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A study of the quasi covering dimension for �nite
spaces through the matrix theory

D. N. Georgiou∗†, A. C. Megaritis‡ and F. Sereti�

Abstract

We use matrices to study the dimension function dimq, calling quasi
covering dimension, for �nite topological spaces, which is always greater
than or equal to the classical covering dimension dim. In particular,
we present algorithms in order to compute the dimq(X) of an arbitrary
�nite topological space X.

Keywords: Covering dimension, quasi covering dimension, quasi cover, dense
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1. Preliminaries and notations

In this section we recall the notion of the topological covering dimension. We
refer to [3, 6] for more details.

A cover of a topological space X is a non-empty set of subsets of X, whose
union is X. A cover c of X is said to be open (closed) if all elements of c are open
(closed). A family r of subsets of X is said to be a re�nement of a family c of
subsets of X if each element of r is contained in an element of c.

In what follows, we consider two symbols, �−1" and �∞", for which we suppose
that:

(1) −1 < k <∞ for every k ∈ {0, 1, . . .}.
(2) ∞+k = k+∞ =∞, −1+k = k+(−1) = k for every k ∈ {0, 1, . . .}∪{−1,∞}.
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We de�ne the order of a family r of subsets of a space X as follows:

(a) ord(r) = −1 if and only if r consists the empty set only.

(b) ord(r) = k, where k ∈ {0, 1, . . .}, if and only if the intersection of any k + 2
distinct elements of r is empty and there exist k + 1 distinct elements of r,
whose intersection is not empty.

(c) ord(r) = ∞, if and only if for every k ∈ {1, 2, . . .} there exist k distinct
elements of r, whose intersection is not empty.

We denote by dim the function, calling covering dimension, with domain the
class of all topological spaces and range the set {0, 1, . . .}∪{−1,∞}, satisfying the
following conditions:

(1) dim(X) 6 k if and only if for every �nite open cover c of the space X there
exists a �nite open cover r of X, re�nement of c, such that ord(r) 6 k.

(2) dim(X) = k, if dim(X) 6 k and dim(X) 
 k − 1.

(3) dim(X) =∞, if dim(X) 6 k does not hold for every k = −1, 0, 1, 2, . . .

In study [5], we insert a topological dimension, calling quasi covering dimension
and we prove that it is always greater than or equal to the classical covering
dimension.

1.1. De�nition. [5] A quasi cover of X is a non-empty set of subsets of X, whose
union is dense in X. A quasi cover c of X is said to be open if all elements of c are
open in the space X. Moreover, two quasi covers c1 and c2 are said to be similar
(in short c1 ∼ c2) if their unions are the same dense subset of X.

For every topological space X the relation ∼ is an equivalence relation on the
set of all quasi covers of X. The collection of all equivalence classes under ∼ will
be denoted by QC(X,∼).

1.2. De�nition. [5] We denote by dimq the function, calling quasi covering
dimension, with domain the class of all topological spaces and range the set
{0, 1, . . .} ∪ {−1,∞}, satisfying the following conditions:

(1) dimq(X) 6 k if for every �nite open quasi cover c of X there exists a �nite
open quasi cover r ofX such that r ∼ c, r is a re�nement of c, and ord(r) 6 k.

(2) dimq(X) = k if dimq(X) 6 k and dimq(X) 66 k − 1.

(3) dimq(X) =∞ if dimq(X) 6 k does not hold for every k = −1, 0, 1, 2, . . .

In this paper we shall consider only �nite topological spaces. Let

X = {x1, x2, . . . , xn}
be a �nite topological space and let Ui be the smallest open subset of X which
contains the point xi, for i = 1, 2, . . . , n. We give some notations which will be
used in the rest of our study (see [1, 2]).

The n× n matrix TX = (tij), where

tij =

{
1, if xi ∈ Uj

0, otherwise

is called the incidence matrix of the space X. We denote by c1, c2, . . . , cn the n
columns of the matrix TX and by 1 the n × 1 matrix which has all the elements
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equal to one, that is

1 =


1
1
...
1

 .

Let i1, i2, . . . , im be distinct elements of the set {1, . . . , n}. By ai1i2···im and
bi1i2···im we denote respectively the n× 1 matrices

ai1i2···im =


a1i1i2···im
a2i1i2···im

...
ani1i2···im

 and bi1i2···im =


b1i1i2···im
b2i1i2···im

...
bni1i2···im

 ,

where

aii1i2···im =

{
1, if i ∈ {i1, i2, . . . , im}
0, otherwise

and

bii1i2···im =

{
0, if tii1 = tii2 = . . . = tiim = 0

1, otherwise.

Let

ci =


c1i
c2i
...
cni

 and cj =


c1j
c2j
...
cnj


be two n × 1 matrices. Then, by max(ci) we denote the maximum of the set
{c1i, c2i, . . . , cni} and by ci + cj the n× 1 matrix

ci + cj =


c1i + c1j
c2i + c2j

...
cni + cnj

 .

