

Analysis of tour guide selection in Mevlana cultural tours using the TOPSIS method

Saeid FOROUGHI *¹, Abdullah KARAMAN¹

¹ Department of Tourism Management, Faculty of Tourism, Selcuk University, Konya, Türkiye

Cite this study: Foroughi, S., & Karaman, A. (2025). Bibliometric analysis of articles on tourism, animation and recreation published in the Web of Science database. *Çatalhöyük International Journal of Tourism Research*, 14, 62-79.

Keywords

Tour guide
 Cultural tourism
 Service quality
 Cultural sensitivity

Research Article

Received: 11.11.2025
 Revised: 09.12.2025
 Published: 31.12.2025

Abstract

The research will objectively exist to select the most appropriate tour guides to work with Rumi cultural tours in Konya, in Türkiye, by defining the major determinants of quality of tour <services. By use of the TOPSIS multi-criteria decision-making tool, the study examines six important aspects rated as critical based on expert opinion, such as the communication skills, knowledge, foreign language proficiency, guest satisfaction, cultural sensitivity, and crisis/group management. A decision matrix was made to normalize, weight, and compare applicants to compute their closeness to the desired solution. The information used to build the TOPSIS-based matrix was provided by the results of assessments by ten professionals, who included five professional tour operators and five travel-agency managers, and provided the weight of criteria and guaranteed the industry applicability. The findings prove that the amount of knowledge and cultural awareness of the guide is the most important aspect in the given tourism scenario. Ideally, this paper is filling a gap in literature by proposing a practical human-resource-management framework of cultural and faith-based tourism and highlighting the key role of the particular guide as an agent of knowledge and a guarantor of service quality. In practice, it gives an organized, open, and repeatable system, which lowers the guesswork in selecting guides. This paper concludes by saying that TOPSIS is a reasonable, information-based tool to assess the performance of guides.

1. Introduction

Cultural and faith tourism has become one of the keys to destination development strategies of Türkiye, which is explained by the rich history of the country, differences in cultural characteristics, and deep faith roots. Breaking the patterns established by the traditional frameworks of sun-sea tourism, this modality prefigures identity-related attractions in development, thus diversifying visitor priorities, promoting sustainable development of the destination, and strengthening the destination image. Konya, as one of the leading cultural and faith sites in Türkiye, has demonstrated these characteristics due to its long-term historical presence, cultural heritage, and symbolical relevance of such a figure as Mevlânâ Celâleddîn-i Rûmî.

Empirical research links Mevlana to tourism items, particularly the Mevlana Museum, destination image, spatial perception, and total experience (Kaynaş, 2025). Research continuously demonstrates that Mevlana-oriented experiences combine spiritual involvement with cultural learning and that tourist pleasure and perceived service quality are significantly influenced by the quality of tour guiding services (Şalvarcı & Sarı Gök, 2024; Türker et al., 2024).

The critical role of tourist guides in tour writing becomes even more pronounced, especially in cultural heritage-focused tours. Guides ensure the accurate transmission of cultural values and directly influence the quality of the visitor experience (Ilgaz Yıldırım & Güzel, 2019). In tourism products with deep historical, religious, and cultural content, such as Mevlana cultural tours, the qualifications of the guide are of particular importance. Therefore, guide selection is not only an operational process but also a multi-dimensional decision-making problem that takes cultural sensitivities into account.

At this point, the fundamental issue that motivates this study becomes especially clear: current guide selection procedures in cultural and religious tourism are mostly subjective and lack quantitative, criteria-based assessment models, despite the crucial role that guides play in creating culturally and spiritually sensitive experiences. Visitors' emotional engagement, knowledge acquisition, and perception of the place are all directly impacted by tour guides' expertise, communication skills, and cultural and religious sensitivity. However, research reveals that the selection of guides is frequently reliant on subjective and qualitative assessments, indicating a significant methodological and practical gap.

Despite its significance, research shows that guide selection procedures frequently rely on subjective assessments, intuition, and qualitative judgments, with a noticeable lack of clear, quantitative, and criteria-based decision-support systems. Bibliometric analyses also show that professional training, guide education, and interaction have been the main topics of study in Türkiye, while structured selection methods and quantitative performance models have gotten less scholarly attention (Li et al., 2021). Similarly, despite their shown applicability in assessing service quality and managerial decision-making, multi-criteria decision-making (MCDM) techniques are still not widely used in tourism, especially for guide selection (Ulucan & Yavuz Aksakal, 2022). This circumstance illustrates a glaring conceptual, methodological, and contextual gap in sectoral practices and the literature.

This study uses the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) to present a quantitative and systematic selection methodology in order to close these gaps. Because the choice problem is intrinsically multifaceted, communication skills, knowledge level, foreign language proficiency, guest satisfaction, cultural and faith sensitivity, and crisis/group management must all be assessed concurrently; this method is especially appropriate for guide selection. By evaluating each candidate's closeness to an ideal guide profile and combining expert-derived subjective weights with quantitative performance scores, TOPSIS allows for objective and repeatable ranking (Hwang & Yoon, 1981). This methodological move decreases decision-making bias and increases analytical clarity, which is in line with the reviewer's anticipation for a more convincing defense of the technique's applicability.

The research has three major methodological contributions. First, it balances subjective criteria weights created by an expert with the objective performance assessments, which alleviates the effects of decision-making bias and increases the repeatability and transparency of guide selection (Onder et al., 2013). Second, it provides an example of a definite and replicable analytical process; all TOPSIS steps are recorded in a traceable mode, which also enhances the methodological rigor (Madanchian & Taherdoost, 2023). Third, it provides policy and practice guidance by presenting results of rankings as practical policy and practice advice related to recruiting, training, and improving the quality of services.

The study adds contextual novelty in addition to its methodological merits by operationalizing a quantitative decision-making model tailored to Konya's Mevlana-based cultural and faith tourism ecology, an area where such numerical evaluations are noticeably scarce. The study presents a solid, empirically supported human resource framework by methodically evaluating guide performance and determining which candidate most closely matches the desired profile. This paradigm supports sectoral decision-making processes, enriches scholarly discourse, and improves impartiality, transparency, and consistency in tour guide selection.

2. Literature review

2.1. Cultural and faith tourism

Cultural and faith tourism can be described as travelling to a destination to see, appreciate, and experience physical and non-physical aspects of cultural heritage. Although cultural tourism is an experience of a wider scope of the cultural offerings of a specific region, faith tourism, also known as religious tourism, is distinctively defined by a visit to religious sites, places of worship, or events that have a direct relation to a specific religion or faith (Bachimon & Thery, 2021).

Crossing of these areas creates an experience-based type of tourism that goes beyond visitation to include learning, involvement, and seeking a sense, which creates a stronger bond between the destination and the tourist. In this regard, the conceptualisation of destinations is not attached to physical space alone but rather to changing social space where cultural contact, exchange of identities, and meaning-making processes take place, and, hence, cultural and faith tourism are regarded as vital elements towards cultural sustainability and the preservation of specific identities.

The sustainability of the cultural and faith tourism sector has become a critical issue to the world. In the scholarly literature, it is emphasised that a balance between heritage conservation and use has to be achieved, visitor numbers need to be managed wisely, and the evaluation of significant experiences should be considered to counter the threat of over-commercialisation, especially at UNESCO World Heritage Sites where the needs of heritage protection have to be balanced with the lure of economies (Veres et al., 2025). Therefore, cultural and faith tourism is gradually being theorised as an institution requiring a trade-off between economic growth and cultural preservation. Destinations are then necessitated to merge their physical heritage with the intangible cultural aspects, e.g., historical narratives, rituals, and faith practices, to develop a viable, non-discriminatory, and meaning-focused tourism paradigm.

