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transformations proved that the spaces by’ (p), be* (p), b (p) and b (p) are linearly isomorphic to spaces
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is one of the sequence spaces /e, ¢ and c( and derives the other characterizations for the
special cases of 1.

1. Introduction

We shall denote the space of all real-valued sequences by w as a classical notation. Any vector subspace of w is called a sequence space. The
spaces {«,c and ¢ are the most common and frequently used spaces which are all bounded, convergent and null sequences, respectively. Also
bs,cs,{1 and £, notations are used for the spaces of all bounded, convergent, absolutely and p—absolutely convergent series, respectively,
where 1 < p < oo,

First, we point out the concept of a paranorm. A linear topological space X over the real field R is said to be a paranormed space if
there is a subadditive function g : X — R such that g(6) = 0, g(x) = g(—x) and scalar multiplication is continuous, i.e., |¢t; — &| — 0 and
g(xp, —x) — 0 imply g(a,x, — ax) — 0 for all @’s in R and all x’s in X, where 0 is the zero vector in the linear space X.

Assume here and after that (p;) be a bounded sequences of strictly positive real numbers with sup py = H and L = max{1,H }. Then, the
linear spaces £u(p),c(p),co(p) and £(p) were defined by Maddox [19] (see also Simons [21] and Nakano [20]) as follows:

loo(p) = {x = (xi) € w: sup [x¢|P* <o},
keN

c(p) ={x=(x) ew: klim |xg — 1|P* = 0 for some [ € R},
— 00

co(p) = {x=(x) €w: lim |x[P* =0}
k—roo

e(p) = {x: (xk) EWZZ‘XHPI‘ <°°}7
k
which are the complete spaces paranormed by
1/L
g1(x) =sup |xk\"’k/1‘ <= infp; > 0and gp(x) = <Z |xk""> ,
keN k

respectively. For convenience in notation, here and in what follows, the summation without limits runs from 0 to e. By .# and Ny, we
shall denote the collection of all finite subsets of N and the set of all n € N such that n > k, respectively. We shall assume throughout that
p;l +(p})~! =1 provided 1 <infpy < H < oo.
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Let A, 1 be any two sequence spaces and A = (a,;) be an infinite matrix of real numbers a,,;, where n,k € N. Then, we say that A defines
a matrix mapping from A into i, and we denote it by A : A — u, if for every sequence x = (x;) € A, the sequence Ax = {(Ax),}, the
A—transform of x, is in u, where

(Ax)n = Y amxy, (n€N). (1.1)
k

By (A4 : 1), we denote the class of all matrices A such that A : A — u. Thus, A € (A : u) if and only if the series on the right-hand side of
(1.1) converges for each n € N and every x € A, and we have Ax = {(Ax), },en € U for all x € g, A sequence x is said to be A—summable to
« if Ax converges to o which is called the A—limit of x.

2. The sequence spaces b;"(p), b’ (p), b (p) and b (p)

In this section, we define the sequence spaces bg" (p), b (p), b (p) and b™*(p), and prove that bg* (p), b¢* (p), b (p) and b™*(p) are the
complete paranormed linear spaces.

For a sequence space A, the matrix domain A4 of an infinite matrix A is defined by

M={x=(xy)ew:AxeL}. 2.D

In [7], Choudhary and Mishra have defined the sequence space ¢(p) which consists of all sequences such that S—transforms are in Z( )
where S = (s,,;) is defined by

. 1, 0<k<n,
kY00, k>

Basar and Altay [3] have studied the space bs(p) which is formerly defined by Basar in [4] as the set of all series whose sequences of partial
sums are in £o,(p). More recently, Altay and Basar have studied the sequence spaces ' (p),r,(p) in [1] and rL(p), {(p) in [2] which are
derived by the Riesz means from the sequence spaces £(p), 4w (p),c(p) and co(p) of Maddox, respectively.

With the notation of (2.1), the spaces £(p),bs(p),r (p),r%.(p),r.(p) and r{)(p) may be redefined by

Up) = [L(p)]s, bs(p) = [leo(p)]s. ™ (p) = [€(P)]k
1 (p) = [les(p)]k: 7(P) = [c(P)]k: 10 (P) = lco(P)]k-

In [8], Demiriz and Cakan have defined the sequence spaces efy(u, p) and el.(u, p) which consists of all sequences such that E""- transforms
are in co(p) and ¢(p), respectively E™* = {e], (1)} is defined by

- _ "(l—r)"’krku , (0<k<n),
enk(”)*{ (k) 0 k , (k>n)

forallk,neNand 0 <r < 1.