Also, we write ci 6 cj if only if csi 6 csj , for each s = 1, . . . , n.
The rest of the paper is organized as follows. In section 2 we give an algorithm

to compute the dimension dimq of a space X through a characterization of open
and dense subsets of X. In section 3 we present a new algorithm to compute the
dimension dimq using the notion of quasi covers. Finally, in section 4 we present
remarks concerning to this dimension.

2. An algorithm to compute the dimension dimq(X) through a

characterization of open and dense subsets of X

In this section we are going to characterize the open and dense subsets of a
�xed �nite topological space X = {x1, x2, . . . , xn} using matrices.
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2.1. Proposition. Let i1, . . . , im be distinct elements of the set {1, . . . , n}. Then,
{xi1 , . . . , xim} = Uj1 ∪ . . . ∪Ujl , for some j1, . . . , jl ∈ {i1, . . . , im} if and only if
ai1i2···im = bj1j2···jl .

Proof. Let {xi1 , . . . , xim} = Uj1 ∪ . . . ∪ Ujl , for some j1, . . . , jl ∈ {i1, . . . , im}.
We prove that ai1i2···im = bj1j2···jl . For every i ∈ {1, . . . , n} in the i-row of these
matrices we have the following cases:

(1) aii1i2···im = 1⇔ i ∈ {i1, . . . , im} ⇔ xi ∈ {xi1 , . . . , xim}
⇔ there exists r ∈ {1, . . . , l} such that xi ∈ Ujr

⇔ tijr = 1⇔ bij1j2···jl = 1.

(2) aii1i2···im = 0⇔ i /∈ {i1, . . . , im} ⇔ xi /∈ {xi1 , . . . , xim}
⇔ xi /∈ Ujr , for each r ∈ {1, . . . , l}
⇔ tijr = 0, for each r ∈ {1, . . . , l} ⇔ bij1j2···jl = 0.

We conclude that ai1i2···im = bj1j2···jl .
Conversely, assume that ai1i2···im = bj1j2···jl , for some j1, . . . , jl ∈ {i1, . . . , im}.

We prove that {xi1 , . . . , xim} = Uj1 ∪ . . . ∪ Ujl . Let i ∈ {i1, . . . , im}. Then,
aii1i2···im = 1. By assumption, bij1j2···jl = 1. Therefore, there exists r ∈ {1, . . . , l}
such that tijr = 1 or equivalently xi ∈ Ujr . Hence, {xi1 , . . . , xim} ⊆ Uj1∪. . .∪Ujl .
Let xi ∈ Uj1 ∪ . . . ∪ Ujl . Then, there exists r ∈ {1, . . . , l} such that xi ∈ Ujr

or equivalently tijr = 1. Thus, bij1j2···jl = 1. By assumption, aii1i2···im = 1 and,
therefore, xi ∈ {xi1 , . . . , xim}. Hence, Uj1 ∪ . . . ∪ Ujl ⊆ {xi1 , . . . , xim}. Thus,
{xi1 , . . . , xim} = Uj1 ∪ . . . ∪Ujl . �

2.2. Corollary. Let i1, . . . , im be distinct elements of the set {1, . . . , n}. Then,
{xi1 , . . . , xim} = Uir , for some r ∈ {1, . . . ,m} if and only if ai1i2···im = cir .

Proof. Follows from Proposition 2.1 and by the fact that bir = cir , for every
r ∈ {1, . . . ,m}. �

2.3. Proposition. Let j1, . . . , jl be distinct elements of the set {1, . . . , n}. The
set Uj1 ∪ . . . ∪Ujl is dense in X if and only if max(bj1j2···jl + cj) = 2, for each
j ∈ {1, . . . , n} \ {j1, . . . , jl}.

Proof. Suppose thatUj1∪. . .∪Ujl is dense inX and let j ∈ {1, . . . , n}\{j1, . . . , jl}.
We set k = max(bj1j2···jl + cj) and prove that k = 2. Clearly, k > 0 and by
the de�nitions of the matrices TX and bj1j2···jl we have that either k = 1 or
k = 2. Since Uj1 ∪ . . . ∪Ujl is dense in X, there exists q ∈ {1, . . . , l} such that
Ujq ∩Uj 6= ∅. Therefore, ti0jq = ti0j = 1, for some i0 ∈ {1, . . . , n}, which means

that bi0j1j2···jl + ti0j = 1 + 1 = 2. Thus, k = 2.