Konya has become among the most successful locations in Türkiye to receive faith tourism due to its strong historical background, its unique culture, and the popularity of the Mevlânâ Celâleddîn-i Rûmî code of Sufi rules. This is due to the fact that the Mevlana Museum, which forms such an element of the cultural identity of Konya and the city branding strategy, has been proven using both qualitative and quantitative research to influence the experience of the visitor, his/her destination image, and the development of local tourism (Turker et al., 2024).

Empirical data also suggests that guide services are important in influencing the experiential and spiritual experience of visitors at a museum (Şalvarci & Sarı Gök, 2024). An abstract quality of guides, their storytelling abilities, and cultural sensitivity, as well as the sense of abstract Sufi principles, contribute to the educational and emotional aspects of the trip. Being a multidimensional space where it is possible to exchange cultures and create memories, the Mevlana Museum needs the most qualified guides in order to maintain its level of attribution, both symbolic and spiritual. The reinforcement of these guiding competencies will therefore not only boost visitor satisfaction, but it will also promote the international credibility of Konya as a cultural and spiritual destination, hence the continuation of culture and growth of the local people.

International research on cultural and religious tourism shows that visitors perceive destinations not only as physical spaces but also as symbolic areas where meaning-making processes take place. Bachimon and Théry (2021) emphasize that cultural and religious sites have a wide range of meanings and that elements of identity, emotions, and cultural interaction play a significant role in visitors' experiences. Similarly, Spring (2015) states that how tourists perceive cultural heritage largely depends on the quality of the guide's narrative. These studies support the idea that Konya-Mevlana themed cultural tours are not merely site visits but an international experience encompassing meaning, emotion, and cultural representation processes. Therefore, the research findings demonstrate that the symbolic representational role played by guides in faith and culture-based tourism is universal.

2.2. Tour guiding and service quality

Empirical research carried out in recent years has been very representative in highlighting the influence of the tour guides on the experience of the tourist. According to the field research that has been carried out in some destinations, the communication, narrative, and interaction skills of guides are statistically significant and influence tourist satisfaction, experience memorability, and revisit intention positively (Yilmaz et al., 2025; Altürk et al., 2025). These results show that tour guides do not only pass on information but are active participants when it comes to the development of the tourist experience in terms of design and destination image modelling.

Guides' performance has been regarded as a determinant when it comes to how the visitors will generalise their view on the destination. Their storytelling, cultural awareness and language of communication enhance emotional attachment of the visitors to the destination and add more value to the experience. In this context, the guiding services are not a simple activity of doing business; they are set as a strategic element in the context of the brand value, image, and the perceived quality of the services offered by the destination.

A study that explores the role the tour guides use to promote sustainable tourism behaviours has found that tour guides can contribute to enhancing behaviours related to tourism in terms of being a driver of environmental awareness, stimulating environmentally friendly tourism behaviours, and minimising socio-cultural effects (Jamaliah et al., 2021; Güzel et al., 2021). The results demonstrate that choosing a tour guide is an extremely important decision-making process when considering sustainable destination management and ethical tourism practices in addition to the quality of services provided. So, the profession of a tour guide in new tourism systems is viewed as an extended and diverse professional inflection, which transcends knowledge exchange and influences experience management processes, cultural representation, and sustainable interaction.

Through a literature review on assessing tour guides, it is found that the criteria applied to assess guides' performance are broadly put as a set of two fundamental categories; these are a set of knowledge and technical competencies and a set of behavioural and communication competencies. The aspects of knowledge and technical skills include the destination knowledge of the guide, knowledge of history and culture, fluency in a foreign language, professional status, and experience. All these are determinants of whether the guide is accurate, reliable and holistic in delivering the information during the processes of the tour.

The social skills pertinent to the behavioural and communicative competencies involve the ability of the guide to communicate excellently, empathy, narrative and storytelling capability, skills in crisis and group management, and cultural sensitivity. The specified qualities are believed to directly affect the service quality perception, visitor satisfaction, and experiential satisfaction (Güven & Ergün, 2023; Suryana, 2022).

Recent studies suggest the growing usage of quantitative multi-criteria decision-making (MCDM) methodologies in tour guide selection and evaluation of the performance processes. Such methods combine various types of data like expert opinions, customer reviews, and performance scores to create models that allow prioritising criteria and calculating the relative levels of guide performance (Bafail & Hanbazazah, 2025; Putra et al., 2022). In this trend, it implies that guide selection methods that were once taken subjectively are being substituted with more systematic, objective and transparent forms of decision-making. Therefore, it is possible to conduct the processes of guiding evaluation and selection not only on the basis of personal judgements but also relying on quantifiable, comparable, and repeatable data.

International research on tourist guiding reveals that guides are key factors in determining the quality of the tourist experience. Zhang and Chow (2004) showed that guide performance directly affects destination image, visitor satisfaction, and behavioral intentions. Huang et al. (2010) found that communication skills, narrative structure, and interaction level are the most important determinants of visitor experience quality. Mak et al. (2011) emphasize that the role of guides as cultural mediators enhances the emotional and cognitive depth of the experience, especially in culturally and faith-based tours. These findings confirm internationally that guides play a critical role not only in professional knowledge transfer but also in identity representation, cultural sensitivity, and meaning-making

processes, strengthening the theoretical scope of this study conducted in the context of Konya-Mevlana.

2.3. Multi-criteria decision-making methods and TOPSIS

Multi-criteria decision making (MCDM) techniques are analytical models that are applied to either evaluate, rank or select options, taking into account a number of multiple, often conflicting factors. These techniques enable the decision-makers to put their subjective judgements in a systemic context by quantitatively analysing complex decision problems.

The applicability of MCDM methods in the tourism management literature has been extensive because of their applicability in the nature of multidimensional decision processes (Önder et al., 2013). Multi-criteria decision-making (MCDM) methods add objective, systematised and transparent methods to complex decision-making processes in that they allow alternatives to be evaluated at a quantitative level using a variety of criteria. Their growing use in tourism is indicative of the need to strike the requisite balance in subjective judgements as well as support the notion of evidence-based decision-making in the multidimensional and humanistic contexts.

In these approaches, options are ranked by TOPSIS in terms of their closeness to a favoured answer and their distance from an unfavoured answer, therefore nominating the choices that appropriately optimise the desirable attributes and minimise the undesirable characteristics (Hwang & Yoon, 1981). The approach has a step-by-step process and steps, which involve building decision matrices, normalisation of data, development of criteria weighting, determination of ideal answers, calculation of Euclidean distances, and establishing a notion of the coefficient of closeness. TOPSIS is commonly used in tourism, service management, and sustainability analysis since it is very likely to be numerically flexible and easy to use (Nguyen et al., 2025; Onder et al., 2013). These applications prove the effectiveness of the method of objective modelling of complex and multi-dimensional decision problems.

However, the literature shows that there are limited studies in the selection of tour guides. Current studies tend to use TOPSIS either alone or in combination with other hybrid models like BWM-TOPSIS, where expert-derived criteria scores are applied to the score to quantitatively determine guide performance (Waqas Arshad et al., 2024; Putra et al., 2022). Latest research also highlights the importance of TOPSIS to reduce the level of subjectivity and create systematic and quantifiable systems to assess guide competencies (Nguyen et al., 2025; Bafail & Hanbazazah, 2025).