In [5] and [6], the Binomial sequence spaces by, b¢*, b and bj;’, which are the matrix domains of Binomial mean B in the sequence
spaces cq, ¢, {o and £, respectively, are introduced, some inclusion relations and Schauder basis for the spaces b*, b¢*, b& and by’ are
given, and the @—, B— and y— duals of those spaces are determined. For more papers related to sequence spaces and matrix domains of
different infinite matrices one can see [13, 12] and references therein. The main purpose of this paper is to introduce the sequence spaces
by’ (p), bé* (p), b (p) and b™* (p) which are the set of all sequences whose B"* —transforms are in the spaces co(p), c(p), le(p) and £(p),
respectively; where B® denotes the matrix B"* = {b;’;} defined by

S — ﬁ (i)snikrk , 0<k<n,
nk 0 . k>n,

where sr > 0. Also, we have constructed the basis and computed the @—, f — and y—duals and investigated some topological properties of

the spaces by" (p), be* (p), be (p) and b™(p).

Following Choudhary and Mishra [7], Basar and Altay [3], Altay and Basar [1, 2], Demiriz [8], Kiris¢i [14, 15], Candan and Giines [16]
F,s

and Ellidokuzoglu and Demiriz [9], we define the sequence spaces bg* (p), b (p), b& (p) and b™(p), as the sets of all sequences such that
B’ —transforms of them are in the spaces co(p), c(p), £ (p) and £(p), respectively, that is,

k=0

n—roo

by’ (p) = {x— (x¢) Ew: lim

b¥(p) = {x— (x)ew:3eC> r}grel0 ﬁé (Z)s"ikrkxk -1 " —0} ,
s e s
bo;,(p):{x=(xk)€w::2§ mkgb(k)s X <oo},
, 1 n b
b (p) = {x =(x¢) ew: ; G kgb (k) Rk <o } .




Universal Journal of Mathematics and Applications 139

In the case (pn) =e=(1,1,1,...), the sequence spaces bg'(p), bZ* (p), b (p) and b (p) are, respectively, reduced to the sequence spaces
by, be', by and byy” which are introduced by Bisgin [5, 6]. With the notation of (2.1), we may redefine the spaces bg" (p), be* (p), b= (p)
and b (p) as follows

bg*(p) = [co(p)]B=, bZ*(p) = [c(p)]Brs, b (p) = [leo(p)]prs and b (p) = [€(p)]prs-

Define the sequence y = {y(r,s)}, which will be frequently used, as the B —transform of a sequence x = (x), i.e

yu(rs) := ! ] Xn: (Z) s" Kk x; for all k € N. 2.2)

n
(s+r)" =
Now, we may begin with the following theorem which is essential in the text.

Theorem 2.1. b(rjs (p), b’ (p) and b’ (p) are the complete linear metric space paranormed by g, defined by

Pa/L

1
g(x) = sup (2.3)

- l’l) n—k
sup | —— N kak
sl ot 2

In addition, b™*(p) is the complete linear metric space paranormed by h, defined by
h(x) = <Z
n—

1 n n N /M
n—k k
e k:ZO (k)s *xi > : (24

Proof. First, we give the proof for b (p), b¢* (p) and b (p). Since the proof is similar for b7° (p) and b&' (p), we give the proof only for
the space b(rf (p). The linearity of b(r)’s (p) with respect to the co-ordinatewise addition and scalar multiplication follows from the following
inequalities which are satisfied for x,z € b*(p) (see Maddox [18, p.30])

Ly (1) ok m Uy (7 ko it Lo (" ok ot
e N ) R ] [ M ) S N e M e e
and for any o € R (see [21])
lat|Pr < max{1,|a|F} =K. (2.6)
Using (2.6) inequality, we get
pn/L pa/L
ﬁé(z)swkr/{(w}() — P/t 1r)n é(z)snfkrkxk
<gir|_1 i Y\ ok it
. Bt (k) *

for x € b’ (p). This shows the space b;" (p) is a linear space.

Now we will see that g is a paranorm on b’ (p). It is clear that g(6) = 0 and g(x) = g(—x) for all x € b’ (p).