Conversely, let max(bj1j2···jl + cj) = 2, for each j ∈ {1, . . . , n} \ {j1, . . . , jl}.
We shall prove that the set Uj1 ∪ . . . ∪Ujl is dense in X. Assume that the set
Uj1 ∪ . . .∪Ujl is not dense in X. Then, there exists an open set U in X such that

U ∩ (Uj1 ∪ . . . ∪Ujl) = ∅.(2.1)

Therefore, there exists µ ∈ {1, . . . , n} such that Uµ ⊆ U and xµ /∈ Uj1 ∪ . . .∪Ujl .
Hence, µ /∈ {j1, . . . , jl}. Since max(bj1j2···jl + cµ) = 2, there exists i0 ∈ {1, . . . , n}
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such that bi0j1j2···jl = ti0µ = 1. Thus, xi0 ∈ Ujq ∩Uµ, for some q ∈ {1, . . . , l}, which
contradicts the relation (2.1). �

Since for every open subset U = {xi1 , . . . , xim} of X there exist elements
j1, . . . , jl ∈ {i1, . . . , im} such that U = Uj1 ∪ . . . ∪ Ujl , from Propositions 2.1
and 2.3 we have the following corollary.

2.4. Corollary. Let i1, . . . , im be distinct elements of the set {1, . . . , n}. Then,
the set {xi1 , . . . , xim} is open and dense in X if and only if the following conditions
hold:

(1) There exist j1, . . . , jl ∈ {i1, . . . , im} such that ai1i2···im = bj1j2···jl .

(2) max(bj1j2···jl + cj) = 2, for each j ∈ {1, . . . , n} \ {j1, . . . , jl}.

2.5. Example. Let X = {x1, x2, x3, x4, x5}. We consider on X the topology
which has as a basis the family {{x1}, {x1, x2}, {x1, x3}, {x1, x4}, {x1, x3, x4, x5}}.
The incidence matrix TX of X is the 5× 5 matrix

TX =


1 1 1 1 1
0 1 0 0 0
0 0 1 0 1
0 0 0 1 1
0 0 0 0 1

 ,

where U1 = {x1}, U2 = {x1, x2}, U3 = {x1, x3}, U4 = {x1, x4} and U5 =
{x1, x3, x4, x5}.

For the subset {x1} of X we have

a1 =


1
0
0
0
0

 = b1 = c1.

Hence, this set is open in X and by Corollary 2.2 we have that {x1} = U1.
Moreover,

b1 + c2 =


2
1
0
0
0

 , b1 + c3 =


2
0
1
0
0

 , b1 + c4 =


2
0
0
1
0

 , b1 + c5 =


2
0
1
1
1

 .

Therefore, max(b1 + cj) = 2, for j = 2, 3, 4, 5. By the Corollary 2.4 we have that
the set {x1} is open and dense in X.

For the subset {x2, x3} of X we have

a23 =


0
1
1
0
0

 .
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Since a23 6= b2 =


1
1
0
0
0

, a23 6= b3 =


1
0
1
0
0

, a23 6= b23 =


1
1
1
0
0

, by Proposition
2.1 the set {x2, x3} is not open in X.

For the subset {x1, x3, x4} of X we have

a134 =


1
0
1
1
0

 = b34.

Hence, this set is open in X and by Proposition 2.1 we have that {x1, x3, x4} =
U3 ∪U4. Moreover,

b34 + c1 =


2
0
1
1
0

 , b34 + c2 =


2
1
1
1
0

 , b34 + c5 =


2
0
2
2
1

 .

Therefore, max(b34 + cj) = 2, for j = 1, 2, 5. By the Corollary 2.4 we have that
the set {x1, x3, x4} is open and dense in X.

2.6. Proposition. [5] For the space X we have

dimq(X) = max{dim(D) : D is an open and dense subset of X}.

From Corollary 2.4 we get the following proposition.

2.7. Proposition. The quasi covering dimension dimq(X) is equal to the maxi-
mum of all dim({xi1 , . . . , xim}) with the properties:

(1) There exist j1, . . . , jl ∈ {i1, . . . , im} such that ai1i2···im = bj1j2···jl .

(2) max(bj1j2···jl + cj) = 2, for each j ∈ {1, . . . , n} \ {j1, . . . , jl}.

In the study [2] it was presented an algorithm of polynomial order for comput-
ing the covering dimension of the space X = {x1, . . . , xn}. More precisely, the
algorithm consists of the following n− 1 steps:

2.8. Algorithm.

Step 1: Read the n columns c1, . . . , cn of the incidence matrix TX of X. If some
column is equal to 1, then print dim(X) = 0. Otherwise, go to Step 2.

Step 2: Find the sums cj11 + cj21 + . . .+ cj(n−1)1
, for each

{j11, j21, . . . , j(n−1)1} ⊆ {1, . . . , n}.
If there exists {j011, j021, . . . , j0(n−1)1} ⊆ {1, . . . , n} such that

cj011 + cj021 + . . .+ cj0
(n−1)1

> 1,

then go to Step 3. Otherwise, print

dim(X) = max(c1 + c2 + . . .+ cn)− 1.
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Step 3: Find the sums cj12 + cj22 + . . .+ cj(n−2)2
, for each

{j12, j22, . . . , j(n−2)2} ⊆ {j011, j021, . . . , j0(n−1)1}.

