d(x, y)−̇d(x, y) = 0 or
d(x, y)−̇(d(x, a) + d(b, y)). But d(x, y)− d(x, a)− d(b, y) ≤ d(a, b) by the triangle
inequality. Note that equality in the latter inequality holds for (x, y) = (a, b).
Indeed d(a, b)−̇dab(a, b) = d(a, b)− 0. We conclude that AX(d, dab) = d(a, b). 2

5. Proposition. Let (X, d) be a T0-quasi-metric space and let a, b ∈ X be ≤d-
incomparable. Then d(b, a) ≤ AX(dab, (dab)

−1) ≤ d(a, b) +AX(d, d−1).

Proof. The �rst inequality follows from the fact that dab(b, a)− (dab)
−1(b, a) =

d(b, a)− 0 = d(b, a).
We then have the following chain of inequalities: By the triangle inequal-

ity, Remark 6 and Proposition 4 we see that AX(dab, (dab)
−1) ≤ AX(dab, d) +

AX(d, d−1)+AX(d−1, (dab)
−1) = 0+AX(d, d−1)+AX(d−1, (d−1)ba) = AX(d, d−1)+

d−1(b, a). 2

4. Corollary. Let (X,m) be a metric space and let a, b ∈ X be two distinct points
in X. Then AX(mab, (mab)

−1) = m(a, b).

Proof. The result follows from Proposition 5, sincem is a metric andAX(m,m−1) =
0. 2

4. Some bicomplete subspaces of the space of all quasi-pseudometrics

An (extended) quasi-pseudometric space (X, d) is called bicomplete if the (ex-
tended) pseudometric space (X, ds) is complete, that is, each ds-Cauchy sequence
in X converges with respect to the pseudometric topology τ(ds).

5. Lemma. The extended metric space (QPM(X), (AX)s) is complete, hence
(QPM(X), AX) is bicomplete.

Proof. The standard proof that the set of real-valued functions on a set X with
the uniform sup-metric is complete shows that each Cauchy sequence (dn)n∈N of
quasi-pseudometrics in (QPM(X), (AX)s) has a [0,∞)-valued limit function a on
X×X to which it converges uniformly. Therefore we only need to show that a is a
quasi-pseudometric on X. But this follows from the observation that the pointwise
limit of a sequence of quasi-pseudometrics is a quasi-pseudometric: Indeed for each
x ∈ X we have d(x, x) = limn→∞ dn(x, x) = limn→∞ 0 = 0. Furthermore we see
that for any x, y, z ∈ X we have that dn(x, z) ≤ dn(x, y) + dn(y, z). Therefore
taking limits in the reals equipped with the usual topology, we get that d(x, z) ≤
d(x, y) + d(y, z) whenever x, y, z ∈ X. 2

A quasi-pseudometric d on a set X is called bounded if there is b ∈ [0,∞) such
that d(x, y) ≤ b whenever x, y ∈ X, that is, its diameter δd <∞. By BQPM(X)
we shall denote the set of bounded quasi-pseudometrics on X.
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6. Proposition. The set BQPM(X) of bounded quasi-pseudometrics is closed
in (QPM(X), τ((AX)s)).

Proof. Suppose that (dn)n∈N is a sequence of bounded quasi-pseudometrics on
X such that (AX)s(d, dn) → 0 where d ∈ QPM(X). There is n ∈ N such that
(AX)s(dn, d) < 1. By assumption there is a ∈ [0,∞) such that δdn ≤ a. Then for
any (x, y) ∈ X ×X we have that d(x, y) ≤ (d(x, y)− dn(x, y)) + dn(x, y) ≤ 1 + a.
Therefore the quasi-pseudometric d is bounded, too. 2

6. Lemma. Given a set X with at least 2 points, the set of all T0-quasi-metrics
is not closed in (QPM(X), τ((AX)s)).

Proof. For any �xed T0-quasi-metric d on X, the indiscrete quasi-pseudometric
i(x, y) = 0 whenever (x, y) ∈ X×X is obviously the uniform limit of the sequence
( 1
nd)n∈N in (QPM(X), τ((AX)s)), but i is not a T0-quasi-metric in case that X
contains at least two points. 2

7. Proposition. LetX be a set and PM(X) the set of all pseudometrics belonging
to QPM(X). Then PM(X) is closed in (QPM(X), τ((AX)s)).

Proof. Suppose that the sequence (mn)n∈N of pseudometrics on X converges
to the quasi-pseudometric d on X in the sense that (AX)s(mn, d)→ 0. Therefore
d(x, y) = limn→∞mn(x, y) = limn→∞mn(y, x) = d(y, x) whenever x, y ∈ X. The
statement follows. 2

Recall that a quasi-pseudometric d on a set X is called totally bounded provided
that given any ε > 0, there is a �nite subset Fε of X such that for each x ∈ X
there is f ∈ Fε such that ds(x, f) < ε.

Of course, the standard proof shows that each totally bounded quasi-pseudometric
is bounded: Indeed given a totally bounded quasi-pseudometric d on X choose a
�nite subset F1 of X as given by the de�nition. Then for any x, y ∈ X we have
that d(x, y) ≤ 1 + maxf,f ′∈F1

d(f, f ′) + 1 by an obvious application of the triangle
inequality.