Let {x"} be any sequence of the points x" € b;"(p) such that g(x" —x) — 0 and (@) also be any sequence of scalars such that o, — o.
Then, since the inequality

g(x") < g(x) +g(x" —x)

holds by the subadditivity of g,{g(x")} is bounded and we thus have

/L
g(ox™ — ax) :zgg Grof Z ( ) Iy (X} — ax;)
< lan — afg(x" )+ |ot|g(x" —x) 2.7)

which tends to zero as n — co. This means that the scalar multiplication is continuous. Hence, g is a paranorm on the space b(r)’s( D).
It remains to prove the completeness of the space b;" (p). Let {x} be any Cauchy sequence in the space by" (p), where x = {x(()') ,xi') ,xg), b
Then, for a given € > 0 there exists a positive integer nq(€) such that

g(xi —x) <

N m

for all i, j > no(€). Using the definition of g we obtain for each fixed k € N that

(B )i = (B7*x )i [P/ < sup | (B™x)i — (B7*x )|/ < (28)
keN

2
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for every i, j > no(€) which leads to the fact that {(B"Sxo)k, (B%x" )i, (B"x?)y, ...} is a Cauchy sequence of real numbers for every fixed
k € N. Since R is complete, it converges, say (B"*x'); — (B"*x); as i — oo. Using these infinitely many limits (B"*x)g, (B"*x)1,..., we
define the sequence {(B"*x)g, (B"*x)1,...}. From (2.8) with j — oo, we have

|(B"x' ) — (B x)e| /" < = (i, j > no(€)) .

= N m

for every fixed k € N. Since x' = {xki)} € by’ (p) for each i € N, there exists ko(€) € N such that
i €

(B2 P/E < 5 (2.10)

for every k > ko(€) and for each fixed i € N. Therefore, taking a fixed i > ng(€) we obtain by (2.9) and (2.10) that
; ; €

(BER)ul/E < (Bx) — (Bl | (B )/ <
for every k > ko(€). This shows that x € by’ (p). Since {x'} was an arbitrary Cauchy sequence, the space b;"(p) is complete and this
concludes the proof.
Now lets show that, ™ (p) is the complete linear metric space paranormed by & defined by (2.4). It is easy to see that the space b"*(p) is
linear with respect to the coordinate-wise addition and scalar multiplication. Therefore, we first show that it is a paranormed space with the

paranorm £ defined by (2.4).

It is clear that h(6) = 0 where 6 = (0,0,0,...) and h(x) = h(—x) for all x € b"*(p).

Pk) 1/M

X /MM
( ) S (x5 +j)

i\ 1/M o 1 k ;
i x k=j iy .
+ sty
! ) (Zb [(Hr)" ,; (J) !

= h(x) +h(y) @2.11)

Let x,y € b"*(p); then by Minkowski’s inequality we have

k . .
= ( 3 (5)#

1/M

and for any & € R we immediately see that
lot|PF < max{1,|a|M}. (2.12)

Let {x"} be any sequence of the points x" € b"*(p) such that 2(x" —x) — 0 and (A,) also be any sequence of scalars such that A, — 4. We
observe that

h(Apx" — Ax) < h[(Ay — A) (& — X)) + A (" — x)] + h[(Ay — A )x]. (2.13)
It follows from A, — A (n — oo) that |4, — A| < 1 for all sufficiently large n; hence
lim h[(2— A)(¥' )] < lim (2" —x) = 0. (2.14)

Furthermore, we have

lim A[A (X" —x)] < max{1, |),|M}nlg13°h(x" —x)=0. (2.15)

n—oo

Also, we have

lim [(2, — A)x)] < Tim |2, — A|h(x) = 0. 2.16)

n—yo0

Then, we obtain from (2.13), (2.14), (2.15) and (2.16) that A(A,x" — Ax) — 0, as n — oo. This shows that 4 is a paranorm on b"*(p).