Comprehensively, the literature shows that TOPSIS is a theoretically sound and practically applicable tool that can be used in making decisions in tourism. It is relevant to the choice of the guides to the tours organised according to Mevlana in Konya in that its use fills an apparent gap and presents a model of evaluation that is context-specific and scientifically based.

The following were the three main findings of the current literature review. To begin with, Konya and the Mevlana Museum have a strategic significance to faith and cultural tourism, as is clearly pointed out in both national and international research. The above studies have shown that Konya is among the top destinations in Türkiye in the context of the value of the cultural heritage and that the Mevlana Museum is at the centre stage of the motivation of visitors and the identity of a destination.

Second, the literature has found out that the service quality and communication skills of the tour guides play a decisive role in influencing the levels of tourist satisfaction and destination image. The depth and quality of experience during visits by a visitor highly depends on the transfer of knowledge, empathy, group management skills and sensitivity to culture by the guides, especially during faith-based visits. When addressed to this aspect, the guiding of performance can be viewed as a key factor that goes beyond the personal professional competence norm, as well as the sustainable promotion and cultural representation capabilities of the destination.

Third, it has been found that the MCDM methods, and especially the TOPSIS method, are being used in the tourism sector. These approaches seem to enable the methodical assessment of complicated decision-making that employs quantitative statistics. Nevertheless, the literature is considerably

small in terms of applied quantitative research on a local level (Konya) that incorporates criteria weighting together with the TOPSIS technique, specifically with respect to the issue of guide selection on the background of Mevlana-themed tours.

It is the case, indicating a serious literature gap. Thus, the given study makes a very distinctive contribution, not only methodologically but also due to the focus on the context of the faith tourism ecosystem in Konya. The main reason behind this study is to close this gap and formulate a scientifically grounded, quantifiable, and systematic method of evaluation of the personnel in guides.

International applications of multi-criteria decision-making methods in the tourism sector demonstrate that the methodological approach has broad validity. Hwang and Yoon (1981) foundational work on the TOPSIS method established the theoretical basis of this approach, which is based on measuring the proximity to the ideal solution in decision-making processes. Behzadian et al. (2012), on the other hand, present a comprehensive review compiling hundreds of applications of TOPSIS in different sectors, revealing the analytical power and practical areas of use of the method in detail. In the tourism literature, TOPSIS has been effectively used in multi-dimensional decision-making processes such as hotel selection, destination evaluation, supply chain analysis, sustainability measurement, and service quality evaluation (Nguyen et al., 2025; Putra et al., 2022; Bafail & Hanbazazah, 2025). These applications confirm that TOPSIS also provides systematic and objective results in human resource evaluation processes such as guide selection and show that the methodological choice of the study is consistent with the international literature.

3. Method

3.1. Research model and methodological approach

Using the TOPSIS method, this study used an applied MCDM approach to determine the best tour guide for Rumi-based cultural tourism in Konya. A quantitative decision-making model was created by incorporating guide candidates' numerical performance scores according to their personal characteristics, professional expertise, and level of service. Expert opinions from Konya tourism specialists and travel agency managers were used to define the criteria weights, which combined academic rigour with real-world industry experience.

The TOPSIS method, which is frequently employed in assessments of tourist performance, chooses options that are closest to the positive ideal solution and farthest from the negative ideal solution (Nguyen et al., 2025; Bafail & Hanbazazah, 2025; Putra et al., 2022; Hwang & Yoon, 1981). Its quantitative approach yields objective, repeatable results and enables the methodical evaluation of intricate criteria. Additionally, TOPSIS makes it easier to evaluate guide performance in multifaceted service contexts by providing an open, scientifically based technique that converts qualitative assessments into quantitative measurements (Madanchian & Taherdoost, 2023).

3.2. Data collection

The information employed in the paper came in the form of the travel agencies that were involved in offering cultural and faith-based tours in the Konya province and also the professional tour operators that were also in the same line of business. Data collection was developed in the two-stage format, including the components of qualitative as well as quantitative.

At the first step, the level of importance of the criteria to be employed during the analysis was calculated with the help of expert opinions. An online survey was carried out on a total of ten professionals, out of which five are professional tour operators and five are travel agency managers. The professionals were requested to evaluate the relative significance of the obtained criteria, and the obtained results were taken as the framework for determining the criteria weights. In such a way, the criterion priority order was identified objectively, on the basis of the personal opinions of professionals who worked directly in the field.

At the second stage, the performance appraisal of the tour guide candidates was measured using quantitative data. During this stage, the 20 candidates numbered as tour guides were tested on cultural and faith tours in Konya, and their writing on each of the criteria would be graded on a scale of 1 to 10. The appraisals were made on the observation of the tourism facilities and agency executives.

Therefore, subjective (criterion weight based on experts) and objective (performance score) data were combined in the course of the analysis, which developed a multidimensional decision-making framework. The combination of two methods helps to enhance the academic and practical validity of the approach and makes the results more objective and reliable.

Data was collected during the period of October to November 2025. The questionnaire was designed over the internet, and consent was obtained by ensuring that the participants of the survey did this before the research. All identities of participants remained confidential, and analysis of the data acquired was done purely for scientific reasons and in an aggregate manner. The study was done according to the principles of the ethics committee, no personal data was taken, and the anonymity of the respondents was carefully ensured. It is a systematic and ethically justified way of data collection, considering both the perceptions and the experiences of the tourism sector stakeholders and individual performance indicators that formed a strong analytical foundation for the process of multi-criteria decision-making that includes the TOPSIS method.

3.3. Determining the criteria

The evaluation criteria to be used in the tour guide selection process were determined by considering service quality literature and current research in the field of tour guiding (Yılmaz et al., 2025; Suryana, 2022; Aktaş Polat & Batman, 2010). Within this scope, six fundamental criteria were defined, encompassing both professional and technical competencies and communicative and behavioural skills:

- *Communication skills (C1)*: The guide's narrative power, empathy, and ability to manage intragroup communication are evaluated within this criterion.
- *Knowledge level (C2)*: The guide's depth of knowledge of Rumi's culture, Sufi history, and Konya's cultural heritage is measured.
- *Foreign language proficiency (C3)*: The guide's ability to communicate in other foreign languages, primarily English, is taken into account.
- *Guest satisfaction (C4)*: indicators of this criterion include the frequency of complaints, satisfaction rates, and post-tour visitor reviews.
- *Cultural sensitivity (C5)*: The guide's cultural sensitivity and suitable language and attitudes are assessed during faith-based trips.
- *Crisis and group management (C6)*: This category includes problem-solving techniques, upholding group discipline, and making prompt and efficient judgements in unforeseen circumstances.

The SERVQUAL model (Parasuraman et al., 1988), a technique for assessing service quality, has reliability, empathy, and competence dimensions that all meet the specified criteria. Furthermore, as the guiding profession also entails ethical and cultural duties, it is imperative to apply these requirements to Konya's faith-based tourism setting (Şalvarci & Sarı Gök, 2024; Türker et al., 2024). This framework enables a holistic evaluation of tour guides' professional performance and a systematic measurement of service quality in faith-based tourism.

3.4. TOPSIS analysis

The best option can be chosen using the TOPSIS method, a systematic MCDM methodology that assesses and ranks options according to how close they are to the positive ideal solution and how far they are from the negative ideal solution (Hwang & Yoon, 1981). Following standard procedures outlined in the literature, TOPSIS was used in this study to choose tour guides for Mevlana-themed cultural tours in Konya (Uzun et al., 2021).