8. Proposition. Let X be a set and let TQPM(X) be the set of all totally
bounded quasi-pseudometrics on X.

Then TQPM(X) is closed in (QPM(X), τ((AX)s)).

Proof. Let (dn)n∈N be a sequence of totally bounded quasi-pseudometrics on X
converging to a quasi-pseudometric d in (QPM(X), τ((AX)s)).

Let ε > 0. There is m ∈ N such that (AX)s(d, dm) < ε. Furthermore there
is a �nite subset F of X such that for any x ∈ X there is an f ∈ F such that
(dm)s(x, f) < ε. Thus for any x ∈ X there is f ∈ F such that d(x, f) ≤ (d(x, f)−
dm(x, f)) + dm(x, f) ≤ (AX)s(d, dm) + ε = 2ε and similarly, d(f, x) ≤ (d(f, x) −
dm(f, x)) + dm(f, x) ≤ (AX)s(d, dm) + ε = 2ε. We conclude that d is totally
bounded. 2

Recall that a quasi-pseudometric d on a setX is called an ultra-quasi-pseudometric

provided that d(x, z) ≤ max{d(x, y), d(y, z)} whenever x, y, z ∈ X. The latter in-
equality is called the strong triangle inequality for d.
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9. Proposition. The set of all ultra-quasi-pseudometrics on a set X is τ((AX)s)-
closed in QPM(X).

Proof. Let (un)n∈N be a sequence of ultra-quasi-pseudometrics on X converging
to the quasi-pseudometric d with respect to the topology τ((AX)s).

Using (uniform) convergence, the existence of x, y, z ∈ X such that d(x, z) >
max{d(x, y), d(y, z)} would imply the existence of an n ∈ N such that dn(x, z) >
max{dn(x, y), dn(y, z)} �a contradiction. The assertion follows. 2

7. Lemma. Each quasi-pseudometric space (X, d) with d having a �nite range is
bicomplete.

Proof. The statement obviously holds for the indiscrete quasi-pseudometric on
X. So we can assume that d is not indiscrete. Suppose that (xn)n∈N is a ds-Cauchy
sequence in X. Then there is ε > 0 such that ε ≤ min(d(X ×X) \ {0}). Hence we
have that there is Nε ∈ N such that 0 = d(xn, xm) < ε whenever n,m ∈ N with
n,m ≥ Nε. We conclude that (xn)n∈N converges to xNε in (X, ds) and thus d is
bicomplete. 2

Our next example shows that the subset of complete pseudometrics need not be
closed in (QPM(X), τ((AX)s)), which also shows that the subset of bicomplete
quasi-pseudometrics need not be closed in (QPM(X), τ((AX)s)).

4. Example. Let X = [0, 1) ⊆ R and let d(x, y) = |x− y| whenever x, y ∈ X be
the usual metric on X.

Furthermore for any x ∈ X suppose that p(x) = 0.e1e2e3 . . . en . . . is a �xed
decimal representation of x with in�nitely many digits. Of course, d(x, y) = |p(x)−
p(y)| whenever x, y ∈ X.

For each n ∈ N let pn(x) = 0.e1e2 . . . en. Of course, for each n ∈ N, dn(x, y) =
|pn(x) − pn(y)| whenever x, y ∈ X is a pseudometric. Note that each dn has a
�nite range.

Obviously limn→∞(AX)s(dn, d) = 0, since by Lemma 1

(AX)s(dn, d) = sup
(x,y)∈X×X

|dn(x, y)− d(x, y)|

= sup
(x,y)∈X×X

||pn(x)− pn(y)| − |p(x)− p(y)||

≤ sup
x∈X
|p(x)− pn(x)|+ sup

y∈X
|p(y)− pn(y)| ≤ 2

10n
.

Furthermore (1 − 1
n )n∈N is a d-Cauchy sequence that is not convergent in

(X, τ(d)) and thus d not complete. However by Lemma 7 each pseudometric
dn is complete and (AX)s(dn, d)→ 0.

The following concept was introduced by Steve Matthews.

2. De�nition. (see for instance [5, 18, 15]) Let (X, f) be a quasi-pseudometric
space. If there exists a function w : X → [0,∞) such that f(x, y) + w(x) =
f(y, x) +w(y) whenever x, y ∈ X, then f is called nonnegatively weightable and w
is said to be a nonnegative weight for (X, f).
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7. Remark. Note that the weight of a nonnegatively weightable quasi-pseudometric
is not unique; for instance for a given metric space (X,m) any nonnonegative real
constant function yields a nonnegative weight function.