Now, we show that b"*(p) is complete. Let {x"} be any Cauchy sequence in the space b"*(p), where x"* = {x(()n> ,x<1") ,xgn), ...}. Then, for a
given € > 0, there exists a positive integer ng(€) such that A(x" —x™) < € for all n,m > ng(€). Since for each fixed k € N that

1

[(BPx")i — (B™x" )i| < [Z(BF’SX")k—(Br’SX'")kIP“ =h(x"—x") <e (2.17)
k

for every n,m > ng(€), {(B"*x%), (B*x" ), (B*x?)y,...} is a Cauchy sequence of real numbers for every fixed k € N. Since R is com-
plete, it converges, say (B"™x"); — (B"x); as n — o. Using these infinitely many limits (B"*x)g, (B"*x)1, ..., we define the sequence
{(B"x)p, (B"*x)1,...}. For each K € N and n,m > no(€)

1

M

<h("—x") <e. (2.18)

K
Y (BE0 ) — (B2
k=0




Universal Journal of Mathematics and Applications 141

By letting m, K — oo, we have for n > ng(¢€) that

1

M

h(x" —x) Z\ (B"x"), — (B™x)e || <e. 2.19)

This shows that x* —x € b"*(p). Since b"*(p) is a linear space, we conclude that x € b"*(p); it follows that x" — x, as n — o in b"*(p), thus
we have shown that b™*(p) is complete. O

Note that the absolute property does not hold on the spaces by* (p), b¢* (p) and b™*(p), since there exists at least one sequence in the spaces
bg'(p), be* (p) and b™(p) and such that g(x) # g(|x|), where [x| = (|x|). This says that b;’ (p), b’ (p) and b™*(p) are the sequence spaces
of non-absolute type.

s

Theorem 2.2. The sequence spaces by’ (p), be* (p), be (p) and b (p) are linearly isomorphic to the spaces co(p), ¢(p), Les(p) and {(p),
respectively, where 0 < pp < H < oo,

Proof. To avoid repetition of similar statements, we give the proof only for b(r)’s (p). We should show the existence of a linear bijection
between the spaces b’ (p) and co(p). With the notation of (2.2), define the transformation 7' from b5’ (p) to co(p) by x — y = Tx. The
linearity of T is trivial. Furthermore, it is obvious that x = 0 whenever Tx = 0, and hence T is injective.

Let y € co(p) and define the sequence

,ikzj() Y i(s+r)lyj; (keEN).

Then, we have

(B53), =

n
n
"Gy g )
=
1 n\ ,
" (0t \n (s+1)"1ym

Thus, we have that x € b’ (p) and consequently 7 is surjective. Hence, T is a linear bijection and this says that the spaces by’ (p) and ¢o(p)
are linearly isomorphic, as was desired.
O

3. The basis for the spaces b;*(p), b¢* (p) and b™(p)

Let (A, g) be a paranormed space. Recall that a sequence () of the elements of A is called a basis for A if and only if, for each x € A, there
exists a unique sequence (0y) of scalars such that

n
g<x2(xkﬁk> —0asn— oo,

k=0

The series Y o B which has the sum x is then called the expansion of x with respect to (f3,), and written as x = Y oy 8. Since it is known
that the matrix domain A4 of a sequence space A has a basis if and only if A has a basis whenever A = (a,;) is a triangle (cf. [11, Remark
2.4]), we have the following. Because of the isomorphism 7 is onto, defined in the proof of Theorem 2.2, the inverse image of the basis of
those spaces co(p), ¢(p) and £(p) are the basis of the new spaces b’ (p), b2* (p) and b™(p), respectively. Therefore, we have the following:
Theorem 3.1. Let Ay = (B™*x); for all k € N and 0 < py < H < oo. Define the sequence b'®) = {b¥), . of the elements of the space
by’ (p). be* (p) and b™ (p) by

o _ [ @) s+t n>k
" 0 , 0<k<n

for every fixed k € N. Then
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(a) The sequence {b(k) YkeN is a basis for the space b(r)’s (p), and any x € b(r)’s(p) has a unique representation of the form

X = Zlkb(k) .
k

(b) The set {e,bV)(r), b2 (r),...} is a basis for the space bi*(p), and any x € bi*(p) has a unique representation of the form

x=le+ Y [N —1)p®),
k

where | = limy_, o (B""x)y.
(¢) The sequence {b")}cn is a basis for the space b™* (p), and any x € b™*(p) has a unique representation of the form

x= Z/'Lkb<k).
k

4. The a—,— and y—duals of the spaces b’ (p), b*(p) and b™(p)

In this section, we state and prove the theorems determining the a—, — and y—duals of the sequence spaces bg* (p), be* (p) and b™*(p) of
non-absolute type.