If there exists {j021, j022, . . . , j0(n−2)2} ⊆ {j
0
11, j

0
21, . . . , j

0
(n−1)1} such that

cj012 + cj022 + . . .+ cj0
(n−2)2

> 1,

then go to Step 4. Otherwise, print

dim(X) = max(cj011 + cj021 + . . .+ cj0
(n−1)1

)− 1.

. . .

. . .

. . .

Step n− 2: Find the sums cj1(n−3)
+ cj2(n−3)

+ cj3(n−3)
, for each

{j1(n−3), j2(n−3), j3(n−3)} ⊆ {j01(n−4), j
0
2(n−4), j

0
3(n−4), j

0
4(n−4)}.

If there exists {j01(n−3), j
0
2(n−3), j

0
3(n−3)} ⊆ {j

0
1(n−4), j

0
2(n−4), j

0
3(n−4), j

0
4(n−4)} such

that

cj0
1(n−3)

+ cj0
2(n−3)

+ cj0
3(n−3)

> 1,

then go to Step n− 1. Otherwise, print

dim(X) = max(cj0
1(n−4)

+ cj0
2(n−4)

+ cj0
3(n−3)

+ cj0
4(n−4)

)− 1.

Step n− 1: Find the sums cj1(n−2)
+ cj2(n−2)

, for each

{j1(n−2), j2(n−2)} ⊆ {j01(n−3), j
0
2(n−3), j

0
3(n−3)}.

If there exists {j01(n−2), j
0
2(n−2)} ⊆ {j

0
1(n−3), j

0
2(n−3), j

0
3(n−3)} such that

cj0
1(n−2)

+ cj0
2(n−2)

> 1,

then print

dim(X) = max(cj0
1(n−2)

+ cj0
2(n−2)

)− 1.

2.9. Remark. It was proved that an upper bound on the number of iterations of
the Algorithm 2.8 is 1

2n
2 + 3

2n− 3.

Now, we are going to give an algorithm for computing the quasi covering di-
mension of the space X = {x1, . . . , xn}.
2.10. Algorithm.

Step 0: Read the n columns c1, . . . , cn of the incidence matrix TX of X.

Step 1: Find k1 = dim(X) (Algorithm 2.8).

Step 2: Find the set P1 of all subsets {i11, . . . , i(n−1)1} of {1, . . . , n} with the
properties:

(1) There exist j11, . . . , jl1 ∈ {i11, . . . , i(n−1)1} such that
ai11i21···i(n−1)1

= bj11j21···jl1 .

(2) max(bj11j21···jl1 + cj) = 2, for each j ∈ {1, . . . , n} \ {j11, . . . , jl1}.
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If P1 = ∅, then put k2 = 0 and go to the step 3. Otherwise, use Algorithm 2.8 to
�nd

k2 = max({dim({xi11 , . . . , xi(n−1)1
}) : {i11, . . . , i(n−1)1} ∈ P1})

and go to the Step 3.

Step 3: Find the set P2 of all subsets {i12, . . . , i(n−2)2} of {1, . . . , n} with the
properties:

(1) There exist j12, . . . , jl2 ∈ {i12, . . . , i(n−2)2} such that
ai12i22···i(n−2)2

= bj12j22···jl2 .

(2) max(bj12j22···jl2 + cj) = 2, for each j ∈ {1, . . . , n} \ {j12, . . . , jl2}.
If P2 = ∅, then put k3 = 0 and go to the step 4. Otherwise, use Algorithm 2.8 to
�nd

k3 = max({dim({xi12 , . . . , xi(n−2)2
}) : {i12, . . . , i(n−2)2} ∈ P2})

and go to the Step 4.

. . .

. . .

. . .

Step n: Find the set Pn−1 of all subsets {i1(n−1)} of {1, . . . , n} with the property
ai1(n−1)

= bi1(n−1)
= ci1(n−1)

. If Pn−1 = ∅, then put kn = 0 and go to the step
n+ 1. Otherwise, use Algorithm 2.8 to �nd

kn = max(dim({xi1(n−1)
}) : {i1(n−1)} ∈ Pn−1)

and go to the Step n+ 1.

Step n+ 1: Print dimq(X) = max{k1, k2, . . . , kn}.

2.11. Example. Let X be the space of Example 2.5. We use Algorithm 2.10 to
compute dimq(X).

Step 0. The 5 columns of the incidence matrix TX are

c1 =


1
0
0
0
0

 , c2 =


1
1
0
0
0

 , c3 =


1
0
1
0
0

 , c4 =


1
0
0
1
0

 , c5 =


1
0
1
1
1

 .

Step 1. Using Algorithm 2.8 we �nd k1 = dim(X) = 1.

Step 2. We have P1 = {{1, 2, 3, 4}, {1, 3, 4, 5}}. Using Algorithm 2.8 we �nd
dim({x1, x2, x3, x4}) = 2 and dim({x1, x3, x4, x5}) = 0. Therefore, k2 = 2.

Step 3. We have P2 = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}}. Using Algorithm 2.8 we �nd
dim({x1, x2, x3}) = dim({x1, x2, x4}) = dim({x1, x3, x4}) = 1. Therefore, k3 = 1.