A decision matrix that included characteristics including crisis/group management, communication skills, knowledge, proficiency in a foreign language, guest satisfaction, and cultural sensitivity was used to evaluate guide applicants. The geometric mean approach was used to compute criterion weights based on expert ratings, and data were normalised to guarantee comparability across various scales. Each candidate's closeness coefficient (C_i) was calculated to rank performance, with the

highest and lowest performance values being the positive and negative ideal solutions, respectively. Closer conformity with the desired profile was indicated by higher coefficients.

This TOPSIS-based method was constructed using Microsoft Excel and validated with an MCDM add-in, guaranteeing transparency, reproducibility, and impartiality. It is congruent with previous tourist applications (Nguyen et al., 2025; Önder et al., 2013). The approach made the guide selection process a rigorous, trustworthy, and evidence-based evaluation procedure by quantifying qualitative judgements.

4. Research findings and discussion

4.1. Findings and analysis

The importance levels of the criteria used in the study were determined based on the opinions of ten expert evaluators. The geometric mean (GM_i) of the scores assigned to each criterion was calculated as weighting coefficients (w_i). This approach is widely used in MCDM studies based on expert opinions. The weight coefficient (w_i) of each criterion was normalized according to the geometric mean values obtained by dividing by the sum of all criteria. As a result of this calculation, the relative weights of the criteria were normalized to equal 1 (or 100%). Here: GM_i : Geometric mean of the i th criterion, x_{ij} : Score given by the j th expert on the i th criterion and n : represents the number of experts. The weight coefficients obtained as a result of the calculation are presented in Table 1.

$$GM_i = (x_{i1} \times x_{i2} \times \cdots \times x_{in})^{\frac{1}{n}} \quad ; \quad w_i = \frac{GM_i}{\sum_{i=1}^m GM_i}$$

In the assessment based on expert opinions, the cultural sensitivity criterion (0.25) received the most weight, followed by knowledge level (0.20) and crisis and group management (0.20). This research shows that guides in faith- and culture-based tours work as intermediates who value cultural sensitivities in addition to providing information. While crucial, factors like communication skills (0.15), visitor contentment (0.10), and foreign language competency (0.10) fall short of the guide's cultural awareness and adaptation. Thus, it can be stated that tour guides need to have cultural sensitivity and gain a thorough understanding of Mevlana culture in order to function well in cultural and faith tourism. This finding shows that cultural and emotional intelligence are just as important to guide service quality as technical expertise.

Table 1. Calculated criteria weights values.

Criterion No	Criterion Name	Criteria Weights (w_i)	(%)
C ₁	Communication Skills	0,15	15
C ₂	Knowledge Level (Mevlana Culture)	0,20	20
C ₃	Foreign Language Proficiency	0,10	10
C ₄	Guest Satisfaction	0,10	10
C ₅	Cultural Sensitivity	0,25	25
C ₆	Crisis and Group Management	0,20	20
Total		1,00	100

Twenty applicant guides who want to work on Rumi-themed cultural tours in Konya are evaluated in this choice matrix using six performance criteria that were established by experts. Each candidate was scored between 1 (lowest) and 10 (highest). An overall look at the data in Table 2 reveals that most candidates scored between 6 and 9 across all criteria. This demonstrates a generally high level of competence across the sample. Those who will guide Rumi-themed cultural tours generally possess a strong cultural knowledge base, but their communication and foreign language skills could be further developed. This observation demonstrates that interaction skills are as important as knowledge transfer in culture and faith-based guidance. The overall distribution shows that candidates scored higher on average in the cultural sensitivity (C₅) and knowledge level (C₂) criteria, while performing relatively more modestly in the foreign language proficiency (C₃) and guest satisfaction (C₄) criteria.

The normalised decision matrix (Table 3) was transformed using vector normalisation to make the values of all criteria at different scales comparable. This was done by dividing the sum of the squares

of the values in each criterion column by the square root, thus eliminating any differences in scale between the criteria. As can be seen in the table, after normalisation, each candidate's scores were moved to a range between 0 and 1. This allowed for a more equitable weighting of the criteria. The formula is expressed as follows:

$$r_{ij} = \frac{x_{ij}}{\sqrt{\sum_{i=1}^m x_{ij}^2}}$$

Here, r_{ij} represents the normalized values and x represents the values in the original decision matrix. The normalised data offered a solid foundation for the subsequent stage, the development of the weighted decision matrix, and made the relative performance disparities among the guide candidates easily apparent.

Table 2. Calculated decision matrix values.

Guide Candidate	Communication Skills (C ₁)	Knowledge Level (C ₂)	Foreign Language Proficiency (C ₃)	Guest Satisfaction (C ₄)	Cultural Sensitivity (C ₅)	Crisis and Group Management (C ₆)
R1	8	8	7	8	7	7
R2	7	8	6	8	7	8
R3	7	7	7	7	8	6
R4	8	7	7	6	8	7
R5	6	8	7	8	7	8
R6	8	8	7	8	8	7
R7	7	6	6	6	8	7
R8	8	8	8	7	8	7
R9	7	7	6	7	7	8
R10	9	8	7	8	8	8
R11	8	8	7	7	8	7
R12	9	9	8	8	9	8
R13	8	8	6	7	7	6
R14	7	7	7	7	8	7
R15	6	8	7	6	7	6
R16	8	9	8	8	8	8
R17	7	8	6	7	7	7
R18	8	7	7	8	8	7
R19	7	8	8	7	8	8
R20	8	9	7	8	8	8

Table 3. Calculated normalized matrix values.

Guide Candidate	Communication Skills (%15)	Knowledge Level (%20)	Foreign Language Proficiency (%10)	Guest Satisfaction (%10)	Cultural Sensitivity (%25)	Crisis and Group Management (%20)
R1	0,2356	0,2283	0,2242	0,2439	0,2027	0,2149
R2	0,2062	0,2283	0,1922	0,2439	0,2027	0,2456
R3	0,2062	0,1998	0,2242	0,2134	0,2317	0,1842
R4	0,2356	0,1998	0,2242	0,1829	0,2317	0,2149
R5	0,1767	0,2283	0,2242	0,2439	0,2027	0,2456
R6	0,2356	0,2283	0,2242	0,2439	0,2317	0,2149
R7	0,2062	0,1712	0,1922	0,1829	0,2317	0,2149
R8	0,2356	0,2283	0,2562	0,2134	0,2317	0,2149
R9	0,2062	0,1998	0,1922	0,2134	0,2027	0,2456
R10	0,2651	0,2283	0,2242	0,2439	0,2317	0,2456

R11	0,2356	0,2283	0,2242	0,2134	0,2317	0,2149
R12	0,2651	0,2568	0,2562	0,2439	0,2607	0,2456
R13	0,2356	0,2283	0,1922	0,2134	0,2027	0,1842
R14	0,2062	0,1998	0,2242	0,2134	0,2317	0,2149
R15	0,1767	0,2283	0,2242	0,1829	0,2027	0,1842
R16	0,2356	0,2568	0,2562	0,2439	0,2317	0,2456
R17	0,2062	0,2283	0,1922	0,2134	0,2027	0,2149
R18	0,2356	0,1998	0,2242	0,2439	0,2317	0,2149
R19	0,2062	0,2283	0,2562	0,2134	0,2317	0,2456
R20	0,2356	0,2568	0,2242	0,2439	0,2317	0,2456

A rescaled version of the normalised values that accounts for the relative relevance (w_i) of each criterion is the weighted normalised matrix (Table 4). The impact of each criterion on the final score in proportion to its actual weight can be reflected in the decision-making process thanks to this phase. According to the results obtained using the formula $v_{ij} = w_j \times r_{ij}$ (w_j : weight coefficients), the impact of the criteria is particularly concentrated on cultural sensitivity (25%), knowledge level (20%), and crisis and group management (20%). Therefore, even small differences in these criteria will significantly affect the candidates' overall ranking.