That is why in the proof given below, if n ∈ N and wn is a weight function
for a nonnegatively weightable quasi-pseudometric space (X, dn), we cannot ex-
pect that the sequence (wn)n∈N converges to some nonnegative weight function of
limn→∞ dn, even if the latter limit exists. 2

10. Proposition. The set WQPM(X) of all nonnegatively weightable quasi-
pseudometrics on X is τ((AX)s)-closed in QPM(X).

Proof. Suppose that (dn)n∈N is a sequence of nonnegatively weightable quasi-
pseudometrics on X and (AX)s(d, dn) → 0 where d ∈ QPM(X). For each n ∈ N
and x, y ∈ X set Fn(x, y) := dn(x, y) − dn(y, x), that is, Fn is the disymmetry

function of dn in the sense of [5].
Then |Fn(x, y)−Fm(x, y)| ≤ |dn(x, y)−dm(x, y)|+|dn(y, x)−dm(y, x)| whenever

x, y ∈ X and n,m ∈ N.
Since (dn)n∈N is a Cauchy sequence in (QPM(X), (AX)s), we conclude that for

each (x, y) ∈ X ×X, (Fn(x, y))n∈N is a Cauchy sequence in (R, us).
For each (x, y) ∈ X ×X set F (x, y) = limn→∞ Fn(x, y). By the previous argu-

ment we see that indeed limn→∞(AX)s(Fn, F ) = 0.
It is known by [5, Theorem 3.5] and readily checked that, by the weightability

of dn, Fn(x, z) = Fn(x, y) + Fn(y, z) whenever n ∈ N and x, y, z ∈ X. By taking
limits we have therefore F (x, z) = F (x, y) + F (y, z) whenever x, y, z ∈ X. We
deduce that F (x, y) = d(x, y)−d(y, x) = φ(y)−φ(x) for some function φ : X → R
by Sincov's functional equation [11].

It remains to be seen that we can choose the function φ in such a way that
φ(y) ≥ 0 whenever y ∈ X.

By the argument above we can �nd n ∈ N such that |Fn(x, y) − F (x, y)| < 1
whenever (x, y) ∈ X ×X.

Fix x ∈ X. Since Fn stems from a nonnegatively weightable quasi-pseudometric
dn with a nonnegative weight φn : X → [0,∞), we have Fn(x, y) = dn(x, y) −
dn(y, x) = φn(y)− φn(x) ≥ −φn(x) whenever y ∈ X.

Hence −φn(x) ≤ Fn(x, y) whenever y ∈ X and therefore −φn(x) − F (x, y) ≤
Fn(x, y) − F (x, y) < 1. Thus −φn(x) − 1 ≤ F (x, y) = φ(y) − φ(x) whenever
y ∈ X. We conclude that −φn(x) + φ(x) − 1 ≤ φ(y) whenever y ∈ X. Therefore
w(y) := φ(y) + φn(x)− φ(x) + 1 whenever y ∈ X is a nonnegative weight for d. 2

5. The di�erence approach to the skewness of a quasi-pseudometric

In this section we are interested in measuring the asymmetry or skewness of a
T0-quasi-metric f on a set X. Several methods suggest themselves.

For instance we could compare the specialization orders ≤f and ≤f−1 , or we
could compare the topologies τ(f) and τ(f−1). Observe that ≤f=≤f−1 i� the
specialization order ≤f is equality, that is, f is a T1-quasi-metric. (A quasi-
pseudometric d on X satisfying the condition that d(x, y) 6= 0 whenever x, y ∈
X with x 6= y is called a T1-quasi-metric.) Of course, τ(f) = τ(f−1) if and
only if for any x ∈ X and sequence (xn)n∈N in X, limn→∞ f(x, xn) = 0 i�
limn→∞ f−1(x, xn) = 0.
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We could also study relationships between the induced quasi-uniformities Uf
and Uf−1 , or the induced totally bounded quasi-uniformities (Uf )ω and (Uf−1)ω.

‡‡

Observe that Uf = Uf−1 i� Uf is a uniformity. Similarly (Uf )ω = (Uf−1)ω i�
(Uf )ω is a uniformity (compare [7, Corollary 1.40]).

In the following we shall consider a metric approach to asymmetry that is
more in the spirit of paper [5] where the function F (x, y) = d(x, y) − d(y, x)
(whenever x, y ∈ X) of disymmetry is considered. The following sets might be of
special interest for a more detailed study on asymmetry, which will be conducted
elsewhere.

5. Example. Let (X, d) be a T0-quasi-metric space and let k, r ∈ [0,∞).
(a) Let Sd,k = {(x, y) ∈ X × X : |d(x, y) − d(y, x)| ≤ k}. Then Sd,k is a

τ(ds) × τ(ds)-closed symmetric re�exive relation. We can call it the set of k-
symmetric pairs.

(b) Ad,k = {(x, y) ∈ X ×X : |d(x, y) − d(y, x)| ≥ k} is a τ(ds) × τ(ds)-closed
symmetric relation. We can call it the set of k-asymmetric pairs.

(c) Further interesting tools to measure asymmetry could be the sets of reals
σd,k;r = {d(x, y) : (x, y) ∈ X × X and |d(y, x) − r| ≤ k} and αd,k;r = {d(x, y) :
(x, y) ∈ X ×X and |d(y, x)− r| ≥ k}.

In particular we can speak of a symmetric pair (x, y) ∈ X×X if d(x, y) = d(y, x)
and call x ∈ X a symmetric point of (X, d) provided that d(x, y) = d(y, x) whenever
y ∈ X.

In the present paper we shall concentrate on investigating the following much
simpler concept.