Step 4. We have P3 = {{1, 2}, {1, 3}, {1, 4}}. Using Algorithm 2.8 we �nd
dim({x1, x2}) = dim({x1, x3}) = dim({x1, x4}) = 0. Therefore, k4 = 2.

Step 5. We have P4 = {{1}}. Using Algorithm 2.8 we �nd dim({x1}) = 0.
Therefore, k5 = 0.

Step 6. Print dimq(X) = max{k1, k2, k3, k4, k5} = 2.
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3. An algorithm to compute the dimension dimq(X) using the no-

tion of quasi cover

In what follows, we consider a �xed �nite topological spaceX = {x1, x2, . . . , xn}.
For every c ∈ QC(X,∼) we denote by c(X) the set of all subsets {xi1 , . . . , xim}
of X such that the family {Ui1 , . . . ,Uim} ∈ c. Also by �c we de�ne a relation on
the set c(X) as follows:

{xi1 , . . . , xim1
} �c {xi′1 , . . . , xi′m2

}

if and only if
{Ui1 , . . . ,Uim1

} ⊆ {Ui′1
, . . . ,Ui′m2

}.
This relation is a preorder on the set c(X).

3.1. De�nition. Let c ∈ QC(X,∼). Every minimum element of (c(X),�c) is
called a c-minimal family.

3.2. Remark. (1) For the �nite topological space X and for every c ∈ QC(X,∼)
there exist c-minimal families on the set c(X) (see Proposition 3.4).
(2) If {xi1 , . . . , xim1

} and {xi′1 , . . . , xi′m2
} are two c-minimal families, for some

c ∈ QC(X,∼) then {Ui1 , . . . ,Uim1
} = {Ui′1

, . . . ,Ui′m2
}.

(3) It is known that a �nite space X is T0 if and only if Ui = Uj implies xi = xj
for every i, j. We note that, if the �nite space X is T0, then the relation �c is an
order. Also, in this case there exists exactly one minimal family on the set c(X).

3.3. Proposition. Let c ∈ QC(X,∼). If the family {xi1 , . . . , xim} ∈ c(X) is
not a c-minimal family, then there exist i′1, . . . , i

′
m−1 ∈ {i1, . . . , im} such that

{xi′1 , . . . , xi′m−1
} ∈ c(X).

Proof. Suppose that the family {xi1 , . . . , xim} ∈ c(X) is not c-minimal. Then,
there exists {xr1 , . . . , xrµ} ∈ c(X) such that {xi1 , . . . , xim} �c {xr1 , . . . , xrµ} or
equivalently {Ui1 , . . . ,Uim} * {Ur1 , . . . ,Urµ}. Let α ∈ {1, . . . ,m} such that
Uiα /∈ {Ur1 , . . . ,Urµ}. Since {Ur1 , . . . ,Urµ} ∈ c, there exists β ∈ {1, . . . , µ} such
that xiα ∈ Urβ . By the fact that Uiα is the smallest open set of X containing
the point xiα we have that Uiα ⊆ Urβ . Also, since Uiα /∈ {Ur1 , . . . ,Urµ}, we
have Uiα 6= Urβ . Therefore, Uiα ⊂ Urβ . Since {Ui1 , . . . ,Uim} ∈ c, there exists
γ ∈ {1, . . . ,m} such that xrβ ∈ Uiγ . By the fact that Urβ is the smallest open set
of X containing the point xrβ we have that Urβ ⊆ Uiγ . Hence, Uiα ⊂ Uiγ and,
therefore, the family {Ui1 , . . . ,Uim} \ {Uiα} ∈ c has m− 1 elements. �

3.4. Proposition. Let c ∈ QC(X,∼),
ν = min{m ∈ {1, 2, . . .} : there exist j1, . . . , jm such that {xj1 , . . . , xjm} ∈ c(X)},
and {xj1 , . . . , xjν} ∈ c(X). Then, {xj1 , . . . , xjν} is a c-minimal family.

Proof. Suppose that the family {xj1 , . . . , xjν} is not c-minimal. By Proposition
3.3, there exists an element of c(X) with ν − 1 elements, which is a contradiction
by the choice of ν. �

3.5. Proposition. Let c ∈ QC(X,∼) and {xi1 , . . . , xim} be a c-minimal family.
If ord({Ui1 , . . . ,Uim}) = k > 0, then for every {xr1 , . . . , xrµ} ∈ c(X) we have
ord({Ur1 , . . . ,Urµ}) > k.
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Proof. Let {xr1 , . . . , xrµ} ∈ c(X). Then, {xi1 , . . . , xim} �c {xr1 , . . . , xrµ} and,
therefore, {Ui1 , . . . ,Uim} ⊆ {Ur1 , . . . ,Urµ}. Since ord({Ui1 , . . . ,Uim}) = k, we
have ord({Ur1 , . . . ,Urµ} > k. 2 �

3.6. Proposition. Let k ∈ {0, 1, . . .}. Then, dimq(X) 6 k if and only if for every
c ∈ QC(X,∼) there exists {Ui1 , . . . ,Uim} ∈ c such that ord({Ui1 , . . . ,Uim}) 6 k.