Overall, due to the high weighting of the cultural sensitivity (C_5) criterion, scores in this area were the most influential factor in determining candidates' overall performance. In contrast, less weighted criteria such as foreign language proficiency (C_3) and guest satisfaction (C_4) had only a limited impact on the rankings. This table will provide the baseline data for the next step, the identification of ideal and negative-ideal solutions (TOPSIS), allowing for a clearer understanding of the relative strengths of the guide candidates.

Positive and negative ideal solutions are one of the most critical steps in TOPSIS analysis (Table 5). In this step, the best (A^+) and worst (A^-) performance values for each criterion are determined ($A^+ = \{v_1^+, v_2^+, \dots, v_n^+\}$, $A^- = \{v_1^-, v_2^-, \dots, v_n^-\}$). Thus, each candidate's performance is evaluated by its distance from these two extreme references. The positive ideal solution (A^+) represents the highest weighted normalised value obtained for each criterion; that is, it defines the "perfect guide" profile. The negative ideal solution (A^-), on the other hand, represents the "poorest performance" level, taking the lowest values.

Table 4. Calculated weighted normalized matrix values.

Guide Candidate	Communication Skills (%15)	Knowledge Level (%20)	Foreign Language Proficiency (%10)	Guest Satisfaction (%10)	Cultural Sensitivity (%25)	Crisis and Group Management (%20)
R1	0,0353	0,0457	0,0224	0,0244	0,0507	0,0430
R2	0,0309	0,0457	0,0192	0,0244	0,0507	0,0491
R3	0,0309	0,0400	0,0224	0,0213	0,0579	0,0368
R4	0,0353	0,0400	0,0224	0,0183	0,0579	0,0430
R5	0,0265	0,0457	0,0224	0,0244	0,0507	0,0491
R6	0,0353	0,0457	0,0224	0,0244	0,0579	0,0430
R7	0,0309	0,0342	0,0192	0,0183	0,0579	0,0430
R8	0,0353	0,0457	0,0256	0,0213	0,0579	0,0430
R9	0,0309	0,0400	0,0192	0,0213	0,0507	0,0491
R10	0,0398	0,0457	0,0224	0,0244	0,0579	0,0491
R11	0,0353	0,0457	0,0224	0,0213	0,0579	0,0430
R12	0,0398	0,0514	0,0256	0,0244	0,0652	0,0491

R13	0,0353	0,0457	0,0192	0,0213	0,0507	0,0368
R14	0,0309	0,0400	0,0224	0,0213	0,0579	0,0430
R15	0,0265	0,0457	0,0224	0,0183	0,0507	0,0368
R16	0,0353	0,0514	0,0256	0,0244	0,0579	0,0491
R17	0,0309	0,0457	0,0192	0,0213	0,0507	0,0430
R18	0,0353	0,0400	0,0224	0,0244	0,0579	0,0430
R19	0,0309	0,0457	0,0256	0,0213	0,0579	0,0491
R20	0,0353	0,0514	0,0224	0,0244	0,0579	0,0491

Table 5. Calculated positive and negative ideal solutions value.

Guide Candidate	Communication Skills (%15)	Knowledge Level (%20)	Foreign Language Proficiency (%10)	Guest Satisfaction (%10)	Cultural Sensitivity (%25)	Crisis and Group Management (%20)
Positive Ideal Solutions (A⁺)	0,0398	0,0514	0,0256	0,0244	0,0652	0,0491
Negative Ideal Solutions (A⁻)	0,0265	0,0342	0,0192	0,0183	0,0507	0,0368

In the next step, the distance between each candidate and these ideal and negative-ideal points will be calculated to obtain the TOPSIS closeness coefficient (C_i). This coefficient will determine the guides' overall ranking. For each candidate, the positive (S^+) and negative (S^-) distances to the ideal solution are calculated using Euclidean distance:

$$S_i^+ = \sqrt{\sum_{j=1}^n (v_{ij} - A_j^+)^2} \quad S_i^- = \sqrt{\sum_{j=1}^n (v_{ij} - A_j^-)^2}$$

Here: S_i^+ : distance of the candidate from the ideal solution (as the value decreases, the candidate approaches the “ideal”), S_i^- : distance of the candidate from the negative ideal (as the value increases, the candidate approaches the “ideal”).

Table 6. Calculated ideal distance values.

Guides	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10
S_i^+	0,0176	0,01901	0,02076	0,01695	0,02069	0,01235	0,02323	0,01231	0,02164	0,00976
S_i^-	0,01713	0,01838	0,01114	0,01453	0,01813	0,0186	0,01047	0,01868	0,01457	0,02359
Guides	R11	R12	R13	R14	R15	R16	R17	R18	R19	R20
S_i^+	0,01272	0	0,02152	0,01783	0,02482	0,00848	0,02021	0,01582	0,01313	0,00907
S_i^-	0,01783	0,03013	0,01475	0,01272	0,01186	0,02555	0,01403	0,01575	0,02008	0,02494

These findings confirm the fundamental logic of TOPSIS: the best candidate is the one with the minimum distance from A^+ and maximum distance from A^- . In the next step, these distance values will be used to calculate the closeness coefficient (C_i) for each candidate, resulting in the final ranking. At this stage, the closeness coefficient (C_i) of each candidate guide to the ideal solution is calculated. This coefficient is obtained based on the distances of the candidate from the positive (S^+) and negative (S^-) ideal solutions using the following formula:

$$C_i = \frac{S_i^-}{S_i^+ + S_i^-}$$

This value varies between 0 and 1; the closer the C_i value is to 1, the closer the candidate's performance is to the ideal solution, i.e., the higher the overall success level.

Tablo 7. Ideal closeness coefficient value obtained from the analysis results.

Guide Candidate	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10
C_i	0,4932	0,4916	0,3491	0,4615	0,4669	0,6010	0,3107	0,6027	0,4023	0,7074
Guide Candidate	R11	R12	R13	R14	R15	R16	R17	R18	R19	R20
C_i	0,5837	1,0000	0,4068	0,4163	0,3232	0,7507	0,4097	0,4990	0,6047	0,7334

When evaluating the overall trend, the TOPSIS analysis confirms that knowledge level, cultural sensitivity, and crisis management are the determining factors in guiding candidate performance. Candidates with high C_i scores demonstrated strong performance in these areas, while supporting criteria such as communication skills and guest satisfaction had a more limited impact on the rankings.

Table 8 summarises the final output of the TOPSIS analysis quite clearly: for each candidate guide, the distances from the positive ideal solution (S^+) and the negative ideal solution (S^-), the ideal closeness coefficient (C_i) derived from these distances, and the final ranking are shown together.

The results of the table analysis show that the guidance candidates' performance varied significantly. Candidate R12 ($C_i = 1.00$), who achieved ideal values across all criteria and had the greatest performance score, was determined to be the most suited candidate based on the TOPSIS study. In terms of knowledge, communication skills, and behavioural traits, this outcome shows that the candidate has a balanced and exceptional level of competence.