3. De�nition. Let (X, d) be a quasi-pseudometric space. We de�ne Ad :=
AX(d, d−1) = sup(x,y)∈X×X(d(x, y)−̇d(y, x)) = sup(x,y)∈X×X |d(x, y)− d(y, x)|.

8. Remark. Of course if X is �nite, it may be more reasonable to consider the
T0-quasi-metric SX(d, e) :=

∑
(x,y)∈X×X(d(x, y)−̇e(x, y)) for d, e ∈ QPM(X) and

then for instance to investigate the value

S⊕X(d, d−1) =
1

2

∑
(x,y)∈X×X

|d(x, y)− d(y, x)|

in order to make sure that all the relevant di�erences can contribute to the value
of asymmetry.

But we shall restrict our study in the following to the value AX(d, d−1), which
is much easier to handle.

Let us consider some examples.

6. Example. Let X = [a, b] be the closed interval with endpoints a and b of the
set R. Then Au = AX(u, u−1) ≥ u(b, a)− u−1(b, a) = b− a, where u denotes also
the restriction of u to [a, b].

The following observation was already stated in the introduction.

‡‡Here as usual, for any quasi-uniformity U on a set X, Uω will denote the �nest totally
bounded quasi-uniformity coarser than U on X.
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9. Remark. Let f be a quasi-pseudometric on a set X. Then Af = 0 if and only
if f is a pseudometric on X.

7. Example. Let (X, d,w) be a nonnegatively weighted quasi-pseudometric space,
that is, d(x, y) + w(x) = d(y, x) + w(y) whenever x, y ∈ X where w : X → [0,∞)
is the weight function. Therefore Ad = sup(x,y)∈X×X |w(y)− w(x)|.

8. Example. Let X = [0,∞) and for all x, y ∈ X set d(x, y) = 0 if x ≤ y and
d(x, y) = x if x 6≤ y, where ≤ is the usual order on X. We �rst note that d is
a T0-ultra-quasi-metric on X : Observe that if x, y ∈ X such that x < y, then
ds(x, y) ≥ y, which shows that the T0-condition (c) is satis�ed by d.

We next verify that d satis�es the strong triangle inequality: Otherwise there
are x, y, z ∈ X such that d(x, z) 6≤ max{d(x, y), d(y, z)}. Then x 6≤ z and thus
d(x, z) = x. Note that the case that x ≤ y and y ≤ z is impossible, since x 6≤ z.

If x 6≤ y, then d(x, y) = x and the strong triangle inequality for d is satis�ed.
On the other hand, if x ≤ y and y 6≤ z, then d(y, z) = y and the strong triangle

inequality is satis�ed for d, because d(x, z) ≤ d(y, z). Hence d is a T0-ultra-quasi-
metric.

We now conclude the following: Let x, y ∈ [0,∞). If y < x, then d(x, y)−̇d(y, x) =
x−̇0 = x. If y = x, then d(x, y)−̇d(y, x) = 0−̇0 = 0. If y > x, then d(x, y)−̇d(y, x) =
0−̇y = 0.

Therefore for each x ∈ X, supy∈X(d(x, y)−̇d(y, x)) = x and for each y ∈ X,

supx∈X(d(x, y)−̇d(y, x)) =∞. In particular Ad =∞. 2

8. Lemma. Let (X, d) be a quasi-pseudometric space. Then Ad ≤ δd where δd
denotes the diameter of (X, d).

Proof. For any (x, y) ∈ X ×X we have that d(x, y)− d(y, x) ≤ d(x, y). 2

9. Lemma. Let d, d′ be quasi-pseudometrics on a set X and λ ∈ [0,∞). Then the
following inequalities hold:

(a) Aλd = λAd.
(b) Ad+d′ ≤ Ad +Ad′ .
(c) Ad∨d′ ≤ Ad ∨ Ad′ . Furthermore Amin{d,d′} ≤ Ad ∨ Ad′ (where min{d, d′} in

general is not a quasi-pseudometric on X).
(d) Ad = Ad−1 .

Proof. The statements follow from Lemma 2(b), Lemma 2(a), Proposition 2,
Corollary 2 and Remark 4. 2

10. Remark. Given a quasi-pseudometric d on a set X, we cannot establish any
nontrivial lower bounds for Ad+d−1 and Ad∨d−1 in (b) and (c) above: Note that for
any quasi-pseudometric d on X we have that Ad+d−1 = 0 = Ad∨d−1 . Considering
the space (R, u), we observe that u ∧ u−1 = min{u, u−1} = 0 is the constant
indiscrete quasi-pseudometric equal to 0 on R× R. Since A0 = 0, we deduce that
there is also no nontrivial lower bound for Ad∧d−1 .

The following result shows that quasi-pseudometrics that are close to each other
have asymmetry values that are close to each other, too.
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10. Lemma. For any quasi-pseudometrics p and q on a setX such that (AX)s(p, q) <
∞ we have that either (AX)s(p, p−1) = (AX)s(q, q−1) = ∞ or |(AX)s(p, p−1) −
(AX)s(q, q−1)| ≤ 2(AX)s(p, q).