Proof. Let dimq(X) 6 k and c ∈ QC(X,∼). We set

ν = min{m ∈ {1, 2, . . .} : there exist i1, . . . , im such that {Ui1 , . . . ,Uim} ∈ c}

and c = {Ui1 , . . . ,Uiν} ∈ c. Since dimq(X) 6 k, there exists an open quasi cover
r = {V1, . . . , Vµ} of X such that r ∼ c, r is a re�nement of c, and ord(r) 6 k. For
the proof of the proposition it su�ces to prove that c ⊆ r. We suppose that there
exists α ∈ {1, . . . , ν} such that Uiα /∈ r. Since r ∼ c, there exists β ∈ {1, . . . , µ}
such that xiα ∈ Vβ . By the fact that Uiα is the smallest open set of X containing
the point xiα we have that Uiα ⊆ Vβ . Also, since Uiα /∈ r, we have Uiα 6= Vβ .
Therefore, Uiα ⊂ Vβ . Since r is a re�nement of c, there exists γ ∈ {1, . . . , ν} such
that Vβ ⊆ Ujγ . Hence,

Uiα ⊂ Uiγ .

We observe that the family c\{Uiα} ∈ c has ν−1 elements, which is a contradiction
by the choice of ν. Thus, c ⊆ r.

Conversely, suppose that for every c ∈ QC(X,∼) there exists {Ui1 , . . . ,Uim} ∈
c such that ord({Ui1 , . . . ,Uim}) 6 k. We prove that dimq(X) 6 k. Let c be an
arbitrary �nite open quasi cover of the space X. Then, there exists c ∈ QC(X,∼)
such that c ∈ c. Let r = {Ui1 , . . . ,Uim} ∈ c such that ord({Ui1 , . . . ,Uim}) 6 k.
Then, r ∼ c. It su�ces to prove that the open quasi cover {Ui1 , . . . ,Uim} of X is
a re�nement of c. Indeed, since r ∼ c, for each q ∈ {1, . . . ,m} there exists Vq ∈ c
such that xiq ∈ Vq. Hence, Uiq ⊆ Vq, for every q ∈ {1, . . . ,m}. �

3.7. Proposition. Let k ∈ {0, 1, . . .}. Then, dimq(X) 6 k if and only if for
every c ∈ QC(X,∼) there exists a c-minimal family {xj1 , . . . , xjν} such that
ord({Uj1 , . . . ,Ujν}) 6 k.

Proof. Let dimq(X) 6 k and c ∈ QC(X,∼). By Proposition 3.6 there exists
{xi1 , . . . , xim} ∈ c(X) with ord({Ui1 , . . . ,Uim}) 6 k. Let {xj1 , . . . , xjν} ∈ c(X)
be a c-minimal family (see Proposition 3.4). If ord({Uj1 , . . . ,Ujν}) > k, then by
Proposition 3.5, ord({Ui1 , . . . ,Uim}) > k, which is a contradiction. Therefore,
ord({Uj1 , . . . ,Ujν}) 6 k.

Conversely, suppose that for every c ∈ QC(X,∼) there is a c-minimal family
{xj1 , . . . , xjν} such that ord({Uj1 , . . . ,Ujν}) 6 k. Then, {Uj1 , . . . ,Ujν} ∈ c and
by Proposition 3.6 we have dimq(X) 6 k. �

3.8. Proposition. [1] Let ci1 , . . . , cim be m columns of the incidence matrix TX
and k = max(ci1 + . . .+ cim). Then, ord({Ui1 , . . . ,Uim}) = k − 1.

3.9. Proposition. For every c ∈ QC(X,∼) let {xic1 , . . . , xicm} ∈ c(X) be a c-
minimal family. Then,

dimq(X) = max{max(cic1 + . . .+ cicm)− 1 : c ∈ QC(X,∼)}.
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Proof. Let kc = max(cic1 + . . .+ cicm), for every c ∈ QC(X,∼) and
k = max{kc − 1 : c ∈ QC(X,∼)}.

By Proposition 3.8 we have

ord({Uic1
, . . . ,Uicm

}) = kc − 1, c ∈ QC(X,∼).(3.1)

Therefore, by Proposition 3.7, dimq(X) 6 k. We prove that dimq(X) = k. Sup-
pose that dimq(X) < k. Let c0 ∈ QC(X,∼) such that k = kc0

−1. By Proposition
3.6 there exists {Ur1 , . . . ,Urµ} ∈ c0 such that ord({Ur1 , . . . ,Urµ}) < k. By rela-
tion (3.1) we have ord({Ui

c0
1
, . . . ,Ui

c0
m
}) = kc0 −1 = k. Therefore, by Proposition

3.5, ord({Ur1 , . . . ,Urµ}) > k which is a contradiction. Thus, dimq(X) = k. �

The proof of the following proposition is a straightforward veri�cation from the
de�nitions.