We shall firstly give the definition of ¢—, §— and y—duals of sequence spaces and after quoting the lemmas which are needed in proving the
theorems given in Section 4.
The set S(A, 1) defined by

SA,pu)={z=(z) ew:xz=(xzx) € U forall x = (x;) € 1} 4.1)

is called the multiplier space of the sequence spaces A and p. One can eaisly observe for a sequence space v with A D v D u that the
inclusions

S(A, 1) C S(v, ) and S(A, ) C S(A, V)

hold. With the notation of (4.1), the alpha-, beta- and gamma-duals of a sequence space A, which are respectively denoted by 1%, AP and AY
are defined by

A% =8(A,0,),AP =S(X,cs) and AY = S(A,bs).
The alpha-, beta- and gamma-duals of a sequence space are also referred as Kothe- Toeplitz dual, generalized Kothe-Toeplitz dual and
Garling dual of a sequence space, respectively.
For to give the alpha-, beta- and gamma-duals of the spaces b’ (p), b’ (p) and b™(p) of non-absolute type, we need the following lemma:

Lemma 4.1. [10, g, = 1] Let A = (ay;) be an infinite matrix. Then, the following statements hold

() A€ (co(p): €(q)) if and only if

sup Z

KeZ n

Z ankM—l/l’k
kek

<o, IMEN,. 4.2)

(i) A € (c(p): €(q)) if and only if (4.2) holds and

L

n

< oo, (4.3)

Zank
k

(iii) A € (co(p) : c(g)) if and only if

supZ|a,,k|M71/‘"k < oo, IM € Ny, (4.4)

neN

F(oy) CR> lgn |k — 0| =0 forall k € N, 4.5)
n—soo

J(og) CROsup Y [a — o |M /P < o, IM EN,. (4.6)
neN

@iv) A € (c(p):c(q)) if and only if (4.4), (4.5), (4.6) hold and

Ja€R> lim ;ankfoc =0. .7
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(V) A€ (co(p) : beslg)) if and only if

sup2|ank|M71/pk < oo, AM € Nj. (4.8)
neN

(vi) A € (c(p) : lw(q)) if and only if (4.8) holds and

Z Ank
k

(vii) A € ((p): ¢y) if and only if
(@) Let 0 < pp <1 forallk € N. Then

Pk
Z An

< oo, (4.10)
neN

<oo, M EN,. (4.9)

sup
n

sup sup
NeZ keN

(b) Let 1 < pp < H < oo forall k € N. Then, there exists an integer M > 1 such that
P
< o, 4.11)

Z ankal

neN

sup Z

NeZF |

Lemma 4.2. [17] Let A = (a,) be an infinite matrix. Then, the following statements hold
(i) A€ (Up): L) if and only if
(a) Let 0 < py <1 forallk€N. Then,

sup | |P* < oo. (4.12)
nkeN

(b) Let 1 < pp < H < ooforall k € N. Then, there exists an integer M > 1 such that

’

supz ankal h < oo, (4.13)
neN g
(i) Let 0 < py <H < oo forallk € N. Then, A= (ay) € ({(p) : ¢) if and only if (4.12) and (4.13) hold, and
lim a,; = B, Vk € N. (4.14)
n—soo

Theorem 4.3. Let K € .7 and K* = {k € N:n >k} NK for K € . Define the sets T{ (p), Ty, T3(p) and T4(p) as follows:
Tl(p)—U{a—(ak)EW:supZ <°°},

Z anMil/pk
M>1 KeZ n
exists for each n € N} ,

keK*

n
Z Cnk

k=0

Tzz{az(ak)Ew:Z

n

P
B(p)=|J {a=(a) ew: sup ) <eo, o,

M>1 NeZF k

Z Cnk

neN

Z anMil

neN
Pk
< m} ,
where the matrix C = (¢, ) defined by

1yn ny(_ J\n—k k
an:{ r"zk:O(k>( g) (s+r) An ) 2§s§n7 (415)

Ty(p) =< a=(a;) Ew: sup sup
NeF keN

Then, [bg’(p)]* = Ti(p), [b&* (p)]* = Ti(p) N T2 and

s a __ T3(p) 1<kaH<°°:Vk€N7
™ (p)] *{ Tu(p)  O0<pi<l1vkeN. (4.16)

Proof. We chose the sequence a = (a) € w. We can easily derive that with the (2.2) that

n
win= i ¥ () 94 o = (© rem) @1
for all k,n € N, where C = (¢, ) defined by (4.15). It follows from (4.17) that ax = (ax,) € {1 whenever x € b(r)’s(p) if and only if Cy € ¢;
whenever y € co(p). This means that a = (a,) € [b;" (p)]* if and only if C € (co(p) : £1). Then, we derive by (4.2) with g, = 1 foralln € N
that 6 ()] = T (p).