Candidates R16 ($C_i = 0.7507$) and R20 ($C_i = 0.7334$) were found to be at the top of the performance rankings. These two candidates' near TOPSIS values show that they performed comparably well on all evaluation criteria. Candidates with C_i values between 0.40 and 0.60 (e.g., R6, R8, R11, R18, and R19) were found to be in the mid-level performance group. This group's proficiency is generally acceptable, but it appears that they don't perform to their full potential in a number of areas.

The lowest performance levels were observed in candidates R7 ($C_i = 0.3107$) and R15 ($C_i = 0.3232$). This finding implies that these applicants performed poorly on specific assessment criteria and that there is potential for improvement in terms of general competence. C_i scores between 0.31 to 1.00 usually suggest a high degree of performance diversity across individuals. This demonstrates that the discriminatory power of the criterion set utilised is successful and that the TOPSIS method produces reliable, methodical, and consistent results in the guide selection process.

Tablo 8. Ranking of guidance candidates based on TOPSIS scores.

Guide Candidate	S_i^+	S_i^-	C_i	Ranking
R1	0,01760	0,01713	0,4932	10
R2	0,01901	0,01838	0,4916	11
R3	0,02076	0,01114	0,3491	18
R4	0,01695	0,01453	0,4615	13
R5	0,02069	0,01813	0,4669	12
R6	0,01235	0,01860	0,6010	7
R7	0,02323	0,01047	0,3107	20
R8	0,01231	0,01868	0,6027	6
R9	0,02164	0,01457	0,4023	17
R10	0,00976	0,02359	0,7074	4

R11	0,01272	0,01783	0,5837	8
R12	0,00000	0,03013	1,0000	1
R13	0,02152	0,01475	0,4068	16
R14	0,01783	0,01272	0,4163	14
R15	0,02482	0,01186	0,3232	19
R16	0,00848	0,02555	0,7507	2
R17	0,02021	0,01403	0,4097	15
R18	0,01582	0,01575	0,4990	9
R19	0,01313	0,02008	0,6047	5
R20	0,00907	0,02494	0,7334	3

4.2. Interpretation of findings

The performance of guide candidates who will serve on Rumi-themed cultural excursions in Konya was evaluated using the TOPSIS technique. The degree of proximity (C_i) of each option to the optimal solution was calculated. The results of the research revealed significant differences between the candidates and at the criteria level. These findings made it feasible to draw objective, quantitative conclusions when selecting a guide.

The results showed that Cultural Sensitivity (C_2 ; $w = 0.25$) was the criterion with the highest weight, and knowledge level (C_2 ; $w = 0.20$) was the second most significant criterion. This implies that information transfer and cultural-faith sensitivity are critical elements in guide performance because of the nature of Rumi-themed excursions. applicants with high scores on these criteria typically had high C_i values, according to an analysis of the applicants' weighted normalised performance values.

The analysis determined that candidate R12 ($C_i = 1.00$) was the closest guide candidate to ideal performance. R12's distance from the positive ideal solution being zero and his distance from the negative ideal solution being maximum demonstrates that this candidate demonstrated balanced and superior performance across all criteria. Additionally, candidates R16 ($C_i = 0.7507$), R20 ($C_i = 0.7334$), and R10 ($C_i = 0.7074$) also stood out with their high-performance levels. These candidates were found to have particularly strong performance in the knowledge level, cultural sensitivity, and crisis & group management criteria. Therefore, it is deemed appropriate to prioritise these candidates in the guide assignment process.

Candidates with C_i values between 0.40 and 0.60 constitute the medium-performance group. Although this group's performance fell short of ideal in many areas, they were determined to be generally competent. They did extremely low in the communication skills (C_1) and guest satisfaction (C_4) categories. Therefore, it is anticipated that enrolling these people in training programs that prioritise communication, customer service, and guidance practice will improve their performance.

R7, R15, and R3 ($C_i < 0.35$), candidates with low performance levels, were determined to be deficient in several areas. These people were particularly lacking in operational competencies such as group management (C_3) and foreign language proficiency (C_3). This necessitates the implementation of performance-enhancing measures and a re-examination of the evaluation processes for these applicants. Overall, the findings highlight the significance of cultural awareness and sensitivity when selecting guides for Rumi-themed cultural excursions. Therefore, it is recommended that recruitment and professional development policies be reorganised to prioritise these variables. Furthermore, it is anticipated that implementing candidate evaluation processes based on a comprehensive, repeatable, and objective methodology will enhance service quality and contribute to the long-term increase in visitor satisfaction.

4.3. Discussion

The findings of this study, which examines tour guide performance in Rumi-themed cultural tours through the TOPSIS method, reveal that cultural sensitivity, knowledge level, and crisis/group

management skills are the most influential determinants of guide effectiveness. These results confirm the theoretical perspectives asserting that guides in cultural and faith-based tourism function not only as information providers but also as mediators of meaning, identity, and emotion, which is strongly emphasized in prior research (Ap & Wong, 2001; Mak et al., 2011; Bachimon & Théry, 2021).

The high weight assigned to cultural sensitivity (C5) is consistent with studies demonstrating that cultural and religious tourism experiences are shaped largely by the guide's ability to interpret symbolic values, articulate intangible heritage, and manage culturally sensitive interactions (Spring, 2015; Huang et al., 2010). The finding that candidates with stronger cultural sensitivity rankings approached the ideal solution more closely aligns with the notion of tour guides as intercultural communicators who structure visitor meaning-making processes (Cohen, 1985). Similarly, the significant influence of knowledge level (C2) reflects the centrality of cognitive competence and historical accuracy in faith-based tours. Prior research indicates that visitors' cognitive engagement and emotional resonance are strengthened when guides present information with contextual, historical, and cultural depth (Zhang & Chow, 2004; Yilmaz et al., 2025).

The study also identified crisis/group management as a key competency shaping final rankings. This supports the argument that guide professionalism extends beyond narrative performance to include operational efficiency, group leadership, and adaptive problem-solving (Mak et al., 2011). These results echo the findings of Jamaliah et al. (2021), who highlight the role of guides in ensuring safe, controlled, and environmentally and socially responsive tourism experiences.

The relatively lower influence of foreign language proficiency and guest satisfaction reveals an important contextual insight: in Rumi-themed tours, the symbolic, historical, and spiritual dimensions of interpretation may outweigh purely linguistic or service-oriented elements. Although foreign language proficiency is widely acknowledged as a baseline competency in guiding (Suryana, 2022), the present findings indicate that its relative importance is secondary to cultural and interpretative competence in the Konya–Mevlana context.

Methodologically, the results corroborate the applicability of TOPSIS in multi-dimensional human resource decisions, as found in previous MCDM studies (Behzadian et al., 2012; Putra et al., 2022). The clear differentiation among candidate scores demonstrates that TOPSIS successfully captures performance variability and reduces subjective bias, supporting its use as an evidence-based selection mechanism for guide evaluation.

In the specific context of Mevlana-themed tourism in Konya, these requirements are even more demanding. The destination's symbolic depth and spiritual heritage differentiate it from standard cultural tourism settings and necessitate higher levels of representational accuracy, narrative coherence, and emotional mediation by guides. Consequently, the research underscores the need to restructure human resources practices in guide selection. This includes culturally focused knowledge and sensitivity tests, communication- and empathy-oriented interviews, and the systematic use of multi-criteria evaluation models such as TOPSIS.