3.10. Proposition. The quasi covers {Ui1 , . . . , Uik1 } and {Uj1 , . . . , Ujk2 } of X
are similar if and only if bi1i2···ik1 = bj1j2···jk2 .

Using the notion of the quasi cover, Proposition 2.3 can be written as follows.

3.11. Proposition. Let i1, . . . , im be distinct elements of the set {1, . . . , n}. The
set {Ui1 , . . . ,Uim} is a quasi cover of X if and only if max(bi1i2···im + cj) = 2, for
each j ∈ {1, . . . , n} \ {i1, . . . , im}.
3.12. Proposition. Let i1, . . . , im be distinct elements of the set {1, . . . , n} such
that max(bi1i2···im + cj) = 2, for each j ∈ {1, . . . , n} \ {i1, . . . , im}. If for every
set {i′1, . . . , i′m−1} ⊆ {i1, . . . , im} we have bi′1i′2···i′m−1

6= bi1i2···im , then the family

{xi1 , . . . , xim} is a c-minimal family, where {Ui1 , . . . ,Uim} ∈ c.

Proof. By Proposition 3.11 the set {Ui1 , . . . ,Uim} is a quasi cover of X. Let c
be the element of QC(X,∼) for which {Ui1 , . . . ,Uim} ∈ c. Suppose that the
family {xi1 , . . . , xim} is not a c-minimal family. By Proposition 3.3, there exist
i′1, . . . , i

′
m−1 ∈ {i1, . . . , im} such that {xi′1 , . . . , xi′m−1

} ∈ c(X). By Proposition

3.10, bi′1i′2···i′m−1
= bi1i2···im which is a contradiction. �

The proof of the following proposition is straightforward veri�cation of the
Propositions 3.9 and 3.12.

3.13. Proposition. The quasi covering dimension dimq(X) is equal to the max-
imum of all max(ci1 + . . .+ cim)− 1 with the properties:

(1) max(bi1i2···im + cj) = 2, for each j ∈ {1, . . . , n} \ {i1, . . . , im}.
(2) For every {i′1, . . . , i′m−1} ⊆ {i1, . . . , im} we have bi′1i′2···i′m−1

6= bi1i2···im .

3.14. Algorithm.

Let X = {x1, . . . , xn} be a �nite space. Our intended algorithm contains the
following n+ 1 steps:

Step 0. Read the n columns c1, . . . , cn of the matrix TX .

Step 1. Find the set S1 of all {i11} ⊆ {1, . . . , n} satisfying the property:
max(bi11 + cj) = 2, for each j ∈ {1, . . . , n} \ {i11}.
If S1 = ∅, then put k1 = 0 and go to the Step 2. Otherwise, put

k1 = max{max(ci11)− 1 : {i11} ∈ S1}
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and go to the Step 2.

Step 2. Find the set S2 of all {i12, i22} ⊆ {1, . . . , n} satisfying the properties:

(1) max(bi12i22 + cj) = 2, for each j ∈ {1, . . . , n} \ {i12, i22}.
(2) For every {i′12} ⊆ {i12, i22} we have bi′12 6= bi12i22 .

If S2 = ∅, then put k2 = 0 and go to the Step 3. Otherwise, put

k2 = max{max(ci11 + ci22)− 1 : {i11, i12} ∈ S2}

and go to the Step 3.

. . .

. . .

. . .

Step n − 2. Find the set Sn−2 of all {i1(n−2), . . . , i(n−2)(n−2)} ⊆ {1, . . . , n}
satisfying the properties:

(1) max(bi1(n−2)i2(n−2)···i(n−2)(n−2)
+ cj) = 2, for each

j ∈ {1, . . . , n} \ {i1(n−2), . . . , i(n−2)(n−2)}.
(2) For every {i′1(n−2), . . . , i

′
(n−3)(n−2)} ⊆ {i1(n−2), . . . , i(n−2)(n−2)} we have

bi′
1(n−2)

i′
2(n−2)

···i′
(n−3)(n−2)

6= bi1(n−2)i2(n−2)···i(n−2)(n−2)
.

If Sn−2 = ∅, then put kn−2 = 0 and go to the Step n− 1. Otherwise, put

kn−2 = max{max(ci1(n−2)
+. . .+ci(n−2)(n−2)

)−1 : {i1(n−2), . . . , i(n−2)(n−2)} ∈ Sn−2}

and go to the Step n− 1.

Step n − 1. Find the set Sn−1 of all {i1(n−1), . . . , i(n−1)(n−1)} ⊆ {1, . . . , n}
satisfying the properties:

(1) max(bi1(n−1)i2(n−1)···i(n−1)(n−1)
+ cj) = 2, for each

j ∈ {1, . . . , n} \ {i1(n−1), . . . , i(n−1)(n−1)}.
(2) For every {i′1(n−1), . . . , i

′
(n−2)(n−1)} ⊆ {i1(n−1), . . . , i(n−1)(n−1)} we have

bi′
1(n−1)

i′
2(n−1)

···i′
(n−2)(n−1)

6= bi1(n−1)i2(n−1)···i(n−1)(n−1)
.