Proof. Suppose that (AX)s(p, p−1) = ∞. Then by the triangle inequality we
have that (AX)s(p, p−1) ≤ (AX)s(p, q) + (AX)s(q, q−1) + (AX)s(q−1, p−1). By
Remark 4 and our assumption we see that (AX)s(q, q−1) =∞, too. The case that
(AX)s(q, q−1) =∞ implies similarly that (AX)s(p, p−1) =∞.

So assume that both (AX)s(p, p−1) and (AX)s(q, q−1) are <∞. By Remark 4
we conclude analogously as in Lemma 1 that |(AX)s(p, p−1) − (AX)s(q, q−1)| ≤
(AX)s(p, q) + (AX)s(p−1, q−1) = 2(AX)s(p, q). 2

According to [21, p. 131] a costfunction is an arbitrary function g : [0,→) −→
[0,→) with g(0) = 0 that is concave (so g((1 − λ)s + λt) ≥ (1 − λ)g(s) + λg(t)
whenever s, t ∈ [0,∞) and λ ∈ [0, 1]).∗ For instance g(x) =

√
x whenever x ∈

[0,∞) de�nes such a costfunction.

11. Proposition. Let d be a quasi-pseudometric on a set X and let g be a
costfunction on [0,∞). Then Ag◦d ≤ g(Ad).

Proof. We �rst note that g ◦ d is a quasi-pseudometric on X (compare [21,
Theorem 5, Lemma 3 (2) and (3)]). Now we are going to establish the stated
inequality.

Case 1: Let x, y ∈ X. If g(d(x, y))− g(d(y, x)) ≤ 0, then obviously g(d(x, y))−
g(d(y, x)) ≤ 0 = g(0) ≤ g(Ad), because g is nondecreasing [21, Lemma 3 (3)] and
0 ≤ Ad.

Case 2: Suppose now that g(d(x, y)) − g(d(y, x)) > 0. Thus g(d(x, y)) >
g(d(y, x)). Then d(x, y) ≤ d(y, x) is impossible, since g is nondecreasing [21,
Lemma 3 (3)]. Thus necessarily d(x, y) > d(y, x). Therefore g(d(x, y)) = g(d(x, y)−
d(y, x) + d(y, x)) ≤ g(d(x, y) − d(y, x)) + g(d(y, x)) using [21, Lemma 3 (2)]. It
follows that g(d(x, y)) − g(d(y, x)) ≤ g(d(x, y) − d(y, x)) ≤ g(Ad), since g is non-
decreasing and d(x, y)− d(y, x) ≤ Ad. We conclude that Ag◦d ≤ g(Ad). 2

9. Example. Let (X, d) be a quasi-pseudometric space. It is well known that d
1+d

is a bounded quasi-pseudometric on X. See for instance [21, Example 1]: Indeed
it su�ces to note that s 7→ s

1+s is a costfunction. By Proposition 11 we then have

that A d
1+d
≤ Ad

Ad+1 if Ad <∞, and A d
1+d
≤ 1 if Ad =∞.

6. Asymmetrically normed real vector spaces

We next recall the concept of an asymmetric norm (see for instance [6]; compare
[21, Section 2.5] or [20, p. 183]), which leads to many interesting examples of quasi-
pseudometrics.

4. De�nition. Let X be a real vector space and let ‖ · | → [0,∞) be a map such
that

(1) ‖0| = 0.
(2) ‖x+ y| ≤ ‖x|+ ‖y| whenever x, y ∈ X.

∗ For possible use in our two next results we also set g(∞) := supx∈[0,∞) g(x).
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(3) ‖αx| = α‖x| whenever x ∈ X and α ≥ 0. Furthermore suppose that ‖x| =
‖ − x| = 0 implies that x = 0.

The function ‖ · | is called an asymmetric norm on X. It is known that each
asymmetrically normed vector spaceX induces a T0-quasi-metric d onX by setting
d(x, y) = ‖x− y| whenever x, y ∈ X.

To motivate the preceding de�nition we recall the concept of the asymmetric
segment.

10. Example. [1, Remark 2] Let X = [0, 1]. Find a, b ∈ [0,∞) such that a+b 6= 0.
Set d[ab](x, y) = (x − y)a if x > y and d[a,b](x, y) = (y − x)b if y ≥ x. Then
([0, 1], d[ab]) is a T0-quasi-metric space induced by the asymmetric norm n[ab] on
R de�ned by n[ab](x) = xa if x > 0 and n[ab](x) = −xb if x ≤ 0.

The following related example then yields another illustration of Proposition
11.

11. Example. Let X = [−1, 1] be the real interval and set for x, y ∈ X d(x, y) =
|x − y| if x ≥ y and d(x, y) = 2|x − y| if x < y. Then by Example 10 d is a
T0-quasi-metric on X.

Using the costfunction g(x) =
√
x (x ∈ [0,∞)) we compute that

Ad = sup(x,y)∈X×X |x− y| = 2 and hence
√
Ad =

√
2,

while A√d = sup(x,y)∈X×X(
√

2− 1)
√
|x− y| = 2−

√
2, which is indeed <

√
2.

11. Remark. Given a set X, it is often useful to abuse the notation and write
AX(f, g) = ‖f − g| where f, g ∈ QPM(X), although in this case obviously not all
conditions of De�nition 4 are satis�ed, since the vector space structure is missing.