Using the (4.3) with ¢, = 1 for all n € N and (4.17), the proof of the [b¢"(p)]% = T} (p) N T; can also be obtained in a similar way. Also,
using the (4.10),(4.11) and (4.17), the proof of the

[br,S(p)]a: T3(p) 1<pr<H<o,VkeN,
T4(p) O0<pr<LVkeN,

can also be obtained in a similar way. O
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Theorem 4.4. The matrix D = (dy.) is defined by

dy = { (D (=) R (rs)ka; , (0<k<n) (4.18)
0 , (k>n)

for all k,n € N. Define the sets Ts(p), Ty, T7(p), T3, To(p), Tio and T11(p) as follows:

M>1 neNg—0

n
15() = | {a: (@) €w: sup Y [dy M 1/7 <oo},
T = {a = (ay) ew: 1211 |dyi| exists for each k € N},
fraresy

n
T(p) = U {a(ak) ew:3(og) CRSsup Y |y — oy M1/ <°°},
M>1 néNkZO

n
Ty = {a = (ag) ew: ’}gr;k:ZO|dnk| exists },

n(p) = U {a=<ak>6w:sup):

!
1P
dyM 1‘ <o,
M>1 neN

Ty = {a =(ar) ew: lign dyy, exists for each k € N} ,
et

Ti(p) = {a = (ax) €w: sup |dy|™ < °°}-
n.keN

Then, [by’ (p)IP = Ts(p) N T N Ty (p), (b (p)IP = [bg’ (p)1P N Tg and

To(p)NT, l1<py<H<oVkeN
s B _ 9P 10 P Pk > 5 5
b (p)] _{ TioNTi(p) , O0<pr<LVkeN (“-19)

Proof. We give the proof again only for the space b(r)’s (p). Consider the equation

n n k . .
Y ai =Y, Ll" X (k) (=5 s+,

a
k=0 =0 |" j=0\J ¢
=) {Z (é)(*S)j_kr_j (r+9)a; | yi = (Dy)n, (4.20)
k=0 |j=k

where D = (d,) defined by (4.18). Thus, we deduce from (4.20) that ax = (ax) € cs whenever x = (x) € b*(p) if and only if Dy € ¢
whenever y = (y;) € co(p). That is to say that a = (a;) € [b’(p)]P if and only if D € (co(p) : ¢). Therefore, we derive from (4.4),(4.5) and
(4.6) with g, = 1 for all n € N that [b(r)’s(p)]ﬁ =T5(p) NTsNT7(p).

Using the (4.4),(4.5), (4.6) and (4.7) with g, = 1 for all n € N and (4.20), the proofs of the [b}* (p)]? = b5’ ( )] N T can also be obtained
in a similar way. Also, using the (4.12),(4.13), (4.14) and (4.20), the proofs of the

[br,s(p)]ﬁ _ Tg(p)ﬂTlo , 1<pr<H<oVkeEN,
TioNTi(p) . 0<pr<1,VkeN

can also be obtained in a similar way. O

<m}.

Then, [by’ (p)]” = T5(p). [b* (p)]” = [bg” (p)]' N Ti2 and

Theorem 4.5. Define the set Ti» by

Ty = {a: (ag) € w:sup
n

Z Anj
k

[br,s(p)]y: Tg(p) , I<pp<H< oo, Vk € N,
Tio(p) , O<pr<1VkeN.

Proof. This is obtained in the similar way used in the proof of Theorem 4.4. O
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5. Certain matrix mappings on the sequence spaces b;’ (p), b¢’ (p) and b™(p)

In this section, we characterize some matrix mappings on the spaces by’ (p), b¢* (p) and b™(p).

We known that, if b;*(p) = co(p), be’ (p) = ¢(p) and b™*(p) = £(p), we can say: The equivalence “x € by’ (p),b¢" (p) or b"*(p) if and only
ify € co(p),c(p) or £(p)” holds.

In what follows, for brevity, we write,

n H . .
A = Z (/J() (—s)f_kr_f(r—i—s)ka,,j
=k
for all k,n € N.