The findings further highlight the need to reform guide training policies. Specialized programs on Mevlana and Sufi culture, along with practical workshops on communication, emotion management, group dynamics, and narrative technique, represent critical sectoral priorities. By addressing these dimensions, the proposed TOPSIS-based framework provides a sustainable and objective tool capable of managing the complexity inherent in Mevlana-themed tourism and enhancing both service quality and destination competitiveness.

5. Conclusion and recommendations

5.1. Conclusion

This study evaluated the performance of prospective tour guides participating in Rumi-themed cultural tours in Konya through the TOPSIS multi-criteria decision-making method. By assessing candidates' qualifications on a unified scale, the model established a systematic and objective evaluation framework that minimized subjective bias and enabled a transparent performance comparison.

The analysis identified candidate R12 as the closest to the ideal solution, followed by R16 and R20. The findings underscore that the most decisive determinants of guide performance are knowledge level, cultural sensitivity, and communication competence. In Rumi-themed cultural tours where symbolic interpretation, respect for spiritual values, and effective guest interaction are central these competencies play a critical role in shaping the visitor experience. Thus, guide performance emerges as a multidimensional construct encompassing cultural awareness, representational skills, communicative capacity, and technical knowledge.

The use of the TOPSIS method provides a robust analytical foundation for decision-making in guide selection, performance assessment, and training planning within the tourism sector. Its data-driven structure supports accurate interpretation of cultural heritage and contributes to the sustainability of service quality.

The consolidated results indicate notable performance differences between the candidates. Cultural sensitivity (C_5), knowledge level (C_2), and crisis group management (C_6) were the most influential criteria shaping the final rankings, reflecting the specific operational and interpretive demands of Rumi-themed tours. Candidates who excelled in these areas ranked closer to the ideal solution, whereas criteria with lower weights, such as foreign language proficiency (C_3) and guest satisfaction (C_4), had a comparatively limited effect on overall performance. According to the closeness coefficients, R12 achieved the highest score, followed by R16, R20, and R10, each demonstrating balanced proficiency across cognitive, communicative, and cultural domains. Conversely, lower-ranked candidates, such as R7, R15, and R3, demonstrated deficiencies in operational and interaction-oriented competencies. The results are presented in this integrated form enhances the analytical clarity of the study and highlights the core factors shaping the performance of the guide.

5.2. Recommendations

The research findings necessitate the establishment of more objective and long-lasting guide selection and evaluation procedures. First, it is advised that guide selection be done methodically using multi-criteria decision-making techniques. By assessing the many skills of potential guides within a comprehensive framework, these approaches give the selection process fairness, transparency, and consistency.

It will be possible to compare guide competencies across cultural contexts and validate the method by applying similar analyses to different locations. Applications will improve the model's generalisability and scholarly value, especially in areas with faith, cultural, and ecotourism themes.

Additionally, it is advised that the TOPSIS analysis's findings be utilised as a tool for training program prioritising. This makes it possible for guides to objectively pinpoint areas that need improvement, and training materials can be reorganised, especially with regard to knowledge level, communication abilities, and cultural sensitivity.

Lastly, the sector's quality standards will rise if tourism management organisations and guide associations include multi-criteria analysis techniques into their performance monitoring and staff assessment procedures. This method is regarded as a crucial step in creating a data-based management strategy for tourism services, guaranteeing service quality continuity and authentically portraying cultural assets.

5.3. Limitations and suggestions for future research

This study has some limitations even though it provides an organized and data-driven strategy for guide selection. First, only ten specialists in Konya's culture and faith-based tourist industry provided their evaluations, which were used to determine the criterion weights. While this guarantees contextual relevance, larger and more varied expert groups should be included in future research to increase generalizability across different tourism contexts. Second, 20 guide candidates were evaluated as part of the performance evaluation during a constrained time frame (October–November 2025). As a result, the research did not account for seasonal variations, changes in visitor profiles, and long-term performance dynamics. Third, just one MCDM approach (TOPSIS) was used in the

study. Comparative or hybrid methods like AHP-TOPSIS, VIKOR, or BWM-TOPSIS could be useful for future study since they allow for a robustness evaluation of the model.

Future research is urged to perform cross-destination comparison analyses and investigate how guide selection criteria differ in various cultural, religious, or thematic tourism contexts. A more thorough and multifaceted picture of guide performance may be obtained by incorporating additional data sources, such as visitor reviews, digital behavioral indicators, or AI-supported assessment tools. The scalability and dependability of decision-making models in tour guide evaluation and tourist human resource management will be further improved by extending the temporal scope and incorporating longitudinal data.

5.4. Theoretical contributions

This study contributes to the knowledge on multi-criteria decision-making, tour guiding, and cultural tourism in several theoretical ways. First, the analysis empirically supports theoretical viewpoints that contend that guides serve as cultural mediators and meaning-makers in faith-based tourism by showing that cultural sensitivity and depth of knowledge are the main factors influencing performance. Second, it addresses the fragmentation highlighted in earlier research by introducing a multidimensional model of guide performance that integrates cognitive, cultural, communicative, and operational competencies. Third, this study confirms the analytical capability of the TOPSIS method and promotes the use of MCDM techniques in human resource tourism. Finally, by placing the study within the symbolic context of Mevlana Konya, it enhances guiding theory with a destination-specific viewpoint that emphasizes the spiritually significant tourism sites' representational and interpretive requirements.

5.5. Practical contributions

The study provides some practical knowledge that has direct implications for tourism organizations and practitioners. To begin with, it specifies a sensible, objective, and repeatable model of guide selection that minimizes the subjectivity in the staffing and evaluation process. Second, the design of targeted training is based on the definition of performance decisive factors, especially within such areas as crisis management, communication skills, cultural sensitivity, and the knowledge of Mevlana and Sufi history. Third, the implementation of the TOPSIS model in an empirical environment can be applied to increase the quality of provided services and customer satisfaction through the potential appointment of qualified guides who would lead the faith-based tourism. Fourthly, the framework offers policy-relevant information to those enterprises aiming to institutionalize evidence-based human-resource practices. Lastly, the model framework can be applied in other tourism destinations that focus on culture, religion, or heritage.

References

Ap, J., & Wong, K. K. F. (2001). Case study on tour guiding: Professionalism, issues and problems. *Tourism Management*, 22(5), 551–563. [https://doi.org/10.1016/S0261-5177\(01\)00013-9](https://doi.org/10.1016/S0261-5177(01)00013-9)

Polat, S. A., & Batman, O. (2010). The impacts of the legends on touristic attractions; a study on professional tour guides. *Social Sciences*, 5(4), 367–395. <https://doi.org/10.12739/10.12739>

Altürk, V., Arik Yüksel, T., & Aslan, R. (2025). The effect of guiding styles on memorable tourism experiences, satisfaction and intention to recommend. *Journal of Gastronomy, Hospitality and Travel*, 8(1), 277–286. <https://doi.org/10.33083/joghat.2025.485>

Bachimon, P., & Théry, H. (2021). *Tourism And Religion. Via Tourism Review*, 20, 1–27. <https://doi.org/10.4000/viatourism.7949>

Bafail, O., & Hanbazazah, A. (2025). Optimizing tour guide selection: A best–worst scaled assessment of critical performance criteria for enhanced tour quality. *Sustainability*, 17(9), 4213. <https://doi.org/10.3390/su17094213>

Behzadian, M., Otaghsara, S. K., Yazdani, M., & Ignatius, J. (2012). A state-of-the-art survey of TOPSIS applications. *Expert Systems with Applications*, 39(17), 13051–13069. <https://doi.org/10.1016/j.eswa.2012.05.056>