12. Proposition. Let X be a non-trivial real vector space, let ‖·| be an asymmet-
ric norm on X and let d be the induced T0-quasi-metric as de�ned above. Then
Ad = supx∈X |‖ − x| − ‖x||. Hence Ad =∞ if ‖ · | is not a norm. 2

Proof. The �rst statement is obvious. For the second statement, without loss
of generality there is x0 ∈ X such that ‖−x0| > ‖x0|. Let α > 0. Then d(0, αx0)−
d(αx0, 0) = ‖0−αx0|−‖αx0−0| = α(‖−x0|−‖x0|), which can be made arbitrarily
large by choosing α appropriately. 2

12. Remark. In [21] a multiplicative approach to an asymmetry measure σd of a
T0-quasi-metric d on a set X (with at least two elements) is chosen: σd is computed
as

sup
(x,y)∈(X×X)\∆X

d(x, y)

d(y, x)
,

where the latter expression is de�ned to be in�nite in case that d(y, x) = 0 for
some (x, y) ∈ (X × X) \ ∆X . Hence this de�nition is mainly suitable for a T1-
quasi-metric. We also note that this approach is very useful in an asymmetrically
normed space (X, ‖ · |), since in this case for an induced T1-quasi-metric d the
value σd does not depend on the length ‖z| of the vector z ∈ X and thus can be
determined on the unit sphere {z ∈ X : ‖z| = 1} (see Proposition 12 and compare
[21, Lemma 10]).

We refer the reader to [4, Section 4] for a short discussion of connections between
additive and multiplicative approaches to distance functions.
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7. Some properties of Ad where d is a quasi-pseudometric

Given a quasi-pseudometric d on a set X, in this section we prove two simple
facts about the asymmetry value Ad of d.

13. Proposition. Let (X, d) be a quasi-pseudometric space such that the topology
τ(ds) is compact. Then there is (a, b) ∈ X ×X such that Ad = d(a, b) − d(b, a),
that is, the supremum Ad is attained.

Proof. We sketch the standard argument. By compactness of the pseudomet-
ric topology τ(ds), we see that d is bounded. Hence Ad < ∞ by Lemma 8.
Therefore there is a sequence (xn, yn)n∈N in X × X such that the real sequence
(F (xn, yn))n∈N, where for each n ∈ N F (xn, yn) = d(xn, yn)−d(yn, xn), converges
to the value Ad. By compactness of τ(ds) there is a subsequence (nk)k∈N of (n)n∈N
and x, y ∈ X such that (xnk)k∈N resp. (ynk)k∈N τ(ds)-converges to x resp. y in
X. Since limn→∞ F (xn, yn) = Ad, we conclude that F (x, y) = Ad by continuity of
d on (X ×X, τ(ds)× τ(ds)). 2

11. Lemma. Let (X, d) be a quasi-pseudometric space and Y ⊆ X. Then
sup

(x,y)∈Y×Y
|d(x, y)− d(y, x)| ≤ sup

(x,y)∈X×X
|d(x, y)− d(y, x)|.

Proof. The argument is obvious. 2

Our next result considers a density condition under which the inverse inequality
also holds.

14. Proposition. Let Y be a subspace of a quasi-pseudometric space (X, d) such
that clτ(ds)Y = X. Then AY (d|Y×Y , d−1|Y×Y ) = AX(d, d−1).

Proof. Let x, y ∈ clτ(ds)Y. Then there are sequences (xn)n∈N and (yn)n∈N in X
such that ds(x, xn) → 0 and ds(yn, y) → 0. Fix n ∈ N. Then |d(x, y)− d(y, x)| ≤
|d(x, y) − d(xn, yn)| + |d(xn, yn) − d(yn, xn)| + |d(yn, xn) − d(y, x)| ≤ ds(x, xn) +
ds(y, yn)+ |d(xn, yn)−d(yn, xn)|+ds(yn, y)+ds(xn, x) ≤ 2ds(xn, x)+2ds(yn, y)+
sup(x,y)∈Y×Y |d(x, y)− d(y, x)| by Lemma 1. Therefore

sup
(x,y)∈X×X

|d(x, y)− d(y, x)| ≤ sup
(x,y)∈Y×Y

|d(x, y)− d(y, x)|.

Hence the stated equality is established. 2

5. Corollary. Let (X, d) be a T0-quasi-metric with bicompletion (X̃, d̃) (see [13,

Example 2.7.1]). Then AX(d, d−1) = AX̃(d̃, (d̃)−1).

Proof. It is known that X is τ((d̃)s)-dense in X̃. 2

8. The q-hyperconvex hull of a T0-quasi-metric space

We �rst recall some basic facts about the q-hyperconvex hull of a T0-quasi-
metric space. For additional information we refer the reader to [12, 17] and the
literature cited in these papers.

Let (X, d) be a T0-quasi-metric space. We consider the set QX of all function
pairs f = (f1, f2) on (X, d), where fi : X → [0,∞) (i = 1, 2), satisfying
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f1(x) = sup{d(y, x)−̇f2(y) : y ∈ X} and f2(x) = sup{d(x, y)−̇f1(y) : y ∈ X}
whenever x ∈ X.