Theorem 5.1. Suppose that the entries of the infinite matrices A = (ay) and E = (e ) are connected with the relation

enke = A 5.1
forall k,n € N and 1 be any given sequence space. Then,

() A€ (b (p): 1) if and only if {a Juen € {0 (p)}P for all n € N and E € (co(p) : o)

(i) A € (B (p) : 1) if and only if {a yuers € {65 (p)}P for alln € N and E € (c(p) : ).
(iii) A € (b™(p): u) if and only if {an tren € {0 (p)}P foralln e N and E € (£(p) : u).

Proof. We prove only part of (i). Let it be any given sequence space. Suppose that (5.1) holds between A = (a,;) and E = (e,,;), and take
into account that the spaces b’ (p) and co(p) are linearly isomorphic.

Let A € (by'(p) : 1) and take any y = (yi) € co(p). Then EB™ exists and {au }ren € T5(p) N Tg which yields that {e, }xen € co(p) for
each n € N. Hence, EYy exists and thus

Z nkVk = Z AnjeXk
k k

foralln € N.

We have that Ey = Ax which leads us to the consequence E € (co(p) : ).

Conversely, let {a, }xen € {b’(p)}P for each n € Nand E € (co(p) : ) hold, and take any x = (x) € b5°(p). Then, Ax exists. Therefore,
we obtain from the equality

k .
¥ (1) it Uay |y

j=0

Z axi = Y,

k=0

for all n € N, that Ey = Ax and this shows that A € (b;’ (p) : it). This completes the proof of part of (i). O

Theorem 5.2. Suppose that the elements of the infinite matrices A = (a,;) and B = (b,y) are connected with the relation

1 on\
b"k::m;;) (j)s” Irlaj for all k,n € N, (5.2)

Let u be any given sequence space. Then,

(i) A€ (u:bg’(p)) ifand only if B € (u co(p))-
(i) A€ (u:b2(p))ifand only if B€ (1 c(p)).
(i) A € (u:b"(p)) ifand onlyif B€ (1 : {(p)).

Proof. We prove only part of (i). Let z = (z;) € 1 and consider the following equality.

m ) .
J n+1
buzk = ( )(1 aize | forallmneN

which yields as m — oo that (Bz), = {B"*(Az)}, for all n € N. Therefore, one can observe from here that Az € by’ (p) whenever z €  if and
only if Bz € co(p) whenever z € pt. This completes the proof of part of (i). O

Of course, Theorems 5.1 and 5.2 have several consequences depending on the choice of the sequence space (1. Whence by Theorem 5.1 and
Theorem 5.2, the necessary and sufficient conditions for (b’ (p) : i), (i : by' (p)), (bZ° (p) = 1), (1 : b¢* (p)) and (b™(p) = ), (1 : b (p))
may be derived by replacing the entries of C and A by those of the entries of E = C{B"* }f1 and B = B"*A, respectively; where the necessary
and sufficient conditions on the matrices E and B are read from the concerning results in the existing literature.

The necessary and sufficient conditions characterizing the matrix mappings between the sequence spaces of Maddox are determined by
Grosse-Erdmann [10]. Let N and K denote the finite subset of N, L and M also denote the natural numbers. Prior to giving the theorems, let
us suppose that (g,) is a non-decreasing bounded sequence of positive numbers and consider the following conditions:

lim|a,;|? = 0, for all k. (5.3)
n
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VL, 3M 5 supLV/ 4 Y |a|M VP < oo, (5.4)
n k
lim | ;ankrf" =0, (5.5)
VL, sup sup ankLl/q"‘P " < oo, (5.6)
n kek,
VL,3M > sup ¥ Ja L9 M~ Pk < oo, (5.7
n kek,
qn
VM, lim <Z anle/pk> =0, (5.8)
n k
VM, sup Y || M /P < oo, (5.9)
nok
qn
VM, supY | Y auM'/Pe| < oo, (5.10)
K "n |kek

Lemma 5.3. Let A = (ay,y) be an infinite matrix. Then

(@) A= (an) € (co(p) : l(q)) if and only if (4.8) holds.

(i) A = (an) € (c(p) : lw(q)) if and only if (4.8) and (4.9) hold.

(iii) A = (au) € (U(p) : L) if and only if (4.12) and (4.13) hold.

(iv) A= (an) € (co(p) : c(q)) if and only if (4.4), (4.5) and (4.6) hold.