If Sn−1 = ∅, then put kn−1 = 0 and go to the Step n. Otherwise, put

kn−1 = max{max(ci1(n−1)
+. . .+ci(n−1)(n−1)

)−1 : {i1(n−1), . . . , i(n−1)(n−1)} ∈ Sn−1}

and go to the Step n.

Step n. If for every {i′1n, . . . , i′(n−1)n} ⊆ {1, . . . , n} we have bi′1ni′2n···i′(n−1)n
6= 1,

then put

kn = max(c1 + . . .+ cn)− 1

and go to the Step n+ 1. Otherwise, put kn = 0 and go to the Step n+ 1.

Step n+ 1. Print dimq(X) = max{k1, k2, . . . , kn}.

3.15. Example. Let X be the space of Example 2.5. We use Algorithm 3.14 to
compute dimq(X).



123

Step 0. The 5 columns of the incidence matrix TX are

c1 =


1
0
0
0
0

 , c2 =


1
1
0
0
0

 , c3 =


1
0
1
0
0

 , c4 =


1
0
0
1
0

 , c5 =


1
0
1
1
1

 .

Step 1. We have S1 = {{1}, {2}, {3}, {4}, {5}} and

k1 = max{max(ci)− 1 : i = 1, . . . , 5} = 0.

Step 2. We have S2 = {{2, 3}, {2, 4}, {2, 5}, {3, 4}} and

max(c2 + c3)− 1 = max(c2 + c4)− 1 = max(c2 + c5)− 1 = max(c3 + c4)− 1 = 1.

Hence, k2 = 1.

Step 3. We have S3 = {{2, 3, 4}} and k3 = max(c2 + c3 + c4)− 1 = 2.

Step 4. We have S4 = ∅ and k4 = 0.

Step 5. We have b2345 = 1 and k5 = 0.

Step 6. Print dimq(X) = max{k1, k2, k3, k4, k5} = 2.

4. Remarks on the quasi covering dimension

In this section we present some remarks with respect to quasi covering dimension
and the algorithms of sections 2 and 3.

4.1. Remark. Let A = (αij) be a n×n matrix and B = (βij) be a m×m matrix.
The Kronecker product of A and B (see, for instance, [4]) is the mn×mn matrix

A⊗B =

 α11B . . . α1nB
...

. . .
...

αn1B . . . αmnB

 .

Let X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , ym} be two �nite spaces with
incidence matrices TX and TY , respectively. It is known that the incidence matrix
of the space X × Y is the kronecker product TX ⊗ TY of TX and TY (see, [7]).

Here, we give an example from which we may conclude that the inequality

dimq(X × Y ) 6 dimq(X) + dimq(Y )

does not hold for every �nite topological spaces X and Y .

4.2. Example. Let X = {x1, x2, x3} and Y = {y1, y2, y3, y4} with the topologies

τX = {∅, {x2}, {x1, x2}, {x2, x3}, X}

and

τY = {∅, {y1}, {y1, y2}, {y1, y3}, {y1, y4}, {y1, y2, y3}, {y1, y2, y4}, {y1, y3, y4}, Y }.
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The incidence matrices of X and Y are

TX =

 1 0 0
1 1 1
0 0 1

 and TY =


1 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1

 .

Therefore, the incidence matrix TX×Y of the product space X × Y is

TX×Y = TX ⊗ TY =



1 1 1 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1



.

In study [1], we have compute that dim(X ×Y ) = 5. Thus, by Proposition 2.6 we
have that dimq(X × Y ) > 5. Also, for the topological spaces X and Y , following
one of the Algorithms 2.10 and 3.14, we have that dimq(X) = 1 and dimq(Y ) = 2.
From the above we may conclude that dimq(X × Y ) 
 dimq(X) + dimq(Y ).

4.3. Remark. Let X = {x1, x2, . . . , xn} be a �nite space.

(a) Algorithm 2.10: From the Step 1 up to Step n we appoint all the open and
dense subsets {xi1 , xi2 , . . . , xim} of X and we compute their covering dimen-
sions (based on the Algorithm 2.8). So, we have to apply the Algorithm 2.10(

n

n

)
+

(
n

n− 1

)
+ . . .+

(
n

2

)
+

(
n

1

)
= 2n − 1 times.

(b) Algorithm 3.14: We do not need to use Algorithm 2.8. From the Step 1 up
to Step n we �nd all the numbers max(ci1 + . . . + cim) − 1 of the subsets
{i1, . . . , im} of {1, . . . , n} which satisfy the conditions of Proposition 3.13.
Therefore, the number of iterations the algorithm performs in Steps 1, 2, . . . , n
is 2n − 1.
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