We equip QX with the T0-quasi-metric D de�ned by

D(f, g) = sup
x∈X

(f1(x)−̇g1(x)) = sup
x∈X

(g2(x)−̇f2(x))

whenever f, g ∈ QX .
Then the map e de�ned for each x ∈ X by x 7→ e(x) = fx where (fx)1(y) :=

d(x, y) and (fx)2(y) := d(y, x) whenever y ∈ X yields an isometric embedding of
(X, d) into (QX , D). The T0-quasi-metric space (QX , D) is called the q-hyperconvex
hull of (X, d).

Let us mention that for each f, g ∈ QX , we have

D(f, g) = sup{(D(fx1
, fx2

)−D(fx1
, f)−D(g, fx2

)) ∨ 0 : x1, x2 ∈ X} (∗)

according to [12, Remark 7].

15. Proposition. Let (X, d) be a T0-quasi-metric space and let (QX , D) be its
q-hyperconvex hull. Then δd = AD = δD.

Proof. We �rst show that the diameter δD of the q-hyperconvex hull (QX , D)
of a T0-quasi-metric space (X, d) is equal to the diameter δd of (X, d).

Obviously δD ≥ δd, since (X, d) embeds as an isometric subspace into (QX , D).
Note that for any f, g ∈ QX we have that by the result (∗) stated above,

D(f, g) = sup
(x,y)∈X×X

{D(x, y)−D(x, f)−D(g, y), 0} = sup
(x,y)∈X×X

D(x, y) ≤ δd.

Thus δD ≤ δd. Hence the equality of the two diameters δD and δd is established.
We next consider now the case that the diameter δd <∞. De�ne a function pair

⊥ by setting ⊥1(x) = 0 and ⊥2(x) = supa∈X d(x, a) whenever x ∈ X. Further-
more de�ne a function pair > by setting >1(x) = supa∈X d(a, x) and >2(x) = 0
whenever x ∈ X.

One veri�es that ⊥,> ∈ QX by checking the de�ning equations: Indeed for
each x ∈ X,

⊥1(x) = 0 = sup
y∈X

(d(y, x)−̇⊥2(y)) = sup
y∈X

(d(y, x)−̇ sup
a∈X

d(y, a))

and similarly

⊥2(x) = sup
y∈X

(d(x, y)−̇⊥1(y)) = sup
y∈X

(d(x, y)−̇0).

Analogously for each x ∈ X,

>1(x) = sup
y∈X

d(y, x) = sup
y∈X

(d(y, x)−̇>2(y)) = sup
y∈X

(d(y, x)−̇0)

and

>2(x) = 0 = sup
y∈X

(d(x, y)−̇>1(y)) = sup
y∈X

(d(x, y)−̇ sup
a∈X

d(a, y)).

Hence ⊥,> ∈ QX , as asserted.
Furthermore one computes

D(⊥, f) = sup
x∈X

(⊥1(x)−̇f1(x)) = sup
x∈X

(0−̇f1(x)) = 0
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and similarly D(f,>) = supx∈X(>2(x)−̇f2(x)) = supx∈X(0−̇f2(x)) = 0 when-
ever f ∈ QX . Hence ⊥ is the bottom and > the top of QX with respect to the
specialization order ≤D of D on QX .

Thus D(>,⊥)−D(⊥,>) = D(>,⊥)− 0 = supx∈X(>1(x)−̇⊥1(x))
= supx∈X(supa∈X d(a, x)−̇0) = δd. We conclude that AD ≥ δd.

Hence we know by Lemma 8 that Ad ≤ δd ≤ AD ≤ δD ≤ δd and conclude that
δd = AD = δD.

Suppose now that (X, d) is an unbounded T0-quasi-metric space and let (QX , D)
be the q-hyperconvex hull of (X, d).

Choose x0 ∈ X. For each n ∈ N set Xn = {x ∈ X : ds(x0, x) ≤ n} and denote
the restriction of d to Xn ×Xn by dn.

Note that for each n ∈ N we have that δdn ≤ 2n, thus (Xn, dn) is bounded. We
also observe that

⋃
n∈NXn = X where the sequence (Xn)n∈N of subspaces of X is

increasing.
Let (QXn , Dn) denote the q-hyperconvex hull of the subspace (Xn, dn) of (X, d).

Denote by >n resp. ⊥n the top resp. bottom element of (QXn , Dn), as constructed
in the �rst part of the present proof.

For each n ∈ N consider an isometry τn : QXn → QX as given in [1, Proposition
4].∗

For each n ∈ N set fn := τn(>n) and gn := τn(⊥n). We have that

δdn = sup
x∈Xn

( sup
a∈Xn

dn(a, x)) = Dn(>n,⊥n) = D(τn(>n), τn(⊥n)) = D(fn, gn)

and 0 = Dn(⊥n,>n) = D(τn(⊥n), τn(>n)) = D(gn, fn) whenever n ∈ N, as we
have noted above.