(V) A= (ay) € (c(p) : c(q)) if and only if (4.4), (4.5), (4.6) and (4.7) hold.
(vi) A= (an) € (U(p) : c) if and only if (4.12), (4.13) and (4.14) hold.
(vii) A = (au) € (co(p) : colq)) if and only if (5.3) and (5.4) hold.

(viii) A = (ay) € (c(p) : co(q)) if and only if (5.3), (5.4) and (5.5) hold.
(ix) A= (au) € (U(p) :colq)) if and only if (5.3), (5.6) and (5.7) hold.

(x) A= (an) € (leo(p) : co(q)) if and only if (5.8) holds.

(xi) A= (an) € (l=(p) : c(q)) if and only if (5.9) holds.
(xii) A = (au) € (leo(p) : £(q)) if and only if (5.10) holds.
U(q)) if and only if (4.2) holds.

(xiii) A= (au) € (co(p):

(xiv) A = (ay) € (c(p) : €(q)) if and only if (4.2) and (4.4) hold.

Corollary 5.4. Let A = (a) be an infinite matrix. The following statements hold.:

(i) A € (bg*(p) : lw(q)) if and only if {ay }ren € {b(r)‘s(p)}ﬁ for all n € N and (4.8) holds with ay, instead of a,;, with g = 1.

(i) A€ (b(r)’s(p) 1 co(q)) if and only if {an }ren € {b(r)’s(p)}ﬁ foralln € N and (5.3) and (5.4) hold with a,, instead of a,, with g = 1.

(iii) A € (by'(p):c(q)) if and only if {an }ren € {b(r)’s(p)}ﬁ foralln € N and (4.4), (4.5) and (4.6) hold with G, instead of ayy, with ¢ = 1.

Corollary 5.5. Let A = (a) be an infinite matrix. The following statements hold:

() A€ (b2 (p): le(q)) if and only if {an tren € {b2° (p)}P for all n € N and (4.8) and (4.9) hold with a,y, instead of ay with g = 1.

(ii) A€ (b7 (p): colq)) if and only if {a ren € {be*(p)}P for all n € N and (5.3), (5.4) and (5.5) hold with @y instead of ay;, with g = 1.

(iii) A € (bZ*(p):c(q)) if and only if {aw xen € {b2*(p)}P for all n € N and (4.4), (4.5), (4.6) and (4.7) hold with dyy instead of ay with
q=1

Corollary 5.6. Let A = (ay) be an infinite matrix. The following statements hold:

(i) A€ (b(p): L) if and only if {ap }ken € {b™ (p)}P for all n € N and (4.12) and (4.13) hold with @y, instead of ayy.

(i) A€ (b (p) : colq)) if and only if {aw xen € {b™*(p)}P for all n € N and (5.3), (5.6) and (5.7) hold with @y instead of ay; with g = 1.

(iii) A € (b™*(p):c) ifand only if {a }ren € {b™(p)}P for all n € N and (4.12), (4.13) and (4.14) hold with dy instead of ayy.

Corollary 5.7. Let A = (au) be an infinite matrix and b,y be defined by (5.2). Then, following statements hold:

(i) A € (lou(q) : by’ (p)) if and only if (5.8) holds with by, instead of an with g = 1.

(i) A € (co(q): b(r)t( )) if and only if (5.3) and (5.4) hold with by instead of a,, with g = 1.

(iii) A€ (c(q):b ( )) if and only if (5.3), (5.4) and (5.5) holds with b, instead of a,; with g = 1.

Corollary 5.8. LetA = (ank) be an infinite matrix and b, be defined by (5.2). Then, following statements hold:

() A€ (lu(q): bzs( ) if and only if (5.9) holds with by instead of ay with g = 1.

(i) A € (co(q) : b°(p)) if and only if (4.4), (4.5) and (4.6) hold with by, instead of ay, with q = 1.

(i) A € (c(q): b2’ (p)) if and only if (4.4), (4.5), (4.6) and (4.7) hold with by instead of a,y, with q = 1.

Corollary 5.9. Let A = (ay) be an infinite matrix and by, be defined by (5.2). Then, following statements hold:

(i) A € (bo(q) : b"°(p)) if and only if (5.10) holds with by, instead of ayy with g = 1.

(i) A € (co(q) : D™ (p)) if and only if (4.2) holds with by, instead of a; with g = 1.

(iii) A € (c(q) : b"*(p)) if and only if (4.2) and (4.4) hold with by, instead of ay, with g = 1.

—
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