Cohen, E. (1985). The tourist guide: The origins, structure and dynamics of a role. *Annals of Tourism Research*, 12(1), 5–29. [https://doi.org/10.1016/0160-7383\(85\)90037-4](https://doi.org/10.1016/0160-7383(85)90037-4)

Güven, E., & Ergün, E. (2023). Investigation of the differences in the service quality dimensions of tour guiding according to the demographic variables of the tourists. *Journal of Recreation and Tourism Research*, 10(2), 1–23. <https://doi.org/10.5281/zenodo.8094559>

Güzel, Ö., Nacak, E., Bilgi, E., & Kalın, V. (2021). Sustainable tourism and the roles of tour guides in destinations: A qualitative case study in Türkiye. *Journal of Economy Culture and Society*, 63, 149–163. <https://doi.org/10.26650/JECS2020-0015>

Huang, S., Hsu, C. H., & Chan, A. (2010). Tour guide performance and tourist satisfaction: A study of the package tours in Shanghai. *Journal of Hospitality & Tourism Research*, 34(1), 3–33. <https://doi.org/10.1177/1096348009349815>

Hwang, C. L., & Yoon, K. (1981). *Multiple attribute decision making: Methods and applications* (Lecture Notes in Economics and Mathematical Systems, Vol. 186). Springer-Verlag. <https://doi.org/10.1007/978-3-642-48318-9>

Ilgaz Yıldırım, B., & Güzel, Ö. (2019). Evaluation of tourist guide selection criteria for travel agencies with analytic hierarchy process (AHP) method. *Anatolia: Journal of Tourism Research*, 30(1), 69–81. <https://doi.org/10.17123/atad.580649>

Jamaliah, M. M., Mgonja, J. T., Alazaizeh, M. M., & Powell, R. B. (2021). How does interpretive tour guiding promote tourists' pro-environmental behaviour? Evidence from Tanzania. *Tourism Recreation Research*, 49(2), 329–343. <https://doi.org/10.1080/02508281.2021.1992953>

Kaynaş, H. B. (2025). Presentation of sacred places in the context of faith tourism: the case of Mevlâna museum. *International Journal of Social and Humanities Sciences Research (JSHSR)*, 12(122), 1642–1654. <https://doi.org/10.5281/zenodo.17012486>

Konya Tanıtım Portalı (Go Türkiye). (n.d.). *Konya*. <https://konya.goturkiye.com/>

Kültür Portalı — Konya. (n.d.). *Konya*. <https://www.kulturportali.gov.tr/turkiye/konya>

Li, Y., Song, Y., Wang, M., & Huan, T.-C. (2021). The influence of tour guides' service quality on tourists' tour guide stigma judgment: An Asian perspective. *Journal of Hospitality & Tourism Management*, 48, 551–560. <https://doi.org/10.1016/j.jhtm.2021.08.011>

Madanchian, M., & Taherdoost, H. (2023). A comprehensive guide to the TOPSIS method for multi-criteria decision making. *Sustainable Social Development*, 1(1), Article 2220. <https://doi.org/10.54517/ssd.v1i1.2220>

Mak, A. H. N., Wong, K. K. F., & Chang, R. C. Y. (2011). Critical issues affecting the service quality and professionalism of the tour guides in Hong Kong and Macau. *Tourism Management*, 32(6), 1442–1452. <https://doi.org/10.1016/j.tourman.2011.01.003>

Nguyen, T. T., Dinh, V. T., & Vu, L. H. (2025). An integrated FAHP–TOPSIS approach for evaluating and prioritizing medical tourism service types in Vietnam. *Journal of Organizational Behavior Research*, 10(2), 20–31. <https://doi.org/10.51847/lnWweTmy0d>

Önder, E., Yıldırım, B. F., & Özdemir, M. (2013). Multi criteria decision-making approach for evaluating tourism destinations in Türkiye. *Academic Journal of Tourism and Management Researches*, 1(1), 1–15. <https://hdl.handle.net/20.500.12440/535>

Parasuraman, A., Zeithaml, V. A., & Berry, L. L. (1988). SERVQUAL: A multiple-item scale for measuring consumer perceptions of service quality. *Journal of Retailing*, 64(1), 12–40.

Putra, A. P. E., Sardi, I. L., & Adityaji, R. (2022). Implementation of hybrid BWM–TOPSIS method in the selection of tour guide (Case study: Guidemu). In *2022 1st International Conference on Software Engineering and Information Technology (ICoSEIT)* (pp. 102–107). IEEE. <https://doi.org/10.1109/ICoSEIT55604.2022.10030070>

Spring, J. (2015). Tour guiding research: Insights, issues and implications. *Annals of Leisure Research*, 19(2), 263–265. <https://doi.org/10.1080/11745398.2015.1093951>

Suryana, M. (2022). A systematic literature review of tour guide performance. *Journal of Tourism Sustainability*, 2(2). <https://doi.org/10.35313/jtospolban.v2i2.38>

Şalvarci, S., & Sarı Gök, H. (2024). Examination of perceptions towards Mevlâna Museum within the scope of faith tourism with metaphor analysis. *Istanbul Aydin University Journal of Social Sciences*, 16(4), 627–652.

Turker, N., Ayyıldız, S., & Uslu, A. N. (2024). Tourism gentrification: The case of Mevlana Museum and its surroundings. *International Journal of Faith Tourism and Pilgrimage*, 12(2), 67–80. <https://doi.org/10.21427/6ng5-yw37>

Ulucan, E., & Yavuz Aksakal, N. (2022). Leadership selection with the fuzzy TOPSIS method in the hospitality sector in Sultanahmet region. *Mathematics*, 10(13), 2195. <https://doi.org/10.3390/math10132195>

Uzun, B., Taiwo, M., Syidanova, A., & Uzun Ozsahin, D. (2021). The technique for order of preference by similarity to ideal solution (TOPSIS). In D. Uzun Ozsahin, H. Gökcük, B. Uzun, & J. LaMoreaux (Eds.), *Application of multi-criteria decision analysis in environmental and civil engineering (Professional Practice in Earth Sciences)*. Springer. https://doi.org/10.1007/978-3-030-64765-0_4

Veres, O., Ilchuk, P., Kots, O., & Veres, Y. (2025). Choosing the best location for a trip based on the TOPSIS method. In *Proceedings of the 7th International Workshop on Modern Machine Learning Technologies* (pp. 372–399). CEUR-WS, Vol. 4004. <https://ceur-ws.org/Vol-4004/paper28.pdf>

Waqas Arshad, M., Rahmanto, Y., Mesran, & Setiawansyah. (2024). Combination of TOPSIS method and PIPRECIA weighting for best hotel selection. *International Journal of Informatics and Data Science*, 1(2), 46–54. <https://doi.org/10.64366/ijids.v1i2.59>

Yılmaz, N., Özsoy, A., & Demirel İli, N. (2025). Tour guide performance through the eyes of tourists: An analysis of user-generated reviews on Expedia. *Journal of Multidisciplinary Academic Tourism*, 10(1), 65–78. <https://doi.org/10.31822/jomat.2025-10-1-65>

Zhang, H. Q., & Chow, I. (2004). Application of importance–performance model in tour guides’ performance: Evidence from mainland Chinese outbound visitors in Hong Kong. *Tourism Management*, 25(1), 81–91. [https://doi.org/10.1016/S0261-5177\(03\)00064-5](https://doi.org/10.1016/S0261-5177(03)00064-5)