Thus AD ≥ D(fn, gn) −D(gn, fn) = D(fn, gn) − 0 = δdn whenever n ∈ N and
therefore AD ≥ supn∈N δdn = δd. Consequently in the unbounded case Ad ≤ δd ≤
AD ≤ δD ≤ δd, too. Hence the stated equality is also established in the case that
δd =∞. 2

12. Example. Let (X,m) be a metric space and let (QX , D) be its q-hyperconvex
hull. Then Am = 0, but AD = δm.

Proof. The assertion follows from the previous result and the trivial fact that
Am = 0. 2

9. The Hausdor� quasi-pseudometric

In this section we consider a T0-quasi-metric space (X, d) with associated Haus-
dor� quasi-pseudometric space (B0(X), dH) where B0(X) denotes the set of all
bounded nonempty subsets of (X, d).

Recall that for any A,B ∈ B0(X) we de�ne dH−(A,B) = supa∈A d(a,B) and
dH+(A,B) = supb∈B d(A, b). It is known that dH− and dH+ are both quasi-
pseudometrics on B0(X). Finally we set dH = dH+∨dH− . Then dH is the Hausdor�
quasi-pseudometric on B0(X) (compare for instance [3, 16]).

∗ The latter result states that if (Z, d) is a T0-quasi-metric space and S is a nonempty subspace
of (Z, d), then there exists an isometric embedding τ : QS → QZ such that τ(f)|S = f whenever
f ∈ QS .
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Below we shall make use of the fact that (dH+)−1 = (d−1)H− , which can be
veri�ed by a straightforward computation with the help of the de�nitions of dH+

and dH−1 .

16. Proposition. Let (X, d) be a T0-quasi-metric space. Then AdH+ = δd.

Proof. By Lemma 8 we have AdH+ ≤ δdH+ . Furthermore the inequality δdH+ ≤
δd holds by the de�nition of dH+ : Indeed in order to reach a contradiction suppose
that for some A,B ∈ B0(X) we have dH+(A,B) > δd. Then there must be b ∈ B
such that d(A, b) > δd and so for each a ∈ A we have that d(a, b) > δd �a
contradiction. Hence δdH+ ≤ δd.

Let (xn, yn)n∈N be a sequence in X ×X such that (d(xn, yn))n∈N converges to
δd, where δd could possibly be in�nite.

Set for each n ∈ N, An = {xn, yn} and Bn = {xn}. Obviously all these sets
belong to B0(X). Then dH+(Bn, An) − dH+(An, Bn) = d(xn, yn) − 0 whenever
n ∈ N. We conclude that AdH+ ≥ δd.

Hence the stated equality AdH+ = δd is established. 2

6. Corollary. Let (X, d) be a T0-quasi-metric space. Then AdH− = δd.

Proof. We conclude by Proposition 16 and Lemma 9(d) that
AdH− = A((d−1)H+ )−1 = A(d−1)H+

= δd−1 = δd. 2

7. Corollary. Let (X, d) be a T0-quasi-metric space. Then AdH ≤ AdH+ ∨AdH− =
δd.

Proof. The statement follows from the de�nition dH = dH+ ∨ dH− and Lemma
9(c), Corollary 6 and Proposition 16. 2

13. Remark. Let (X,m) be a metric space. Then mH is a pseudometric, since
(mH+)−1 = (m−1)H− = mH− . Thus AmH = 0.

10. The in�mum-problem

We �nish this paper by stating a problem. Given two quasi-pseudometrics f
and g on a set X, f ∧ g denotes the largest quasi-pseudometric which is ≤ f and
≤ g.

Indeed the following explicit form of f ∧ g is well known (compare [21, Lemma
6]).

12. Lemma. Let X be a set and let f, g be quasi-pseudometrics on X. For any
x, y ∈ X set (f ∧ g)(x, y) = inf{

∑n−1
i=0 h(xi, xi+1) : x0 = x, xn = y;x1, . . . , xn−1 ∈

X;n ∈ N;h ∈ {f, g}}. Then f ∧ g is the largest quasi-pseudometric which is ≤ f
and ≤ g.

Proof. The standard proof is left to the reader. 2

14. Remark. Note that for any d ∈ QPM(X), d∧ d−1 is indeed a pseudometric.

Proof. For any x, y ∈ X, by de�nition we clearly have that (d ∧ d−1)(x, y) =
(d ∧ d−1)(y, x). 2

Of course, d1∧d2 ≤ min{d1, d2} and the two functions can be distinct, as Exam-
ple 2 above shows. The authors have only been able to establish the upper bound
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for Ad1∧d2 given in Lemma 13 below. It should be mentioned that on the other
hand Plastria obtained an interesting upper bound for σd1∧d2 , the corresponding
multiplicative counterpart of Ad1∧d2 : He namely proved that σd1∧d2 ≤ σd1 ∨ σd2
[21, Lemma 14.6].

13. Lemma. Let d1, d2 be quasi-pseudometrics on a set X. Then Ad1∧d2 ≤ δd1 ∧
δd2 .

Proof. We have that Ad1∧d2 ≤ δd1∧d2 ≤ δdi whenever i ∈ {1, 2} by Lemma 8.
2

1. Problem. Let d1 and d2 be quasi-pseudometrics on a set X. Is it possible that
Ad1∧d2 > Ad1 ∨Ad2?
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